Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 107
Filtrar
1.
EMBO J ; 42(4): e112030, 2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36594262

RESUMO

B lymphocytes recognize bacterial or viral antigens via different classes of the B cell antigen receptor (BCR). Protrusive structures termed microvilli cover lymphocyte surfaces, and are thought to perform sensory functions in screening antigen-bearing surfaces. Here, we have used lattice light-sheet microscopy in combination with tailored custom-built 4D image analysis to study the cell-surface topography of B cells of the Ramos Burkitt's Lymphoma line and the spatiotemporal organization of the IgM-BCR. Ramos B-cell surfaces were found to form dynamic networks of elevated ridges bridging individual microvilli. A fraction of membrane-localized IgM-BCR was found in clusters, which were mainly associated with the ridges and the microvilli. The dynamic ridge-network organization and the IgM-BCR cluster mobility were linked, and both were controlled by Arp2/3 complex activity. Our results suggest that dynamic topographical features of the cell surface govern the localization and transport of IgM-BCR clusters to facilitate antigen screening by B cells.


Assuntos
Linfoma de Burkitt , Receptores de Antígenos de Linfócitos B , Humanos , Receptores de Antígenos de Linfócitos B/metabolismo , Membrana Celular/metabolismo , Linfócitos B , Linfoma de Burkitt/metabolismo , Imunoglobulina M/metabolismo
2.
J Cell Sci ; 137(1)2024 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-38197776

RESUMO

The visual allure of microscopy makes it an intuitively powerful research tool. Intuition, however, can easily obscure or distort the reality of the information contained in an image. Common cognitive biases, combined with institutional pressures that reward positive research results, can quickly skew a microscopy project towards upholding, rather than rigorously challenging, a hypothesis. The impact of these biases on a variety of research topics is well known. What might be less appreciated are the many forms in which bias can permeate a microscopy experiment. Even well-intentioned researchers are susceptible to bias, which must therefore be actively recognized to be mitigated. Importantly, although image quantification has increasingly become an expectation, ostensibly to confront subtle biases, it is not a guarantee against bias and cannot alone shield an experiment from cognitive distortions. Here, we provide illustrative examples of the insidiously pervasive nature of bias in microscopy experiments - from initial experimental design to image acquisition, analysis and data interpretation. We then provide suggestions that can serve as guard rails against bias.


Assuntos
Microscopia , Pesquisadores , Humanos , Viés
3.
J Cell Sci ; 137(2)2024 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-38236161

RESUMO

The actin cytoskeleton plays a critical role in cell architecture and the control of fundamental processes including cell division, migration and survival. The dynamics and organisation of F-actin have been widely studied in a breadth of cell types on classical two-dimensional (2D) surfaces. Recent advances in optical microscopy have enabled interrogation of these cytoskeletal networks in cells within three-dimensional (3D) scaffolds, tissues and in vivo. Emerging studies indicate that the dimensionality experienced by cells has a profound impact on the structure and function of the cytoskeleton, with cells in 3D environments exhibiting cytoskeletal arrangements that differ to cells in 2D environments. However, the addition of a third (and fourth, with time) dimension leads to challenges in sample preparation, imaging and analysis, necessitating additional considerations to achieve the required signal-to-noise ratio and spatial and temporal resolution. Here, we summarise the current tools for imaging actin in a 3D context and highlight examples of the importance of this in understanding cytoskeletal biology and the challenges and opportunities in this domain.


Assuntos
Actinas , Citoesqueleto , Citoesqueleto de Actina , Microscopia , Microtúbulos
4.
Bioessays ; 46(2): e2300114, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38058114

RESUMO

Bioimage analysis plays a critical role in extracting information from biological images, enabling deeper insights into cellular structures and processes. The integration of machine learning and deep learning techniques has revolutionized the field, enabling the automated, reproducible, and accurate analysis of biological images. Here, we provide an overview of the history and principles of machine learning and deep learning in the context of bioimage analysis. We discuss the essential steps of the bioimage analysis workflow, emphasizing how machine learning and deep learning have improved preprocessing, segmentation, feature extraction, object tracking, and classification. We provide examples that showcase the application of machine learning and deep learning in bioimage analysis. We examine user-friendly software and tools that enable biologists to leverage these techniques without extensive computational expertise. This review is a resource for researchers seeking to incorporate machine learning and deep learning in their bioimage analysis workflows and enhance their research in this rapidly evolving field.


Assuntos
Aprendizado Profundo , Processamento de Imagem Assistida por Computador/métodos , Microscopia de Fluorescência/métodos , Software , Aprendizado de Máquina
5.
J Cell Sci ; 136(24)2023 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-38095680

RESUMO

Scientific publications in the life sciences regularly include image data to display and communicate revelations about cellular structure and function. In 2016, a set of guiding principles known as the 'FAIR Data Principles' were put forward to ensure that research data are findable, accessible, interoperable and reproducible. However, challenges still persist regarding the quality, accessibility and interpretability of image data, and how to effectively communicate microscopy data in figures. This Perspective article details a community-driven initiative that aims to promote the accurate and understandable depiction of light microscopy data in publications. The initiative underscores the crucial role of global and diverse scientific communities in advancing the standards in the field of biological images. Additionally, the perspective delves into the historical context of scientific images, in the hope that this look into our past can help ongoing community efforts move forward.


Assuntos
Processamento de Imagem Assistida por Computador , Microscopia
6.
Brief Bioinform ; 24(1)2023 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-36577448

RESUMO

With the improvement of single-cell measurement techniques, there is a growing awareness that individual differences exist among cells, and protein expression distribution can vary across cells in the same tissue or cell line. Pinpointing the protein subcellular locations in single cells is crucial for mapping functional specificity of proteins and studying related diseases. Currently, research about single-cell protein location is still in its infancy, and most studies and databases do not annotate proteins at the cell level. For example, in the human protein atlas database, an immunofluorescence image stained for a particular protein shows multiple cells, but the subcellular location annotation is for the whole image, ignoring intercellular difference. In this study, we used large-scale immunofluorescence images and image-level subcellular locations to develop a deep-learning-based pipeline that could accurately recognize protein localizations in single cells. The pipeline consisted of two deep learning models, i.e. an image-based model and a cell-based model. The former used a multi-instance learning framework to comprehensively model protein distribution in multiple cells in each image, and could give both image-level and cell-level predictions. The latter firstly used clustering and heuristics algorithms to assign pseudo-labels of subcellular locations to the segmented cell images, and then used the pseudo-labels to train a classification model. Finally, the image-based model was fused with the cell-based model at the decision level to obtain the final ensemble model for single-cell prediction. Our experimental results showed that the ensemble model could achieve higher accuracy and robustness on independent test sets than state-of-the-art methods.


Assuntos
Aprendizado Profundo , Humanos , Proteínas/metabolismo , Algoritmos , Linhagem Celular , Imunofluorescência
7.
Biol Reprod ; 110(6): 1041-1054, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38159104

RESUMO

New microscopy techniques in combination with tissue clearing protocols and emerging analytical approaches have presented researchers with the tools to understand dynamic biological processes in a three-dimensional context. This paves the road for the exploration of new research questions in reproductive biology, for which previous techniques have provided only approximate resolution. These new methodologies now allow for contextualized analysis of far-larger volumes than was previously possible. Tissue optical clearing and three-dimensional imaging techniques posit the bridging of molecular mechanisms, macroscopic morphogenic development, and maintenance of reproductive function into one cohesive and comprehensive understanding of the biology of the reproductive system. In this review, we present a survey of the various tissue clearing techniques and imaging systems, as they have been applied to the developing and adult reproductive system. We provide an overview of tools available for analysis of experimental data, giving particular attention to the emergence of artificial intelligence-assisted methods and their applicability to image analysis. We conclude with an evaluation of how novel image analysis approaches that have been applied to other organ systems could be incorporated into future experimental evaluation of reproductive biology.


Assuntos
Genitália , Imageamento Tridimensional , Animais , Genitália/diagnóstico por imagem , Imageamento Tridimensional/métodos , Humanos , Reprodução/fisiologia , Feminino , Processamento de Imagem Assistida por Computador/métodos
8.
Mod Pathol ; 37(4): 100450, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38369188

RESUMO

Indoleamine 2,3-dioxygenase (IDO) and arginase-1 (ARG1) are amino acid-metabolizing enzymes, frequently highly expressed in cancer. Their expression may deplete essential amino acids, lead to immunosuppression, and promote cancer growth. Still, their expression patterns, prognostic significance, and spatial localization in the colorectal cancer microenvironment are incompletely understood. Using a custom 10-plex immunohistochemistry assay and supervised machine learning-based digital image analysis, we characterized IDO and ARG1 expression in monocytic cells, granulocytes, mast cells, and tumor cells in 833 colorectal cancer patients. We evaluated the prognostic value and spatial arrangement of IDO- and ARG1-expressing myeloid and tumor cells. IDO was mainly expressed not only by monocytic cells but also by some tumor cells, whereas ARG1 was predominantly expressed by granulocytes. Higher density of IDO+ monocytic cells was an independent prognostic factor for improved cancer-specific survival both in the tumor center (Ptrend = .0002; hazard ratio [HR] for the highest ordinal category Q4 [vs Q1], 0.51; 95% CI, 0.33-0.79) and the invasive margin (Ptrend = .0015). Higher density of granulocytes was associated with prolonged cancer-specific survival in univariable models, and higher FCGR3+ARG1+ neutrophil density in the tumor center also in multivariable analysis (Ptrend = .0020). Granulocytes were, on average, located closer to tumor cells than monocytic cells. Furthermore, IDO+ monocytic cells and ARG1- granulocytes were closer than IDO- monocytic cells and ARG1+ granulocytes, respectively. The mRNA expression of the IDO1 gene was assessed in myeloid and tumor cells using publicly available single-cell RNA sequencing data for 62 colorectal cancers. IDO1 was mainly expressed in monocytes and dendritic cells, and high IDO1 activity in monocytes was associated with enriched immunostimulatory pathways. Our findings provided in-depth information about the infiltration patterns and prognostic value of cells expressing IDO and/or ARG1 in the colorectal cancer microenvironment, highlighting the significance of host immune response in tumor progression.


Assuntos
Arginase , Neoplasias Colorretais , Indolamina-Pirrol 2,3,-Dioxigenase , Humanos , Arginase/metabolismo , Neoplasias Colorretais/genética , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Células Mieloides/metabolismo , Prognóstico , Microambiente Tumoral
9.
J Exp Biol ; 227(10)2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38806151

RESUMO

Delineating developmental events is central to experimental research using early life stages, permitting widespread identification of changes in event timing between species and environments. Yet, identifying developmental events is incredibly challenging, limiting the scale, reproducibility and throughput of using early life stages in experimental biology. We introduce Dev-ResNet, a small and efficient 3D convolutional neural network capable of detecting developmental events characterised by both spatial and temporal features, such as the onset of cardiac function and radula activity. We demonstrate the efficacy of Dev-ResNet using 10 diverse functional events throughout the embryonic development of the great pond snail, Lymnaea stagnalis. Dev-ResNet was highly effective in detecting the onset of all events, including the identification of thermally induced decoupling of event timings. Dev-ResNet has broad applicability given the ubiquity of bioimaging in developmental biology, and the transferability of deep learning, and so we provide comprehensive scripts and documentation for applying Dev-ResNet to different biological systems.


Assuntos
Aprendizado Profundo , Lymnaea , Animais , Lymnaea/crescimento & desenvolvimento , Lymnaea/fisiologia , Lymnaea/embriologia , Desenvolvimento Embrionário , Biologia do Desenvolvimento/métodos
10.
Brief Bioinform ; 22(6)2021 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-34337652

RESUMO

Protein subcellular localization plays a crucial role in characterizing the function of proteins and understanding various cellular processes. Therefore, accurate identification of protein subcellular location is an important yet challenging task. Numerous computational methods have been proposed to predict the subcellular location of proteins. However, most existing methods have limited capability in terms of the overall accuracy, time consumption and generalization power. To address these problems, in this study, we developed a novel computational approach based on human protein atlas (HPA) data, referred to as PScL-HDeep, for accurate and efficient image-based prediction of protein subcellular location in human tissues. We extracted different handcrafted and deep learned (by employing pretrained deep learning model) features from different viewpoints of the image. The step-wise discriminant analysis (SDA) algorithm was applied to generate the optimal feature set from each original raw feature set. To further obtain a more informative feature subset, support vector machine-based recursive feature elimination with correlation bias reduction (SVM-RFE + CBR) feature selection algorithm was applied to the integrated feature set. Finally, the classification models, namely support vector machine with radial basis function (SVM-RBF) and support vector machine with linear kernel (SVM-LNR), were learned on the final selected feature set. To evaluate the performance of the proposed method, a new gold standard benchmark training dataset was constructed from the HPA databank. PScL-HDeep achieved the maximum performance on 10-fold cross validation test on this dataset and showed a better efficacy over existing predictors. Furthermore, we also illustrated the generalization ability of the proposed method by conducting a stringent independent validation test.


Assuntos
Aprendizado Profundo , Proteínas/metabolismo , Frações Subcelulares/metabolismo , Biologia Computacional/métodos , Humanos , Máquina de Vetores de Suporte
11.
J Microsc ; 2023 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-37269048

RESUMO

Images are at the core of most modern biological experiments and are used as a major source of quantitative information. Numerous algorithms are available to process images and make them more amenable to be measured. Yet the nature of the quantitative output that is useful for a given biological experiment is uniquely dependent upon the question being investigated. Here, we discuss the 3 main types of information that can be extracted from microscopy data: intensity, morphology, and object counts or categorical labels. For each, we describe where they come from, how they can be measured, and what may affect the relevance of these measurements in downstream data analysis. Acknowledging that what makes a measurement 'good' is ultimately down to the biological question being investigated, this review aims at providing readers with a toolkit to challenge how they quantify their own data and be critical of conclusions drawn from quantitative bioimage analysis experiments.

12.
J Microsc ; 2023 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-37199456

RESUMO

Recent advances in microscopy imaging and image analysis motivate more and more institutes worldwide to establish dedicated core-facilities for bioimage analysis. To maximise the benefits research groups at these institutes gain from their core-facilities, they should be established to fit well into their respective environment. In this article, we introduce common collaborator requests and corresponding potential services core-facilities can offer. We also discuss potential competing interests between the targeted missions and implementations of services to guide decision makers and core-facility founders to circumvent common pitfalls.

13.
J Microsc ; 2023 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-37696268

RESUMO

ModularImageAnalysis (MIA) is an ImageJ plugin providing a code-free graphical environment in which complex automated analysis workflows can be constructed and distributed. The broad range of included modules cover all stages of a typical analysis workflow, from image loading through image processing, object detection, extraction of measurements, measurement-based filtering, visualisation and data exporting. MIA provides out-of-the-box compatibility with many advanced image processing plugins for ImageJ including Bio-Formats, DeepImageJ, MorphoLibJ and TrackMate, allowing these tools and their outputs to be directly incorporated into analysis workflows. By default, modules support spatially calibrated 5D images, meaning measurements can be acquired in both pixel and calibrated units. A hierarchical object relationship model allows for both parent-child (one-to-many) and partner (many-to-many) relationships to be established. These relationships underpin MIA's ability to track objects through time, represent complex spatial relationships (e.g. topological skeletons) and measure object distributions (e.g. count puncta per cell). MIA features dual graphical interfaces: the 'editing view' offers access to the full list of modules and parameters in the workflow, while the simplified 'processing view' can be configured to display only a focused subset of controls. All workflows are batch-enabled by default, with image files within a specified folder being processed automatically and exported to a single spreadsheet. Beyond the included modules, functionality can be extended both internally, through integration with the ImageJ scripting interface, and externally, by developing third-party Java modules that extend the core MIA framework. Here we describe the design and functionality of MIA in the context of a series of real-world example analyses.

14.
BMC Biol ; 20(1): 174, 2022 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-35932043

RESUMO

BACKGROUND: High-throughput live-cell imaging is a powerful tool to study dynamic cellular processes in single cells but creates a bottleneck at the stage of data analysis, due to the large amount of data generated and limitations of analytical pipelines. Recent progress on deep learning dramatically improved cell segmentation and tracking. Nevertheless, manual data validation and correction is typically still required and tools spanning the complete range of image analysis are still needed. RESULTS: We present Cell-ACDC, an open-source user-friendly GUI-based framework written in Python, for segmentation, tracking and cell cycle annotations. We included state-of-the-art deep learning models for single-cell segmentation of mammalian and yeast cells alongside cell tracking methods and an intuitive, semi-automated workflow for cell cycle annotation of single cells. Using Cell-ACDC, we found that mTOR activity in hematopoietic stem cells is largely independent of cell volume. By contrast, smaller cells exhibit higher p38 activity, consistent with a role of p38 in regulation of cell size. Additionally, we show that, in S. cerevisiae, histone Htb1 concentrations decrease with replicative age. CONCLUSIONS: Cell-ACDC provides a framework for the application of state-of-the-art deep learning models to the analysis of live cell imaging data without programming knowledge. Furthermore, it allows for visualization and correction of segmentation and tracking errors as well as annotation of cell cycle stages. We embedded several smart algorithms that make the correction and annotation process fast and intuitive. Finally, the open-source and modularized nature of Cell-ACDC will enable simple and fast integration of new deep learning-based and traditional methods for cell segmentation, tracking, and downstream image analysis. Source code: https://github.com/SchmollerLab/Cell_ACDC.


Assuntos
Processamento de Imagem Assistida por Computador , Saccharomyces cerevisiae , Ciclo Celular , Rastreamento de Células/métodos , Processamento de Imagem Assistida por Computador/métodos , Software
15.
BMC Bioinformatics ; 23(1): 470, 2022 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-36348299

RESUMO

BACKGROUND: The expression changes of some proteins are associated with cancer progression, and can be used as biomarkers in cancer diagnosis. Automated systems have been frequently applied in the large-scale detection of protein biomarkers and have provided a valuable complement for wet-laboratory experiments. For example, our previous work used an immunohistochemical image-based machine learning classifier of protein subcellular locations to screen biomarker proteins that change locations in colon cancer tissues. The tool could recognize the location of biomarkers but did not consider the effect of protein expression level changes on the screening process. RESULTS: In this study, we built an automated classification model that recognizes protein expression levels in immunohistochemical images, and used the protein expression levels in combination with subcellular locations to screen cancer biomarkers. To minimize the effect of non-informative sections on the immunohistochemical images, we employed the representative image patches as input and applied a Wasserstein distance method to determine the number of patches. For the patches and the whole images, we compared the ability of color features, characteristic curve features, and deep convolutional neural network features to distinguish different levels of protein expression and employed deep learning and conventional classification models. Experimental results showed that the best classifier can achieve an accuracy of 73.72% and an F1-score of 0.6343. In the screening of protein biomarkers, the detection accuracy improved from 63.64 to 95.45% upon the incorporation of the protein expression changes. CONCLUSIONS: Machine learning can distinguish different protein expression levels and speed up their annotation in the future. Combining information on the expression patterns and subcellular locations of protein can improve the accuracy of automatic cancer biomarker screening. This work could be useful in discovering new cancer biomarkers for clinical diagnosis and research.


Assuntos
Biomarcadores Tumorais , Neoplasias , Imuno-Histoquímica , Redes Neurais de Computação , Aprendizado de Máquina , Proteínas , Neoplasias/diagnóstico
16.
BMC Bioinformatics ; 23(1): 203, 2022 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-35641922

RESUMO

BACKGROUND: High-content screening (HCS) is a pre-clinical approach for the assessment of drug efficacy. On modern platforms, it involves fluorescent image capture using three-dimensional (3D) scanning microscopy. Segmentation of cell nuclei in 3D images is an essential prerequisite to quantify captured fluorescence in cells for screening. However, this segmentation is challenging due to variabilities in cell confluency, drug-induced alterations in cell morphology, and gradual degradation of fluorescence with the depth of scanning. Despite advances in algorithms for segmenting nuclei for HCS, robust 3D methods that are insensitive to these conditions are still lacking. RESULTS: We have developed an algorithm which first generates a 3D nuclear mask in the original images. Next, an iterative 3D marker-controlled watershed segmentation is applied to downsized images to segment adjacent nuclei under the mask. In the last step, borders of segmented nuclei are adjusted in the original images based on local nucleus and background intensities. The method was developed using a set of 10 3D images. Extensive tests on a separate set of 27 3D images containing 2,367 nuclei demonstrated that our method, in comparison with 6 reference methods, achieved the highest precision (PR = 0.97), recall (RE = 0.88) and F1-score (F1 = 0.93) of nuclei detection. The Jaccard index (JI = 0.83), which reflects the accuracy of nuclei delineation, was similar to that yielded by all reference approaches. Our method was on average more than twice as fast as the reference method that produced the best results. Additional tests carried out on three stacked 3D images comprising heterogenous nuclei yielded average PR = 0.96, RE = 0.84, F1 = 0.89, and JI = 0.80. CONCLUSIONS: The high-performance metrics yielded by the proposed approach suggest that it can be used to reliably delineate nuclei in 3D images of monolayered and stacked cells exposed to cytotoxic drugs.


Assuntos
Núcleo Celular , Imageamento Tridimensional , Algoritmos , Imageamento Tridimensional/métodos , Pesquisa
17.
Int J Mol Sci ; 23(21)2022 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-36362075

RESUMO

Non-small cell lung cancer (NSCLC) is an important sub-type of lung cancer associated with poor diagnosis and therapy. Innovative multi-functional systems are urgently needed to overcome the invasiveness of NSCLC. Carbon quantum dots (CQDs) derived from natural sources have received interest for their potential in medical bio-imaging due to their unique properties, which are characterized by their water solubility, biocompatibility, simple synthesis, and low cytotoxicity. In the current study, ethylene-diamine doped CQDs enhanced their cytotoxicity (98 ± 0.4%, 97 ± 0.38%, 95.8 ± 0.15%, 86 ± 0.15%, 12.5 ± 0.14%) compared to CQDs alone (99 ± 0.2%, 98 ± 1.7%, 96 ± 0.8%, 93 ± 0.38%, 91 ± 1.3%) at serial concentrations (0.1, 1, 10, 100, 1000 µg/mL). In order to increase their location in a specific tumor site, folic acid was used to raise their functional folate recognition. The apoptotic feature of A549 lung cells exposed to N-CQDs and FA-NCQDs was characterized by a light orange-red color under fluorescence microscopy. Additionally, much nuclear fragmentation and condensation were seen. Flow cytometry results showed that the percentage of cells in late apoptosis and necrosis increased significantly in treated cells to (19.7 ± 0.03%), (27.6 ± 0.06%) compared to untreated cells (4.6 ± 0.02%), (3.5 ± 0.02%), respectively. Additionally, cell cycle arrest showed a strong reduction in cell numbers in the S phase (14 ± 0.9%) compared to untreated cells (29 ± 0.5%). Caspase-3 levels were increased significantly in A549 exposed to N-CQDs (2.67 ± 0.2 ng/mL) and FA-NCQDs (3.43 ± 0.05 ng/mL) compared to untreated cells (0.34 ± 0.04 ng/mL). The functionalization of CQDs derived from natural sources has proven their potential application to fight off non-small lung cancer.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Pontos Quânticos , Humanos , Carbono , Carcinoma Pulmonar de Células não Pequenas/diagnóstico por imagem , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/tratamento farmacológico , Microscopia de Fluorescência , Ácido Fólico
18.
Blood Press ; 30(4): 237-249, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33797315

RESUMO

BACKGROUND: Ambulatory blood pressure monitoring (ABPM) is increasingly recommended for clinical use, but more knowledge about the prevalence and variability in ABPM-derived phenotypes in the general population is needed. We describe these parameters in the community-based Swedish CArdioPulmonary bioImage Study (SCAPIS) cohort. METHODS: We examined 5881 men and women aged 50-64 with 24-hour ABPM recordings using validated monitors. ABPM phenotypes were defined according to European guidelines. White coat hypertension was defined as elevated office BP (≥140/90 mmHg) with normal mean ambulatory BP (<135/85 mmHg in day-time, <120/70 mmHg in night-time, <130/80 mmHg over 24-h); and masked hypertension as normal office BP (<140/90 mmHg) with elevated mean ambulatory BP (≥135/85 mmHg in day-time, ≥120/70 mmHg in night-time, ≥130/80 mmHg over 24-h). Blood pressure variability was assessed using the coefficient of variation (CV), standard deviation (SD), and average real variability. RESULTS: Based on the ABPM recordings, 36.9% of participants had 24-h hypertension, 40.7% had day-time hypertension, and 37.6% nocturnal hypertension. Among participants treated with anti-hypertensive drugs, one in three had elevated office blood pressures, and more than half had elevated 24-h, day-time or nocturnal blood pressures. Among participants without anti-hypertensive drugs, only one in six had elevated office blood pressures, but one in three had elevated 24-h, day-time or nocturnal blood pressures. Men had higher 24-h blood pressures, more masked hypertension, but less white-coat hypertension than women. The prevalence of white-coat hypertension increased with age, but not the prevalence of masked hypertension. A positive association between blood pressure level and variability was observed, and within-person and between-person SD and CV were of similar magnitude. The variance in ABPM on repeated measurements was substantial. CONCLUSIONS: In the middle-aged general population, masked hypertension is an underappreciated problem on the population level.


Assuntos
Hipertensão , Hipertensão Mascarada , Pressão Sanguínea , Monitorização Ambulatorial da Pressão Arterial , Feminino , Humanos , Hipertensão/diagnóstico , Hipertensão/tratamento farmacológico , Hipertensão/epidemiologia , Masculino , Hipertensão Mascarada/diagnóstico , Hipertensão Mascarada/epidemiologia , Pessoa de Meia-Idade , Monitorização Ambulatorial , Fenótipo
19.
BMC Bioinformatics ; 21(1): 398, 2020 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-32907537

RESUMO

BACKGROUND: Protein biomarkers play important roles in cancer diagnosis. Many efforts have been made on measuring abnormal expression intensity in biological samples to identity cancer types and stages. However, the change of subcellular location of proteins, which is also critical for understanding and detecting diseases, has been rarely studied. RESULTS: In this work, we developed a machine learning model to classify protein subcellular locations based on immunohistochemistry images of human colon tissues, and validated the ability of the model to detect subcellular location changes of biomarker proteins related to colon cancer. The model uses representative image patches as inputs, and integrates feature engineering and deep learning methods. It achieves 92.69% accuracy in classification of new proteins. Two validation datasets of colon cancer biomarkers derived from published literatures and the human protein atlas database respectively are employed. It turns out that 81.82 and 65.66% of the biomarker proteins can be identified to change locations. CONCLUSIONS: Our results demonstrate that using image patches and combining predefined and deep features can improve the performance of protein subcellular localization, and our model can effectively detect biomarkers based on protein subcellular translocations. This study is anticipated to be useful in annotating unknown subcellular localization for proteins and discovering new potential location biomarkers.


Assuntos
Biomarcadores Tumorais/metabolismo , Neoplasias do Colo/patologia , Proteínas/metabolismo , Neoplasias do Colo/metabolismo , Bases de Dados de Proteínas , Humanos , Imuno-Histoquímica , Aprendizado de Máquina , Proteínas/classificação
20.
Brief Bioinform ; 19(1): 41-51, 2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-27742664

RESUMO

High-throughput phenotyping is a cornerstone of numerous functional genomics projects. In recent years, imaging screens have become increasingly important in understanding gene-phenotype relationships in studies of cells, tissues and whole organisms. Three-dimensional (3D) imaging has risen to prominence in the field of developmental biology for its ability to capture whole embryo morphology and gene expression, as exemplified by the International Mouse Phenotyping Consortium (IMPC). Large volumes of image data are being acquired by multiple institutions around the world that encompass a range of modalities, proprietary software and metadata. To facilitate robust downstream analysis, images and metadata must be standardized to account for these differences. As an open scientific enterprise, making the data readily accessible is essential so that members of biomedical and clinical research communities can study the images for themselves without the need for highly specialized software or technical expertise. In this article, we present a platform of software tools that facilitate the upload, analysis and dissemination of 3D images for the IMPC. Over 750 reconstructions from 80 embryonic lethal and subviable lines have been captured to date, all of which are openly accessible at mousephenotype.org. Although designed for the IMPC, all software is available under an open-source licence for others to use and develop further. Ongoing developments aim to increase throughput and improve the analysis and dissemination of image data. Furthermore, we aim to ensure that images are searchable so that users can locate relevant images associated with genes, phenotypes or human diseases of interest.


Assuntos
Embrião de Mamíferos/diagnóstico por imagem , Embrião de Mamíferos/fisiologia , Ensaios de Triagem em Larga Escala/métodos , Processamento de Imagem Assistida por Computador/métodos , Imagem Molecular/métodos , Software , Animais , Automação , Imageamento Tridimensional/métodos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Imagem Molecular/instrumentação , Fenótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA