Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Int J Environ Health Res ; 30(4): 461-473, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30950639

RESUMO

Microbial communities provide useful information about any chemical and physical changes in the environment and play an essential role in maintaining soil fertility. Biolog® eco-plates method was used to study the functional diversity of microbial communities, and their correlation with soil organic carbon (OC), microbial biomass and activities, under three different soil conditions of Sukinda chromite mining area of Odisha, India during August 2016. The OC, available nitrogen, available phosphorus and available potash were significantly (p < 0.05) lower in in situ and overburden soils as compared to forest soil. The average development rate of average well color development values decreased with incubation time in all soil conditions. The utilization of six categories of carbon sources by soil microbes decreased with the increase in chromium load and biplot analysis suggested that carbohydrate, polymer and amino acid utilizing microbes were dominant in mining soils. The ecotoxicological status of chromite mine soil would be useful for formulating strategies of possible bioremediation program.


Assuntos
Bactérias/metabolismo , Cromo/análise , Microbiota/efeitos dos fármacos , Microbiologia do Solo , Poluentes do Solo/análise , Metaboloma , Mineração , Solo/química
2.
Environ Sci Pollut Res Int ; 24(8): 7668-7678, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28124267

RESUMO

Phytoremediation of strontium contaminated soil by Sorghum bicolor (L.) Moench was investigated, and the soil microbial community-level physiological profiles (CLPPs) were examined. The growth and the stable strontium (88Sr) accumulations of the energy crop S. bicolor grown on the Sr-spiked soil at the level of 0, 50, 100, 200, and 400 mg/kg soil were characterized through pot soil system after the entire growth period (140 days). Correspondingly, the available content of strontium in soil extracted by Mehlich III extraction solution reached 42.0, 71.9, 151.8, and 242.2 mg/kg, respectively. The Sr-polluted soil microbial community was assessed by a Biolog Eco-plate method. The results showed that the spiked Sr significantly increased the height and the stem biomass weight of the plant. Sr contents in roots, stems, and leaves of the sorghum increased linearly (R 2 > 0.95) with the elevation of the Sr-spiked level in soil. The average Sr concentration in roots, stems, and leaves reached 68.9, 61.3, and 132.6 mg/kg dry weight (DW) under Sr-spiked 400 mg/kg soil, respectively. Sr content in tissues decreased in the order of leaves > roots > stems. The bioconcentration factor (BCF; Sr contents in shoots to soil) values of S. bicolor in soil system was lower than 1 (0.21∼0.39) whether based on the spiked Sr level or on the available Sr level in soil. The transfer factor (TF; Sr contents in shoots to roots) values of S. bicolor in soil system usually is higher than 1 or near to 1 (0.92∼1.29). TF values increased while BCF values decreased as the soil Sr increased. The Biolog Eco-plate assay showed that Sr at the spiked level of 400 mg/kg soil enhanced the soil microbial diversity and activity.


Assuntos
Microbiologia do Solo , Poluentes do Solo/metabolismo , Sorghum/metabolismo , Estrôncio/metabolismo , Biodegradação Ambiental , Biomassa , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Caules de Planta/crescimento & desenvolvimento , Caules de Planta/metabolismo , Sorghum/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA