Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 330
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Environ Sci Technol ; 58(2): 991-1009, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38166393

RESUMO

Micro- and nanoplastics (MNPs) are attracting increasing attention due to their persistence and potential ecological risks. This review critically summarizes the effects of photo-oxidation on the physical, chemical, and biological behaviors of MNPs in aquatic and terrestrial environments. The core of this paper explores how photo-oxidation-induced surface property changes in MNPs affect their adsorption toward contaminants, the stability and mobility of MNPs in water and porous media, as well as the transport of pollutants such as organic pollutants (OPs) and heavy metals (HMs). It then reviews the photochemical processes of MNPs with coexisting constituents, highlighting critical factors affecting the photo-oxidation of MNPs, and the contribution of MNPs to the phototransformation of other contaminants. The distinct biological effects and mechanism of aged MNPs are pointed out, in terms of the toxicity to aquatic organisms, biofilm formation, planktonic microbial growth, and soil and sediment microbial community and function. Furthermore, the research gaps and perspectives are put forward, regarding the underlying interaction mechanisms of MNPs with coexisting natural constituents and pollutants under photo-oxidation conditions, the combined effects of photo-oxidation and natural constituents on the fate of MNPs, and the microbiological effect of photoaged MNPs, especially the biotransformation of pollutants.


Assuntos
Poluentes Ambientais , Microbiota , Poluentes Químicos da Água , Microplásticos , Adsorção , Oxirredução , Plásticos
2.
Lasers Surg Med ; 56(1): 100-106, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37855626

RESUMO

PURPOSE: In postoperative wound healing after surgical operations or ablative laser treatments, recent studies suggest the timely use of non-ablative fractional laser treatments with the aim to improve wound healing and prevent pathological scar formation. However, the underlying molecular mechanisms are poorly understood. The aim of this study was to investigate the effects of laser-assisted scar healing (LASH) at the molecular level and to combine it with already established wound healing-promoting local treatments. METHODS: We irradiated full-thickness 3D skin models with a fractional ablative Er:YAG laser to set standardized lesions to the epidermal and upper dermal layer. Subsequently, LASH was induced by irradiating the models with either a fractional non-ablative 1540 nm Er:Glass or 1550 nm diode laser. In addition, we tested the combination of non-ablative fractional laser treatment and topical aftercare with a dexpanthenol-containing ointment (DCO). RESULTS: Histological analysis revealed that models irradiated with the 1540 nm Er:Glass or 1550 nm diode laser exhibited accelerated but not complete wound closure after 16 h. In contrast, additional topical posttreatment with DCO resulted in complete wound closure. At gene expression level, both non-ablative laser systems showed similar effects on epidermal differentiation and mild anti-inflammatory properties. The additional posttreatment with DCO enhanced the wound-healing effects of LASH, especially the upregulation of epidermal differentiation markers and anti-inflammatory cytokines at the gene expression level. CONCLUSION: This in vitro study deciphers the biological effects of LASH with a fractional non-ablative 1540 nm Er:Glass or a 1550 nm diode laser in 3D skin models. These data help to better understand the biological properties of the LASH technique and is important to optimize its application.


Assuntos
Terapia a Laser , Lasers de Estado Sólido , Humanos , Cicatriz/metabolismo , Lasers Semicondutores/uso terapêutico , Pele/metabolismo , Cicatrização , Lasers de Estado Sólido/uso terapêutico , Anti-Inflamatórios/metabolismo , Anti-Inflamatórios/farmacologia , Terapia a Laser/métodos
3.
Bioelectromagnetics ; 45(4): 159-170, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38081752

RESUMO

For the study of biological effects of direct current (DC) and extremely low frequency (ELF) electric fields, we have quantitatively analyzed red blood cell (RBC) movement in whole blood. Considering the inhomogeneous distribution of electric fields in vivo, five different electric field distributions were generated under a microscope. For theoretical analyses, we assumed electrophoresis and dielectrophoresis as basic motive forces and obtained the spatial distribution of blood cell velocity. The RBC velocity was measured using video image analysis. The spatial dependence of the velocity showed good agreement with that predicted by theoretical analysis. This result suggests the validity of the theoretical model based on electrophoresis and dielectrophoresis for the study of ELF electric field exposure to inhomogeneous animal and human bodies. Next, using the same measurement system, we attempted to find the electric field strength at which these effects occur. The threshold values were found to be 0.40 and 1.6 kV/m, respectively, for DC and AC electric field exposures. Furthermore, we investigated the reproducibility of the field effects in more realistic conditions of human exposure. The RBCs in microchannels were exposed to the electric field generated in capacitive coupling using electrodes separated by an air gap. Even in the new condition, similar effects were observed, which also verified the validity of the analysis described above. These results will provide useful information for the safety assessment of field exposure and for the future biomedical applications of electric fields to manipulate RBCs in vivo.


Assuntos
Campos Eletromagnéticos , Eritrócitos , Animais , Humanos , Campos Eletromagnéticos/efeitos adversos , Reprodutibilidade dos Testes , Eletricidade , Modelos Teóricos
4.
Radiat Environ Biophys ; 63(1): 97-107, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38197922

RESUMO

Uranium mining can cause environmental impacts on non-human biota around mine sites. Because of this, the reduction in non-human biota exposure becomes an important issue. Environmental radioprotection results from the evolution of human radioprotection; it is based on dose rate to non-human biota and uses, as a biological target, and has harmful effects on populations. In the present study, a flooded impoundment created following dam construction in a uranium mine plant undergoing decommissioning was investigated. Internal dose rates due to activity concentration of natural uranium (Unat) and 232Th in omnivorous, phytophagous, and carnivorous fish species were estimated. Radionuclide activity concentrations were obtained by spectrophotometry with arsenazo III in the visible range. The dose rate contribution of 232Th was lower than that of Unat. There were no differences between the internal dose rates to studied fish species due to 232Th, but there were differences for Unat. A dose rate of 2.30·10-2 µGy∙d-1 was found due to the two studied radionuclides. Although this value falls below the benchmark for harmful effects, it is important to acknowledge that the assessment did not account for other critical radionuclides from uranium mining, which also contribute to the internal dose. Moreover, the study did not assess external doses. As a result, the possibility cannot be excluded that dose rates at the study area overcome the established benchmarks for harmful effects.


Assuntos
Monitoramento de Radiação , Urânio , Poluentes Radioativos da Água , Animais , Tório/análise , Urânio/análise , Brasil , Radioisótopos , Poluentes Radioativos da Água/análise
5.
Ecotoxicol Environ Saf ; 279: 116463, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38749194

RESUMO

The environmental impact of oil spills is a critical concern, particularly pertaining to low sulfur marine diesel (LSMD) and high sulfur fuel oil (HSFO) that are commonly involved in coastal spills. Although transcriptomic biomonitoring of sentinel animals can be a powerful tool for assessing biological effects, conventional methods utilize lethal sampling to examine the liver. As a non-lethal alternative, we have previously shown salmonid caudal fin cyp1a1 is significantly responsive to LSMD-derived toxicants. The present study further investigated the transcriptomic biomonitoring potential of coho salmon smolt caudal fin in comparison to liver tissue in the context of LSMD and HSFO seawater accommodated fraction (seaWAF) exposure in cold-water marine environments. Assessing the toxicity of these seaWAFs involved quantifying polycyclic aromatic hydrocarbon (tPAH50) concentrations and generating gene expression profiles. Initial qPCR analyses revealed significant cyp1a1 response in both liver and caudal fin tissues of both genetic sexes to all seaWAF exposures. RNA-Seq analysis, focusing on the highest LSMD and HSFO seaWAF concentrations (28.4±1.8 and 645.08±146.3 µg/L tPAH50, respectively), revealed distinct tissue-specific and genetic sex-independent transcriptomic responses with an overall enrichment of oxidative stress, cell adhesion, and morphogenesis-related pathways. Remarkably, the caudal fin tissue exhibited transcriptomic response patterns comparable to liver tissue, particularly consistent differential expression of 33 gene transcripts in the liver (independent of sex and oil type) and 44 in the caudal fin. The present work underscores the viability of using the caudal fin as a non-lethal alternative to liver sampling for assessing and tracking oil spill exposure in marine environments.


Assuntos
Nadadeiras de Animais , Citocromo P-450 CYP1A1 , Óleos Combustíveis , Fígado , Poluição por Petróleo , Transcriptoma , Poluentes Químicos da Água , Animais , Fígado/efeitos dos fármacos , Fígado/metabolismo , Poluentes Químicos da Água/toxicidade , Poluição por Petróleo/efeitos adversos , Nadadeiras de Animais/efeitos dos fármacos , Transcriptoma/efeitos dos fármacos , Masculino , Citocromo P-450 CYP1A1/genética , Citocromo P-450 CYP1A1/metabolismo , Óleos Combustíveis/toxicidade , Feminino , Enxofre , Monitoramento Ambiental/métodos , Oncorhynchus kisutch/genética , Gasolina/toxicidade , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Hidrocarbonetos Policíclicos Aromáticos/análise , Água do Mar/química
6.
Lasers Med Sci ; 39(1): 74, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38383895

RESUMO

Low-level light therapy (LLLT), also known as photo biomodulation (PBM), is a type of optical therapy that uses red or near-infrared lasers or light-emitting diodes (LEDs) for medical treatment. The laser wavelengths involved in PBM typically range between 600-700 nm and 780-1100 nm, with power densities ranging between 5 mW/cm2 and 5 W/cm2. PBM is a series of biochemical cascades exhibited by biological tissues after absorbing a certain amount of energy from light. PBM has been widely used in clinical practice in the past 20 years, and numerous clinical trials have demonstrated its biological efficacy. However, the underlying mechanisms have not yet been fully explored. In this paper, we have summarized the research into PBM over the past two decades, to identify the important mechanisms of the biological effects of PBM from the perspective of molecular mechanisms, cellular levels, and tissue changes. We hope our study provide a theoretical basis for future investigations into the underlying mechanisms.


Assuntos
Lasers , Terapia com Luz de Baixa Intensidade , Luz
7.
Chem Biodivers ; 21(5): e202400228, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38613448

RESUMO

Marrubium vulgare L. (Lamiaceae) has a long history of use in traditional herbal medicine for the treatment of respiratory tract infections, inflammatory conditions, and pain. This study aimed to investigate the chemical composition, acute toxicity, and antinociceptive effects of the aqueous extract from M. vulgare leaves (AEMV). Antioxidant activity was evaluated using DPPH and reducing power assays. The chemical composition of AEMV was determined through LC-MS/MS, and the levels of total phenolics, flavonoids, and condensed tannins were quantified. Acute oral toxicity was assessed in male Swiss mice with a single oral dose of AEMV (1, 2, 5 g/kg). The analgesic impact was examined through writhing, hot plate, and formalin tests. Our findings not only confirmed the safety of the extract in animal models but also revealed significant antioxidant activity in AEMV. High-performance liquid chromatography (HPLC) analysis identified important bioactive compounds, with marrubiin being a major component. Furthermore, AEMV demonstrated robust antinociceptive properties in all conducted tests, highlighting its potential as a valuable natural source of bioactive compounds suitable for a wide range of therapeutic applications.


Assuntos
Analgésicos , Antioxidantes , Marrubium , Extratos Vegetais , Animais , Analgésicos/farmacologia , Analgésicos/química , Analgésicos/isolamento & purificação , Camundongos , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Extratos Vegetais/isolamento & purificação , Masculino , Marrubium/química , Antioxidantes/farmacologia , Antioxidantes/química , Antioxidantes/isolamento & purificação , Folhas de Planta/química , Dor/tratamento farmacológico , Dor/induzido quimicamente , Compostos de Bifenilo/antagonistas & inibidores , Água/química , Cromatografia Líquida de Alta Pressão , Picratos/antagonistas & inibidores , Relação Dose-Resposta a Droga
8.
Int J Mol Sci ; 25(10)2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38791264

RESUMO

Flavonoids, a variety of plant secondary metabolites, are known for their diverse biological activities. Isoflavones are a subgroup of flavonoids that have gained attention for their potential health benefits. Puerarin is one of the bioactive isoflavones found in the Kudzu root and Pueraria genus, which is widely used in alternative Chinese medicine, and has been found to be effective in treating chronic conditions like cardiovascular diseases, liver diseases, gastric diseases, respiratory diseases, diabetes, Alzheimer's disease, and cancer. Puerarin has been extensively researched and used in both scientific and clinical studies over the past few years. The purpose of this review is to provide an up-to-date exploration of puerarin biosynthesis, the most common extraction methods, analytical techniques, and biological effects, which have the potential to provide a new perspective for medical and pharmaceutical research and development.


Assuntos
Isoflavonas , Isoflavonas/biossíntese , Isoflavonas/química , Isoflavonas/isolamento & purificação , Humanos , Pueraria/química , Flavonoides/biossíntese , Animais
9.
Molecules ; 29(12)2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38930977

RESUMO

Specialized chemicals are used for intensifying food production, including boosting meat and crop yields. Among the applied formulations, antibiotics and pesticides pose a severe threat to the natural balance of the ecosystem, as they either contribute to the development of multidrug resistance among pathogens or exhibit ecotoxic and mutagenic actions of a persistent character. Recently, cold atmospheric pressure plasmas (CAPPs) have emerged as promising technologies for degradation of these organic pollutants. CAPP-based technologies show eco-friendliness and potency for the removal of organic pollutants of diverse chemical formulas and different modes of action. For this reason, various types of CAPP-based systems are presented in this review and assessed in terms of their constructions, types of discharges, operating parameters, and efficiencies in the degradation of antibiotics and persistent organic pollutants. Additionally, the key role of reactive oxygen and nitrogen species (RONS) is highlighted. Moreover, optimization of the CAPP operating parameters seems crucial to effectively remove contaminants. Finally, the CAPP-related paths and technologies are further considered in terms of biological and environmental effects associated with the treatments, including changes in antibacterial properties and toxicity of the exposed solutions, as well as the potential of the CAPP-based strategies for limiting the spread of multidrug resistance.


Assuntos
Pressão Atmosférica , Gases em Plasma , Gases em Plasma/química , Poluentes Ambientais/química , Indústria Alimentícia , Antibacterianos/química , Antibacterianos/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Compostos Orgânicos/química
10.
Biochem Biophys Res Commun ; 681: 144-151, 2023 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-37774572

RESUMO

Low-intensity ultrasound can be applied for medical imaging and disease treatment in clinical and experimental studies. However, the biological effects of ultrasound on blood vessels, especially endothelial cells (ECs) are still unclear. In this study, the laws of endothelial cytoskeleton changes under ultrasound induction are investigated. ECs are exposed to low-intensity ultrasound, and the cytoskeletal morphology is analyzed by a filamentous (F)-actin staining technique. We further analyze the characteristics of cytoskeleton rupture using indirect immunofluorescence techniques and cytoskeleton electron microscopy. Finally, the biological effects induced by ultrasound at the tissue level are investigated in an ex vivo blood-vessel model. Significant changes in cytoskeletal structure are detected when induced by ultrasound, including cytoskeletal rupture, blebbing and apoptosis. Moreover, a temporal threshold of ECs injury under different ultrasonic intensities is established. This study illustrates a pattern of significant changes in the cytoskeletal structure of ECs induced by ultrasound. The finding serves as a guide for selecting a safe threshold for clinical ultrasound applications.


Assuntos
Citoesqueleto , Células Endoteliais , Actinas , Citoesqueleto de Actina , Microtúbulos
11.
Crit Rev Food Sci Nutr ; 63(25): 7722-7748, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35293826

RESUMO

Allicin, a thiosulfonate extract from freshly minced garlic, has been reported to have various biological effects on different organs and systems of animals and human. It can reduce oxidative stress, inhibit inflammatory response, resist pathogen infection and regulate intestinal flora. In addition, dozens of studies also demonstrated allicin could reduce blood glucose level, protect cardiovascular system and nervous system, and fight against cancers. Allicin was widely used in disease prevention and health care. However, more investigations on human cohort study are needed to verify the biological or clinical effects of allicin in the future. In this review, we summarized the biological effects of allicin from previous outstanding and valuable studies and provided useful information for future studies on the health effects of allicin.


Assuntos
Dissulfetos , Alho , Animais , Humanos , Dissulfetos/farmacologia , Ácidos Sulfínicos/farmacologia , Ácidos Sulfínicos/uso terapêutico , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico
12.
IEEE Trans Microw Theory Tech ; 71(5): 1911-1922, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-38645708

RESUMO

This paper presents a miniaturized implant with a diameter of only 14 mm, which houses a novel System on Chip (SoC) enabling two voltage level stimulation of up to 16 implants using a single Tx coil. Each implant can operate at a distance of 80 mm in the air through the inductive resonant link. The SoC consumes only 27 µW static power and enables two channels with stimulation amplitudes of 1.8 V and 3.3 V and timing resolution of 100 µs. The SoC is implemented in the standard 180 nm complementary metal oxide semiconductor (CMOS) technology and has an area of 0.75 mm × 1.6 mm. The SoC comprises an RF rectifier, low drop-out regulator (LDO), error detection block, clock data recovery, finite state machine (FSM), and output stage. Each implant has a PCB-defined passcode, which enables the individual addressability of the implants for synchronized therapies. The implantable device weighs only 80 mg and sizes 20.1 mm3. Tolerance of up to 70° to angular misalignment was measured at a distance of 50 mm. The efficacy of bilateral stimulation was further verified by implanting two devices on two sides of a pig's neck and performing bilateral vagus nerve stimulation (VNS), while monitoring the heart rate.

13.
Sensors (Basel) ; 23(4)2023 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-36850949

RESUMO

The article's subject is the investigation of electromagnetic fields (EMF) of the microwave frequency band in a typical human living environment, especially in shielded areas. The point of view of electromagnetic field presence in the environment with the rapid increase in the level of the electromagnetic background is currently an essential point concerning population protection against the potential adverse effects of such EMFs. The authors focus on actual measurements, especially in shielded spaces frequently used in everyday life, such as elevator cabins and cars. The goal is a quantitative evaluation of the distribution of specific vector quantities of the EM field and a comparison with the currently valid hygiene standards. Measured values in shielded spaces show elevated levels in contrast to the open space. However, the values do not exceed limits set by considering the thermal effect on living tissues.


Assuntos
Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Campos Eletromagnéticos , Humanos , Campos Eletromagnéticos/efeitos adversos , Micro-Ondas , Automóveis , Elevadores e Escadas Rolantes
14.
J Sci Food Agric ; 103(9): 4275-4292, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36597140

RESUMO

Plants produce biologically active metabolites that have been utilised to cure a variety of severe and persistent illnesses. There is a possibility that understanding how these bioactive molecules work would allow researchers to come up with better treatments for diseases including malignancy, cardiac disease and neurological disorders. A triterpene called ursolic acid (UA) is a pentacyclic prevalent triterpenoid found in fruits, leaves, herbs and blooms. The biological and chemical aspects of UA, as well as their presence, plant sources and biosynthesis, and traditional and newer technologies of extraction, are discussed in this review. Because of its biological function in the creation of new therapeutic techniques, UA is a feasible option for the evolution and medical management of a wide range of medical conditions, including cancer and other life threatening diseases. Despite this, the substance's poor solubility in aquatic environments makes it unsuitable for medicinal purposes. This hurdle was resolved in many different ways. The inclusion of UA into various pharmaceutical delivery approaches was found to be quite effective in this respect. This review also describes the properties of UA and its pharmacokinetics, as well as therapeutic applications of UA for cancer, inflammatory and cardiovascular diseases, in addition to its anti-diabetic, immunomodulatory, hepatoprotective and anti-microbial properties. Some of the recent findings related to novel nano-sized carriers as a delivery system for UA and the patents related to the applications of UA and its various derivatives are covered in this review. The analytical study of UA, oleanolic acid and other phytoconstituents by UV, HPLC, high-performance thin-layer chromatography and gas chromatography is also discussed. In the future, UA could be explored in vivo using various animal models and, in addition, the regulatory status regarding UA needs to be explored. © 2023 Society of Chemical Industry.


Assuntos
Neoplasias , Ácido Oleanólico , Triterpenos , Animais , Composição de Medicamentos , Neoplasias/tratamento farmacológico , Solubilidade , Triterpenos/química , Ácido Ursólico
15.
Entropy (Basel) ; 25(6)2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37372185

RESUMO

Identifying the driver genes of cancer progression is of great significance in improving our understanding of the causes of cancer and promoting the development of personalized treatment. In this paper, we identify the driver genes at the pathway level via an existing intelligent optimization algorithm, named the Mouth Brooding Fish (MBF) algorithm. Many methods based on the maximum weight submatrix model to identify driver pathways attach equal importance to coverage and exclusivity and assign them equal weight, but those methods ignore the impact of mutational heterogeneity. Here, we use principal component analysis (PCA) to incorporate covariate data to reduce the complexity of the algorithm and construct a maximum weight submatrix model considering different weights of coverage and exclusivity. Using this strategy, the unfavorable effect of mutational heterogeneity is overcome to some extent. Data involving lung adenocarcinoma and glioblastoma multiforme were tested with this method and the results compared with the MDPFinder, Dendrix, and Mutex methods. When the driver pathway size was 10, the recognition accuracy of the MBF method reached 80% in both datasets, and the weight values of the submatrix were 1.7 and 1.89, respectively, which are better than those of the compared methods. At the same time, in the signal pathway enrichment analysis, the important role of the driver genes identified by our MBF method in the cancer signaling pathway is revealed, and the validity of these driver genes is demonstrated from the perspective of their biological effects.

16.
Angew Chem Int Ed Engl ; 62(6): e202213336, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36218046

RESUMO

The remarkable progress of applied black phosphorus nanomaterials (BPNMs) is attributed to BP's outstanding properties. Due to its potential for applications, environmental release and subsequent human exposure are virtually inevitable. Therefore, how BPNMs impact biological systems and human health needs to be considered. In this comprehensive Minireview, the most recent advancements in understanding the mechanisms and regulation factors of BPNMs' endogenous toxicity to mammalian systems are presented. These achievements lay the groundwork for an understanding of its biological effects, aimed towards establishing regulatory principles to minimize the adverse health impacts.


Assuntos
Nanoestruturas , Fósforo , Animais , Humanos , Nanoestruturas/toxicidade , Mamíferos
17.
Cell Biol Int ; 46(6): 878-882, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35233872

RESUMO

Xu et al. recently demonstrated that cryptochrome 4 (CRY4) protein, as a light-dependent magnetic receptor, can sense geomagnetic fields to guide night-migratory songbirds' navigation and evolution by the formation of composite radical pairs and electron transport. We aim to comment on CRY4 through radical pairs and electron transport for magnetic sensitive in night-migratory songbirds' migration and evolution. Additionally, we find that the role of magnetic fields is deeply concerning to the scientific community and very enlightening for the diagnosis and treatment of cancer and vascular disease. We believe that this commentary makes a significant contribution to the literature because it elaborates on the importance of the geomagnetic field to night-migratory songbirds and extends the diagnostic and therapeutic value to cancer and vascular disease.


Assuntos
Neoplasias , Aves Canoras , Doenças Vasculares , Migração Animal , Animais , Criptocromos/metabolismo , Campos Magnéticos , Aves Canoras/metabolismo
18.
Environ Res ; 203: 111867, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34389347

RESUMO

Micro(nano)plastics are emerging environmental contaminants of concern. The prevalence of micro(nano)plastics in soils has aroused increasing interest regarding their potential effects on soil biota including terrestrial plants. With the rapid increase in published studies on plant uptake and impacts of micro(nano)plastics, a review summarizing the current research progress and highlighting future needs is warranted. A growing body of evidence indicates that many terrestrial plants can potentially take up micro(nano)plastics via roots and translocate them to aboveground portions via the vascular system, primarily driven by the transpiration stream. Exposure to micro(nano)plastics can cause a variety of effects on the biometrical, biochemical, and physiological parameters of terrestrial plants, but the specific effects vary considerably as a function of plastic properties, plant species, and experimental conditions. The presence of micro(nano)plastics can also affect the bioavailability of other associated toxicants to terrestrial plants. Based on analysis of the available literature, this review identifies current knowledge gaps and suggests prospective lines for further research.


Assuntos
Plantas , Plásticos , Estudos Prospectivos , Solo
19.
Oral Dis ; 28(8): 2155-2167, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34464996

RESUMO

OBJECTIVE: To preliminary evaluate the clinical effects of probiotics in individuals with symptomatic oral lichen planus and the possible mechanisms of action. SUBJECTS AND METHODS: A group of 30 individuals with symptomatic oral lichen planus were recruited in a randomised double-blind parallel group controlled (1:1) proof-of-concept pilot trial of probiotic VSL#3 vs placebo. Efficacy outcomes included changes in pain numeric rating scale, oral disease severity score and the chronic oral mucosal disease questionnaire. Adverse effects, home diary and withdrawals were assessed as feasibility outcomes. Mechanistic outcomes included changes in salivary and serum levels of CXCL10 and IFN-γ and in oral microbial composition. RESULTS: The probiotic VSL#3 was safe and well tolerated. We observed no statistically significant change in pain, disease activity, quality of life, serum/salivary CXCL10 or oral microbial composition with respect to placebo. Salivary IFN-γ levels demonstrate a trend for a reduced level in the active group (p = 0.082) after 30 days of probiotic consumption. CONCLUSIONS: The present proof-of-concept study provides some weak not convincing indication of biological and clinical effects of probiotic VSL#3 in individuals with painful oral lichen planus. Further research in this field is needed, with the current study providing useful information to the design of future clinical trials.


Assuntos
Líquen Plano Bucal , Probióticos , Humanos , Líquen Plano Bucal/tratamento farmacológico , Dor , Projetos Piloto , Probióticos/uso terapêutico , Qualidade de Vida
20.
Phytother Res ; 36(10): 3859-3884, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35989419

RESUMO

Crocin is a hydrophilic carotenoid that is synthesized in the flowers of the Crocus genus. Numerous in vitro and in vivo research projects have been published about the biological and pharmacological properties and toxicity of crocin. Crocin acts as a memory enhancer, anxiolytic, aphrodisiac, antidepressant, neuroprotective, and so on. Here, we introduce an updated and comprehensive review of crocin molecular mechanisms based on previously examined and mentioned in the literature. Different studies confirmed the significant effect of crocin to control pathological conditions, including oxidative stress, inflammation, metabolic disorders, neurodegenerative disorders, and cancer. The neuroprotective effect of crocin could be related to the activation of phosphatidylinositol 3-kinase/protein kinase B (PI3K/AKT)/mammalian target of rapamycin (mTOR), Notch, and cyclic-AMP response element-binding protein signaling pathways. The crocin also protects the cardiovascular system through the inhibitory effect on toll-like receptors. The regulatory effect of crocin on PI3K/AKT/mTOR, AMP-activated protein kinase, mitogen-activated protein kinases (MAPK), and peroxisome proliferator-activated receptor pathways can play an effective role in the treatment of metabolic disorders. The crocin has anticancer activity through the PI3K/AKT/mTOR, MAPK, vascular endothelial growth factor, Wnt/ß-catenin, and Janus kinases-signal transducer and activator of transcription suppression. Also, the nuclear factor-erythroid factor 2-related factor 2 and p53 signaling pathway activation may be effective in the anticancer effect of crocin. Finally, among signaling pathways regulated by crocin, the most important ones seem to be those related to the regulatory effect on the PI3K/AKT/mTOR pathway.


Assuntos
Ansiolíticos , Afrodisíacos , Fármacos Neuroprotetores , Monofosfato de Adenosina/farmacologia , Ansiolíticos/farmacologia , Afrodisíacos/farmacologia , Carotenoides/farmacologia , Carotenoides/uso terapêutico , Janus Quinases/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Fármacos Neuroprotetores/farmacologia , Receptores Ativados por Proliferador de Peroxissomo/metabolismo , Receptores Ativados por Proliferador de Peroxissomo/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , beta Catenina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA