RESUMO
Recently a report by Ruan et al. in Nature described how relatively simple random heteropolymers can replicate the properties of biological fluids. These polymers capture the segmental-level interactions between proteins and could enhance folding of membrane proteins, improve stability, and enable DNA sequestration in a chemistry specific manner.
Assuntos
Polímeros , Proteínas , Polímeros/química , Proteínas/química , DNARESUMO
Dynamic biomaterials excel at recapitulating the reversible interlocking and remoldable structure of the extracellular matrix (ECM), particularly in manipulating cell behaviors and adapting to tissue morphogenesis. While strategies based on dynamic chemistries have been extensively studied for ECM-mimicking dynamic biomaterials, biocompatible molecular means with biogenicity are still rare. Here, we report a nature-derived strategy for fabrication of dynamic biointerface as well as a three-dimensional (3D) hydrogel structure based on reversible receptor-ligand interaction between the glycopeptide antibiotic vancomycin and dipeptide d-Ala-d-Ala. We demonstrate the reversible regulation of multiple cell types with the dynamic biointerface and successfully implement the dynamic hydrogel as a functional antibacterial 3D scaffold to treat tissue repair. In view of the biogenicity and high applicability, this nature-derived reversible molecular strategy will bring opportunities for malleable biomaterial design with great potential in biomedicine.
Assuntos
Matriz Extracelular/química , Matriz Extracelular/fisiologia , Engenharia de Proteínas/métodos , Alanina/química , Alanina/metabolismo , Materiais Biocompatíveis/química , Biomimética/métodos , Dipeptídeos/metabolismo , Humanos , Hidrogéis/química , Ligantes , Vancomicina/química , Vancomicina/metabolismoRESUMO
Osseointegration is defined as the direct deposition of bone onto biomaterial devices, most commonly composed from titanium, for the purpose of anchoring dental prostheses. The use of autologous platelet concentrates (APC) has the potential to enhance this process by modifying the interface between the host and the surface of the titanium implant. The rationale is to modify the implant surface and implant-bone interface via "biomimicry," a process whereby the deposition of the host's own proteins and extracellular matrix enhances the biocompatibility of the implant and hence accelerates the osteogenic healing process. This review of the available evidence reporting on the effect of APC on osseointegration explores in vitro laboratory studies of the interaction of APC with different implant surfaces, as well as the in vivo and clinical effects of APC on osseointegration in animal and human studies. The inherent variability associated with using autologous products, namely the unique composition of each individual's blood plasma, as well as the great variety in APC protocols, combination of biomaterials, and clinical/therapeutic application, makes it is difficult to make any firm conclusions about the in vivo and clinical effects of APC on osseointegration. The available evidence suggests that the clinical benefits of adding PRP and the liquid form of L-PRF (liquid fibrinogen) to any implant surface appear to be limited. The application of L-PRF membranes in the osteotomy site, however, may produce positive clinical effects at the early stage of healing (up to 6 weeks), by promoting early implant stability and reducing marginal bone loss, although no positive longer term effects were observed. Careful interpretation and cautious conclusions should be drawn from these findings as there were various limitations in methodology. Future studies should focus on better understanding of the influence of APCs on the biomaterial surface and designing controlled preclinical and clinical studies using standardized APC preparation and application protocols.
RESUMO
Drug administration by oral delivery is the preferred route, regardless of some remaining challenges, such as short resident time and toxicity issues. One strategy to overcome these barriers is utilizing mucoadhesive vectors that can increase intestinal resident time and systemic uptake. In this study, biomimetic nanoparticles (NPs) were produced from 14 types of edible algae and evaluated for usage as oral DDSs by measuring their size, surface charge, morphology, encapsulation efficiency, mucoadhesion force, and cellular uptake into Caco-2 cells. The NPs composed of algal materials (aNPs) exhibited a spherical morphology with a size range of 126-606 nm and a surface charge of -9 to -38 mV. The mucoadhesive forces tested ex vivo against mice, pigs, and sheep intestines revealed significant variation between algae and animal models. Notably, Arthospira platensis (i.e., Spirulina) NPs (126 ± 2 nm, -38 ± 3 mV) consistently exhibited the highest mucoadhesive forces (up to 3127 ± 272 µN/mm²). Moreover, a correlation was found between high mucoadhesive force and high cellular uptake into Caco-2 cells, further supporting the potential of aNPs by indicating their ability to facilitate drug absorption into the human intestinal epithelium. The results presented herein serve as a proof of concept for the possibility of aNPs as oral drug delivery vehicles.
Assuntos
Biomimética , Nanopartículas , Humanos , Animais , Camundongos , Ovinos , Suínos , Células CACO-2 , Transporte Biológico , Sistemas de Liberação de MedicamentosRESUMO
This study reports the formation of self-assembled nanostructures with homo-oligopeptides consisting of amino acids (i.e., alanine, threonine, valine, and tyrosine), the resulting morphologies (i.e., spherical shape, layered structure, and wire structure) in aqueous solution, and their potential as ice growth inhibitors. Among the homo-oligopeptides investigated, an alanine homo-oligopeptide (n = 5) with a spherical nanostructure showed the highest ice recrystallization inhibition (IRI) activity without showing a burst ice growth property and with low ice nucleation activity. The presence of nanoscale self-assembled structures in the solution showed superior IRI activity compared to an amino acid monomer because of the higher binding affinity of structures on the growing ice crystal plane. Simulation results revealed that the presence of nanostructures induced a significant inhibition of ice growth and increased lifetime of hydrogen bonding compared with unassembled homo-oligopeptide. These results envision extraordinary performance for self-assembled nanostructures as a desirable and potent ice growth inhibitor.
Assuntos
Proteínas Anticongelantes , Gelo , Proteínas Anticongelantes/química , Cristalização , Aminoácidos , Alanina , OligopeptídeosRESUMO
The development of high-performance miniaturized and flexible airflow sensors is essential to meet the need of emerging applications. Graphene-based airflow sensors are hampered by the sluggish response and recovery speed and low sensitivity. Here we employ laser-induced graphene (LIG) with poststructural biomimicry for fabricating high-performance, flexible airflow sensors, including cotton-like porous LIG, caterpillar fluff-like vertical LIG fiber, and Lepidoptera scale-like suspended LIG fiber (SLIGF) structures. The structural engineering changes the deformation behavior of LIGs under stress, among which the synchronous propagation of the scale-like structure of SLIGF is the most conducive to airflow sensing. The SLIGF achieves the shortest average response time of 0.5 s, the highest sensitivity of 0.11 s/m, and a record-low detection threshold of 0.0023 m/s, benchmarked against the state-of-the-art airflow sensors. Furthermore, we showcase the SLIGF airflow sensors in weather forecasting, health, and communications applications. Our study will help develop next-generation waterflow, sound, and motion sensors.
RESUMO
Nanoencapsulation has become a recent advancement in drug delivery, enhancing stability, bioavailability, and enabling controlled, targeted substance delivery to specific cells or tissues. However, traditional nanoparticle delivery faces challenges such as a short circulation time and immune recognition. To tackle these issues, cell membrane-coated nanoparticles have been suggested as a practical alternative. The production process involves three main stages: cell lysis and membrane fragmentation, membrane isolation, and nanoparticle coating. Cell membranes are typically fragmented using hypotonic lysis with homogenization or sonication. Subsequent membrane fragments are isolated through multiple centrifugation steps. Coating nanoparticles can be achieved through extrusion, sonication, or a combination of both methods. Notably, this analysis reveals the absence of a universally applicable method for nanoparticle coating, as the three stages differ significantly in their procedures. This review explores current developments and approaches to cell membrane-coated nanoparticles, highlighting their potential as an effective alternative for targeted drug delivery and various therapeutic applications.
Assuntos
Nanopartículas , Medicina de Precisão , Membrana Celular/metabolismo , Sistemas de Liberação de MedicamentosRESUMO
Rehabilitation of fully or partially edentulous patients with dental implants represents one of the most frequently used surgical procedures. The work of Branemark, who observed that a piece of titanium embedded in rabbit bone became firmly attached and difficult to remove, introduced the concept of osseointegration and revolutionized modern dentistry. Since then, an ever-growing need for improved implant materials towards enhanced material-tissue integration has emerged. There is a strong belief that nanoscale materials will produce a superior generation of implants with high efficiency, low cost, and high volume. The aim of this review is to explore the contribution of nanomaterials in implantology. A variety of nanomaterials have been proposed as potential candidates for implant surface customization. They can have inherent antibacterial properties, provide enhanced conditions for osseointegration, or act as reservoirs for biomolecules and drugs. Titania nanotubes alone or in combination with biological agents or drugs are used for enhanced tissue integration in dental implants. Regarding immunomodulation and in order to avoid implant rejection, titania nanotubes, graphene, and biopolymers have successfully been utilized, sometimes loaded with anti-inflammatory agents and extracellular vesicles. Peri-implantitis prevention can be achieved through the inherent antibacterial properties of metal nanoparticles and chitosan or hybrid coatings bearing antibiotic substances. For improved corrosion resistance various materials have been explored. However, even though these modifications have shown promising results, future research is necessary to assess their clinical behavior in humans and proceed to widespread commercialization.
Assuntos
Implantes Dentários , Osseointegração , Propriedades de Superfície , Titânio , Humanos , Animais , Osseointegração/efeitos dos fármacos , Titânio/química , Nanoestruturas/química , Antibacterianos/farmacologia , Antibacterianos/químicaRESUMO
Biomimicry is the application of existing features in nature to human technologies, such as the invention of aircraft inspired by bird flight. In the development of medical solutions, biomimicry is a growing field of research, where a holistic understanding of nature can inspire cutting-edge design. The purpose of this study was to create an educational, visual resource exemplifying up-and-coming medical applications of biomimicry. A website was created to present 2D motion graphics (animations) and illustrations. Animation is an established and useful method of communicating health information to the public. This presents an accessible interface for the public to interact with and learn about this area of research, bridging the gap between the two. Increasing public knowledge, engagement, and interest can expand the reach and thereby influence future research. A survey was conducted to assess public engagement and opinions on both the resource and the topic of biomimicry and medical design. The results suggested that participants positively engaged with the resource; 95.7% strongly agreed/agreed that the animations were beneficial for learning. All responding participants agreed that biomimicry could provide useful solutions in medical design. This study suggests that graphic motions are effective at communicating complex ideas for public outreach.
Assuntos
Ilustração Médica , Humanos , Feminino , Masculino , NaturezaRESUMO
With the ultimate goal of increasing tumor accumulation of therapeutics, various nanocarriers have been designed to overcome biological barriers encountered at each stage, from drug administration to the cancerous lesion. Stabilizing circulation and functionalization of the targeting surface impart high tumor accumulation properties to nanocarriers. However, various cells can recognize and infiltrate the tumor microenvironment more efficiently than synthetic carriers via overexpression of adhesive ligands, particularly in inflamed stroma of tumors. Thus, a new field of nanomedicine, called biomimicry, has evolved to generate nanoparticles with the same biological characteristics as cells that naturally infiltrate tumors. Revolutionary synthetic processes have been developed to transfer the cell membrane of leukocytes and mesenchymal cells to synthetic carriers. In addition, cells can generate their own "nanocarriers," known as exosomes, to transport molecular messages to distant sites, while biomimicry of viral and bacterial agents allows high targeting efficiency towards inflammatory immune cells. Alterations in the protein expression in cancer cells caused by inflammation can also be exploited for drug delivery. Finally, new developments in biomimetic drug delivery focus on turning the infiltrating cells into microcarriers that can actively perfuse the tumor and eventually release their therapeutic payload. In this review, we summarize recent developments in biomimetic drug delivery with a particular focus on targeting the tumor inflammatory microenvironment.
Assuntos
Portadores de Fármacos , Neoplasias , Humanos , Portadores de Fármacos/uso terapêutico , Biomimética , Nanomedicina , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Inflamação/tratamento farmacológico , Microambiente TumoralRESUMO
A cell, the fundamental unit of life, contains the requisite blueprint information necessary to survive and to build tissues, organs, and systems, eventually forming a fully functional living creature. A slight structural alteration can result in data misprinting, throwing the entire life process off balance. Advances in synthetic biology and cell engineering enable the predictable redesign of biological systems to perform novel functions. Individual functions and fundamental processes at the core of the biology of cells can be investigated by employing a synthetically constrained micro or nanoreactor. However, constructing a life-like structure from nonliving building blocks remains a considerable challenge. Chemical compartments, cascade signaling, energy generation, growth, replication, and adaptation within micro or nanoreactors must be comparable with their biological counterparts. Although these reactors currently lack the power and behavioral sophistication of their biological equivalents, their interface with biological systems enables the development of hybrid solutions for real-world applications, such as therapeutic agents, biosensors, innovative materials, and biochemical microreactors. This review discusses the latest advances in cell membrane-engineered micro or nanoreactors, as well as the limitations associated with high-throughput preparation methods and biological applications for the real-time modulation of complex pathological states.
Assuntos
Engenharia Celular , Biologia Sintética , Transdução de Sinais , Membrana CelularRESUMO
Structural color-a widespread phenomenon observed throughout nature is caused by light interference from ordered phases of matter. While state-of-the-art nanofabrication techniques can produce structural organization in small areas, cost-effective and scalable techniques are still lacking to generate tunable color at sub-micron length scales. In this work, structurally colored hydroxypropyl cellulose filaments are produced with a suppressed angular color response by 3D printing. The systematic study of the morphology of the filaments reveals the key stages in the induction of a two-degree hierarchical order through 3D printing. The first degree of order originated from the changing of the cholesteric pitch at a few hundred nm scale via chemical modification and tuning of the solid content of the lyotropic phase. Upon 3D printing, the secondary hierarchical order of periodic wrinkling is introduced through the Helfrich-Hurault deformation of the shear-aligned cholesteric phases. In single-layered filaments, four morphological zones with varying orders of wrinkles are identified. Detailed morphological characterization is carried out using SEM to shed light on the mechanism of the wrinkling behavior. Through this work, the possibility of modifying the wrinkling behavior is demonstrated and thus the angle dependence of the color response by changing the printing conditions.
RESUMO
ß-Lactam antibiotics are one of the most commonly prescribed drugs to treat bacterial infections. However, their use has been somehow limited given the emergence of bacteria with resistance mechanisms, such as ß-lactamases, which inactivate them by degrading their four-membered ß-lactam rings. So, a total knowledge of the mechanisms governing the catalytic activity of ß-lactamases is required. Here, we report a novel Zn-based metal-organic framework (MOF, 1), possessing functional channels capable to accommodate and interact with antibiotics, which catalyze the selective hydrolysis of the penicillinic antibiotics amoxicillin and ceftriaxone. In particular, MOF 1 degrades, very efficiently, the four-membered ß-lactam ring of amoxicillin, acting as a ß-lactamase mimic, and expands the very limited number of MOFs capable to mimic catalytic enzymatic processes. Combined single-crystal X-ray diffraction (SCXRD) studies and density functional (DFT) calculations offer unique snapshots on the host-guest interactions established between amoxicillin and the functional channels of 1. This allows to propose a degradation mechanism based on the activation of a water molecule, promoted by a Zn-bridging hydroxyl group, concertedly to the nucleophilic attack to the carbonyl moiety and the cleaving of C-N bond of the lactam ring.
Assuntos
Estruturas Metalorgânicas , beta-Lactamases , beta-Lactamases/química , Penicilinas , Biomimética , Antibacterianos/química , beta-Lactamas , Catálise , Amoxicilina , Zinco/químicaRESUMO
Overexpression of the antiapoptotic protein B-cell lymphoma 2 (Bcl-2) is correlated with poor survival outcomes in triple-negative breast cancer (TNBC), making Bcl-2 inhibition a promising strategy to treat this aggressive disease. Unfortunately, Bcl-2 inhibitors developed to date have limited clinical success against solid tumors, owing to poor bioavailability, insufficient tumor delivery, and off-target toxicity. To circumvent these problems, we loaded the Bcl-2 inhibitor ABT-737 in poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) that were wrapped with phospholipid membranes derived from 4T1 murine mammary cancer cells, which mimic the growth and metastasis of human TNBC. We show that the biomimetic cancer cell membrane coating enabled the NPs to preferentially target 4T1 TNBC cells over noncancerous mammary epithelial cells in vitro and significantly increased NP accumulation in orthotopic 4T1 tumors in mice after intravenous injection by over 2-fold compared to poly(ethylene glycol)-poly(lactide-co-glycolic) (PEG-PLGA) copolymer NPs. Congruently, the ABT-737 loaded, cancer cell membrane-wrapped PLGA NPs (ABT CCNPs) induced higher levels of apoptosis in TNBC cells in vitro than ABT-737 delivered freely or in PEG-PLGA NPs. When tested in a syngeneic spontaneous metastasis model, the ABT CCNPs significantly increased apoptosis (evidenced by elevated active caspase-3 and decreased Bcl-2 staining) and decreased proliferation (denoted by reduced Ki67 staining) throughout tumors compared with saline or ABT-loaded PEG-PLGA NP controls. Moreover, the ABT CCNPs did not alter animal weight or blood composition, suggesting that the specificity afforded by the TNBC cell membrane coating mitigated the off-target adverse effects typically associated with ABT-737. Despite these promising results, the low dose of ABT CCNPs administered only modestly reduced primary tumor growth and metastatic nodule formation in the lungs relative to controls. We posit that increasing the dose of ABT CCNPs, altering the treatment schedule, or encapsulating a more potent Bcl-2 inhibitor may yield more robust effects on tumor growth and metastasis. With further development, drug-loaded biomimetic NPs may safely treat solid tumors such as TNBC that are characterized by Bcl-2 overexpression.
Assuntos
Antineoplásicos , Nanopartículas , Neoplasias de Mama Triplo Negativas , Humanos , Animais , Camundongos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Linhagem Celular Tumoral , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Membrana CelularRESUMO
Cancer is a devastating health problem with inadequate treatment options. Many conventional treatments for solid-tumor cancers lack tumor specificity, which results in low efficacy and off-target damage to healthy tissues. Nanoparticle (NP)-mediated photothermal therapy (PTT) is a promising minimally invasive treatment for solid-tumor cancers that has entered clinical trials. Traditionally, NPs used for PTT are coated with passivating agents and/or targeting ligands, but alternative coatings are being explored to enhance tumor specific delivery. In particular, cell-derived membranes have emerged as promising coatings that improve the biointerfacing of photoactive NPs, which reduces their immune recognition, prolongs their systemic circulation and increases their tumor accumulation, allowing for more effective PTT. To maximize treatment success, membrane-wrapped nanoparticles (MWNPs) that enable dual tumor imaging and PTT are being explored. These multifunctional theranostic NPs can be used to enhance tumor detection and/or ensure a sufficient quantity of NPs that have arrived in the tumor prior to laser irradiation. This review summarizes the current state-of-the-art in engineering MWNPs for combination cancer imaging and PTT and discusses considerations for the path toward clinical translation.
Assuntos
Nanopartículas , Neoplasias , Linhagem Celular Tumoral , Fototerapia/métodos , Nanopartículas/uso terapêutico , Diagnóstico por Imagem , Neoplasias/diagnóstico por imagem , Neoplasias/terapiaRESUMO
Domain separation is crucial for proper cellular function and numerous biomedical technologies, especially artificial cells. While phase separation in hybrid membranes containing lipids and copolymers is well-known, the membranes' overall stability, limited by the lipid part, is hindering the technological applications. Here, we introduce a fully synthetic planar membrane undergoing phase separation into domains embedded within a continuous phase. The mono- and bilayer membranes are composed of two amphiphilic diblock copolymers (PEO45-b-PEHOx20 and PMOXA10-b-PDMS25) with distinct properties and mixed at various concentrations. The molar ratio of the copolymers in the mixture and the nature of the solid support were the key parameters inducing nanoscale phase separation of the planar membranes. The size of the domains and resulting morphology of the nanopatterned surfaces were tailored by adjusting the molar ratios of the copolymers and transfer conditions. Our approach opens new avenues for the development of biomimetic planar membranes with a nanoscale texture.
Assuntos
Células Artificiais , Polímeros , Membranas ArtificiaisRESUMO
This review discusses the significance of natural deep eutectic solvents (NaDESs) as a promising green extraction technology. It employs the consolidated meta-analytic approach theory methodology, using the Web of Science and Scopus databases to analyze 2091 articles as the basis of the review. This review explores NaDESs by examining their properties, challenges, and limitations. It underscores the broad applications of NaDESs, some of which remain unexplored, with a focus on their roles as solvents and preservatives. NaDESs' connections with nanocarriers and their use in the food, cosmetics, and pharmaceutical sectors are highlighted. This article suggests that biomimicry could inspire researchers to develop technologies that are less harmful to the human body by emulating natural processes. This approach challenges the notion that green science is inferior. This review presents numerous successful studies and applications of NaDESs, concluding that they represent a viable and promising avenue for research in the field of green chemistry.
RESUMO
It may soon become possible not just to replace, but to re-grow healthy tissues after injury or disease, because of innovations in the field of Regenerative Medicine. One particularly promising innovation is a regenerative valve implant to treat people with heart valve disease. These implants are fabricated from so-called 'smart', 'lifelike' materials. Implanted inside a heart, these implants stimulate re-growth of a healthy, living heart valve. While the technological development advances, the ethical implications of this new technology are still unclear and a clear conceptual understanding of the notions 'smart' and 'lifelike' is currently lacking. In this paper, we explore the conceptual and ethical implications of the development of smart lifelike materials for the design of regenerative implants, by analysing heart valve implants as a showcase. In our conceptual analysis, we show that the materials are considered 'smart' because they can communicate with human tissues, and 'lifelike' because they are structurally similar to these tissues. This shows that regenerative valve implants become intimately integrated in the living tissues of the human body. As such, they manifest the ontological entanglement of body and technology. In our ethical analysis, we argue this is ethically significant in at least two ways: It exacerbates the irreversibility of the implantation procedure, and it might affect the embodied experience of the implant recipient. With our conceptual and ethical analysis, we aim to contribute to responsible development of smart lifelike materials and regenerative implants.
Assuntos
Corpo Humano , Materiais Inteligentes , Humanos , Próteses e Implantes , Análise Ética , Nível de SaúdeRESUMO
Aquatic organisms within the Cephalopoda family (e.g., octopuses, squids, cuttlefish) exist that draw the surrounding fluid inside their bodies and expel it in a single jet thrust to swim forward. Like cephalopods, several acoustically powered microsystems share a similar process of fluid expulsion which makes them useful as microfluidic pumps in lab-on-a-chip devices. Herein, an array of acoustically resonant bubbles are employed to mimic this pumping phenomenon inside an untethered microrobot called CeFlowBot. CeFlowBot contains an array of vibrating bubbles that pump fluid through its inner body thereby boosting its propulsion. CeFlowBots are later functionalized with magnetic layers and steered under combined influence of magnetic and acoustic fields. Moreover, acoustic power modulation of CeFlowBots is used to grasp nearby objects and release it in the surrounding workspace. The ability of CeFlowBots to navigate remote environments under magneto-acoustic fields and perform targeted manipulation makes such microrobots useful for clinical applications such as targeted drug delivery. Lastly, an ultrasound imaging system is employed to visualize the motion of CeFlowBots which provides means to deploy such microrobots in hard-to-reach environments inaccessible to optical cameras.
Assuntos
Acústica , Biomimética , Sistemas de Liberação de Medicamentos , Magnetismo , Movimento (Física)RESUMO
Mesenchymal stem cells (MSCs) have a demonstrated value for acute liver failure (ALF) regeneration, while their delivery stratagems with long-term biological functions, low immune response, and high biocompatibility are still a challenge. Here, a lipopolysaccharide (LPS)-loaded photoresponsive cryogel porous microcarrier (CPM) for MSCs delivery and colonization is presented to promote defect liver regeneration. The CPMs are fabricated with graphene oxide, poly(N-isopropylacrylamide), and gelatin methacrylate (GelMA) via droplet microfluidic technology and a gradient-cooling procedure. Benefitting from the biocompatible GelMA component and the porous microstructure of the CPMs, MSCs can be nondestructively captured and abundantly delivered. Because the LPS can be released from the CPMs under NIR irradiation, the delivered MSCs are imparted with the feature of "trained immunity." Thus, when the MSCs-laden CPMs are tailored into the liver matched patches by bioprinting and applied in ALF rats, they display superior anti-inflammatory and more significant liver regeneration properties than the untrained MSCs. These features make the CPMs an excellent MSCs delivery system for clinical applications in tissue repair.