RESUMO
Biomphalaria spp. snails are freshwater gastropods that responsible for Schistosoma mansoni transmission. Schistosomiasis is a chronic illness that occurred in underdeveloped regions with poor sanitation. The aim of the present study is to evaluate the molluscicidal activity of benzylamine against B. alexandrina snails and it larvicidal effects on the free larval stages of S. mansoni. Results showed that benzylamine has molluscicidal activity against adult B. alexandrina snails after 24 h of exposure with median lethal concentration (LC50) 85.7 mg/L. The present results indicated the exposure of B. alexandrina snails to LC10 or LC25 of benzylamine resulted in significant decreases in the survival, fecundity (eggs/snail/week) and reproductive rates, acetylcholinesterase, albumin, protein, uric acid and creatinine concentrations, levels of Testosterone (T) and 17ß Estradiol (E), while alkaline phosphatase levels were significantly increased in comparison with control ones. The present results showed that the sub lethal concentration LC50 (85.7 mg/L) of benzylamine has miracidial and cercaricidal activities, where the Lethal Time (LT50) for miracidiae was 17.08 min while for cercariae was 30.6 min. Also, results showed that were decreased significantly after exposure to sub lethal concentrations compared with control. The present results showed that the expression level of NADH dehydrogenase subunit 1 (ND1) genes and cytochrome oxidase subunit I (COI) in B. alexandrina snails exposed to LC10 or LC25 concentrations benzylamine were significantly decreased compared to the control groups. Therefore, benzylamine could be used as effective molluscicide to control schistosomiasis.
Assuntos
Biomphalaria , Larva , Schistosoma mansoni , Animais , Biomphalaria/efeitos dos fármacos , Schistosoma mansoni/efeitos dos fármacos , Larva/efeitos dos fármacos , Moluscocidas/farmacologiaRESUMO
Schistosomiasis is a serious health issue in tropical regions, and natural compounds have gained popularity in medical science. This study investigated the potential effects of pumpkin seed oil (PSO) on Biomphalaria [B.] alexandrina snails (Ehrenberg, 1831), Schistosoma [S.] mansoni (Sambon, 1907) miracidium, and cercariae. The chemical composition of PSO was determined using gas chromatography/mass spectrometry. A bioassay was performed to evaluate the effects of PSO on snails, miracidia, and cercariae. The results showed no significant mortality of B. alexandrina snails after exposure to PSO, but it caused morphological changes in their hemocytes at 1.0 mg/ml for 24 hours. PSO exhibited larvicidal activity against miracidia after 2 hours of exposure at a LC50 of 618.4 ppm. A significant increase in the mortality rate of miracidia was observed in a dose- and time-dependent manner, reaching a 100% death rate after 10 minutes at LC90 and 15 minutes at LC50 concentration. PSO also showed effective cercaricidal activity after 2 hours of exposure at a LC50 of 290.5 ppm. Histological examination revealed multiple pathological changes in the digestive and hermaphrodite glands. The PSO had genotoxic effects on snails, which exhibited a significant increase [p≤0.05] in comet parameters compared to the control. The findings suggest that PSO has potential as a molluscicide, miracidicide, and cercaricide, making it a possible alternative to traditional molluscicides in controlling schistosomiasis.
Assuntos
Biomphalaria , Cucurbita , Moluscocidas , Esquistossomose , Animais , Schistosoma mansoni , Caramujos , Cercárias , Moluscocidas/farmacologia , Óleos de Plantas/farmacologiaRESUMO
The present investigation aimed to synthesize chitosangold nanocomposites (Ch-AuNPs) with gamma radiation, then to evaluate its toxic effect on the freshwater snails Biomphalaia alexandrina. Results showed that Ch-AuNPs is spherical shaped with average size 12 nm. It had a toxic effect against B. alexandrina snails with LC50 20.43 mg/l. Exposure of B. alexandrina snails to LC10 7.51 or LC25 13.63 mg/l of Ch-AuNPs, reduced the survival, reproductive and fecundity rates; total protein and albumin; both testosterone (T) and 17ß Estradiol (E) levels; SOD and CAT activities of exposed snails while increased the activities of transaminases (AST & ALT), uric acid, creatinine, TAC and MDA levels compared to the control group. Results were supported by histopathological and immunohistopathological alterations of the digestive and hermaphrodite glands. In conclusion B. alexandrina could be used as a model to screen the negative impact of nanomaterials. Also, Ch-AuNPs could be used as a molluscicidal agent.
Assuntos
Biomphalaria , Quitosana , Nanopartículas Metálicas , Nanocompostos , Animais , Quitosana/farmacologia , Ouro , Estresse OxidativoRESUMO
Saponins have been used as biopesticides. The objective of the present study is to investigate the toxic effects of Saponin against Biomphalaria alexandrina snails. Results showed that Saponin exhibited a molluscicidal activity against adult B. alexandrina snails at LC50 (70.05 mg/l) and had a larvicidal effect on the free larval stages of Schistosoma mansoni. To evaluate the lethal effects, snails were exposed to either LC10 (51.8 mg/l) or LC25 (60.4 mg/l) concentrations of Saponin. The survival, the infection rates, protein, albumin, and total fat levels were decreased, while glucose levels were increased in exposed snails compared to control snails. Also, these concentrations significantly raised Malondialdehyde (MDA) and Glutathione S Transferase (GST) levels, whereas reduced Superoxide dismutase (SOD) activity and the total antioxidant capacity (TAC) in exposed snails. Furthermore, these concentrations resulted in endocrine disruptions where it caused a significant increase in testosterone (T) level; while a significant decrease in Estradiol (E2) levels were noticed. As for Estrogen (E) level, it was increased after exposure to LC10 Saponin concentration while after exposure to LC25 concentration, it was decreased. Also, LC10 and LC25 concentrations of Saponin caused a genotoxic effect and down-regulation of metabolic cycles in the snails. In conclusion, Saponins caused deleterious effects on the intermediate host of schistosomiasis mansoni. Therefore, B. alexandrina snails could be used as models to screen the toxic effects of Saponins in the aquatic environment and if it was used as a molluscicide, it should be used cautiously and under controlled circumstances.
Assuntos
Biomphalaria , Moluscocidas , Saponinas , Animais , Biomphalaria/metabolismo , Schistosoma mansoni , Larva , Saponinas/toxicidade , Saponinas/metabolismo , Caramujos , Moluscocidas/toxicidadeRESUMO
Organophosphorus pesticides like Chlorpyrifos 48%EC were widely used to control agricultural pests. The present study aimed to evaluate the toxic effects of Chlorpyrifos 48%EC on B. alexandrina snails, the intermediate host of Schistosoma mansoni. After exposure of snails to serial concentrations to determine the LC50, thirty snails for each sublethal concentration (LC10 2.1 and LC25 5.6 mg/l) in each group were exposed for 24 h followed by another 24 h for recovery. After recovery random samples were collected from hemolymph and tissue to measure the impacts on Phagocytic index, histological, biochemical, and molecular parameters. The current results showed a toxic effect of Chlorpyrifos 48%EC on adult B. alexandrina snails after 24 h of exposure at LC50 9.6 mg/l. After exposure to the sub-lethal concentrations of this pesticide, it decreased the total number of hemocytes and the percentage of small cells, while increased the percentage of hyalinocytes. The granulocyte percentage was increased after exposure to LC10, while after LC25, it was decreased compared to the control group. Also, the light microscopical examination showed that some granulocytes have plenty of granules, vacuoles and filopodia. Some hyalinocytes were contained shrinked nuclei, incomplete cell division and forming pseudopodia. Besides, the phagocytic index of hemocytes was significantly increased than control in all treated groups. Also, these sub-lethal concentrations increased MDA and SOD activities, while, tissue NO, GST and TAC contents were significantly decreased after exposure. Levels of Testosterone (T) and Estradiol (E) were increased significantly after exposure compared with control group. The present results showed that the concentration of DNA and RNA was highly decreased after exposure to LC10, 25 than the control group. Therefore, B. alexandrina snails could be used as a bio monitor of the chemical pollution. Besides, this pesticide could reduce the transmission of schistosomiasis as it altered the biological system of these snails.
Assuntos
Biomphalaria , Clorpirifos , Moluscocidas , Praguicidas , Animais , Biomphalaria/genética , Clorpirifos/toxicidade , Hemócitos , Moluscocidas/toxicidade , Compostos Organofosforados/farmacologia , Praguicidas/farmacologiaRESUMO
Schistosomiasis still affects a lot of people in many developing countries. Reducing the disease dissemination has been the target of various studies. As methyl gallate has antioxidant properties, it is assumed that it can be a good candidate for stimulating the immune response of snails. So, the aim of this work is to investigate the potential of using methyl gallate as an immunostimulant to Biomphalaria alexandrina snails in order to prevent the development of invading miracidia into infective cercariae. The infected snails were exposed to three concentrations of methyl gallate for two periods: 24 and 72 h. The results indicated that the most effective concentration was the lowest one: 125 mg/L of methyl gallate for 72 h, as it reduced both infection rate and mean number of shed cercariae. Also, it increased the total number of snails' hemocytes in hemolymph, which were observed in head-foot region and digestive gland of treated snails surrounding degenerated sporocysts and cercariae. In addition, hydrogen peroxide showed its highest content in tissues of snails exposed to 125 mg/L of methyl gallate for 72 h. In conclusion, methyl gallate can be considered as one of the most promising immunostimulants of B. alexandrina snails against infection with Schistosoma mansoni.
Assuntos
Adjuvantes Imunológicos/farmacologia , Biomphalaria/efeitos dos fármacos , Biomphalaria/parasitologia , Ácido Gálico/análogos & derivados , Schistosoma mansoni/imunologia , Animais , Biomphalaria/imunologia , Ácido Gálico/farmacologia , Hemócitos/efeitos dos fármacos , Hemolinfa/citologia , Hemolinfa/efeitos dos fármacos , Imunidade/efeitos dos fármacos , Oocistos/efeitos dos fármacos , Schistosoma mansoni/efeitos dos fármacosRESUMO
Infection with trematodes produces physiological and behavioural changes in intermediate snail hosts. One response to infection is parasitic castration, in which energy required for reproduction of the host is thought to be redirected to promote development and multiplication of the parasite. This study investigated some reproductive and biochemical parameters in the nervous (CNS) and ovotestis (OT) tissues of Biomphalaria alexandrina during the course of Schistosoma mansoni infection. Antioxidant and oxidative stress parameters including catalase (CAT), nitric oxide (NO) and lipid peroxidation (MDA) were measured. Levels of steroid hormones, including testosterone, progesterone and estradiol, were also assessed. Finally, flow cytometry was used to compare measures of apoptosis between control snails and those shedding cercariae by examining mitochondrial membrane potential with the stain 5,5',6,6'-tetrachloro-1,1',3,3'-tetraethylbenzimi-dazolylcarbocyanine iodide (JC-1) and poly(ADP-ribose) polymerase (PARP). Infection with S. mansoni caused a 47.7% reduction in the net reproductive rate (Ro) of B. alexandrina. CAT activity was increased in the CNS at 21 days post infection (dpi) but by 28 dpi it was reduced below control values. Also, CAT activity increased significantly in the OT at 14, 21 and 28 dpi. In CNS tissues, NO levels were reduced at 7 dpi, increased at 14 and 21 dpi, and reduced again at 28 dpi. The overall level of lipid peroxidation gradually increased during the course of infection to reach its highest levels at 28 dpi. Steroid hormone measurements showed that concentrations of testosterone and estradiol were reduced in the CNS tissues at 28 dpi, while those of progesterone were slightly increased in the CNS and OT tissues. The percentage of cells that positively stained with JC-1was significantly increased in CNS and OT tissues of infected snails while the percentage of cells positively stained with PARP was decreased compared to controls. Together, these findings indicate that infection initiates diverse biochemical and hormonal changes leading to loss of cells responsible for egg laying and reproduction in B. alexandrina.
Assuntos
Biomphalaria/parasitologia , Interações Hospedeiro-Parasita , Schistosoma mansoni/fisiologia , Animais , Cercárias/fisiologia , Gônadas/parasitologia , Sistema Nervoso/parasitologiaRESUMO
Biomphalaria alexandrina snails have received much attention due to their great medical importance as vectors for transmitting Schistosoma mansoni infection to humans. The main objective of the present work was to assess the efficacy of miltefosin a synthetic molluscicidal drug and artemether a natural molluscicidal drug. The correlation between immunological and histological observations from light and electron microscopy of the hemocytes of B. alexandrina post treatment with both drugs was also evaluated. LC50 and LC90 values were represented by 13.80 ppm and 24.40 ppm for miltefosine and 16.88 ppm and 27.97 ppm for artemether, respectively. The results showed that the treatment of S. mansoni-infected snails and normal snails with sublethal dose of miltefosine (LC25=8.20 ppm) and artemether (LC25=11.04 ppm) induced morphological abnormalities and a significant reduction in hemocytes count.
RESUMO
Controlling of Biomphalaria alexandrina snails by plant molluscicides is the cornerstone in treating schistosomiasis in Egypt. The objective of this study is, to evaluate the molluscicidal activity of the aqueous leaves extract of Anagallis arvensis against B. alexandrina snails. The present results showed that this aqueous extract was lethal for B. alexandrina snails at (LC50 37.9â¯mg/l; LC90 48.3â¯mg/l), and caused reduction in survival; reproductive rates and hormonal activity (testosterone (T) and 17ß-estradiol (E)) of these snails. Histopathological changes occurred in the hermaphrodite glands of snails exposed to the sub lethal concentrations of this aqueous extract are detected, where, there were degeneration in both eggs and sperms and there were losses of connective tissues between acini. The present investigation revealed that this plant had a genotoxic effect especially with its concentration (LC10 and LC25), where, the length of olive tail moment was significantly increased than control group. These observations prove the potent molluscicidal activity of aqueous leaves extract of A. arvensis against the intermediate hosts of Schistosoma mansoni and provide natural biodegradable resources for snails' molluscicidal agents.
Assuntos
Anagallis/química , Biomphalaria/efeitos dos fármacos , Moluscocidas/farmacologia , Extratos Vegetais/farmacologia , Esquistossomose/prevenção & controle , Animais , Biomphalaria/anatomia & histologia , Biomphalaria/genética , Biomphalaria/metabolismo , Ensaio Cometa , Egito , Estradiol/metabolismo , Fertilidade/efeitos dos fármacos , Dose Letal Mediana , Oviposição/efeitos dos fármacos , Folhas de Planta/química , Taxa de Sobrevida , Testosterona/metabolismoRESUMO
Schistosomiasis seriously affects human health in tropical regions. Its prevention is more important than treatment, raising the need for effective control methods. Recently, the role of nanomaterials in medical science has been growing. The present study aimed to evaluate the potential effects of silver (Ag) and gold (Au) nanoparticles (NPs) on Biomphalaria alexandrina snails and Schistosoma mansoni cercariae in vitro and to assess their effects on the infectivity of cercariae in vivo. The in vitro study proved that Ag and Au NPs were effective in killing B. alexandrina snails, with 30 µg/ml Ag and 160 µg/ml Au causing 100% mortality. The LC50 of 9.68 µg/ml for Ag NPs and 133.7 µg/ml for Au NPs prevented snail infection with S. mansoni miracidia. Furthermore, Ag NPs at 50 µg/ml and Au NPs at 100 µg/ml increased the mortality of S. mansoni cercariae in a dose- and time-dependent manner, reaching 100% mortality after 1 h. The in vivo study found that Ag NPs prevented the occurrence of infection when cercariae were treated before the infection by either the tail immersion (TI) or subcutaneous (SC) route, as proven by parasitological parameters and by the absence of granuloma formation in hepatic tissue. Meanwhile, infection of mice by untreated cercariae followed by treatment with NPs 1 h post-infection (PI) caused a decrease in egg count/g intestine and egg count/g liver in the TI-infected group only. The oogram patterns and granuloma formation results were similar between infection control and the SC-infected group. On the other hand, Au NPs led to a decrease in total worm burden (TWB) in all tested groups, with a decrease in egg count/g intestine and egg count/g liver in TI-infected groups with either pre-treated or post-treated cercariae, in contrast to SC-infected groups. However, the oogram patterns and granuloma formation showed similar results to infection control. Ag and Au NPs have potential as molluscicides and cercaricides in vitro and can prevent or modulate the infectivity of cercariae in vivo.
Assuntos
Cercárias/efeitos dos fármacos , Ouro/uso terapêutico , Nanopartículas Metálicas/uso terapêutico , Schistosoma mansoni/efeitos dos fármacos , Esquistossomose mansoni/tratamento farmacológico , Esquistossomose mansoni/prevenção & controle , Prata/uso terapêutico , Animais , Biomphalaria/efeitos dos fármacos , Biomphalaria/parasitologia , Humanos , Injeções Subcutâneas , Fígado/parasitologia , Camundongos , Moluscocidas/farmacologia , Contagem de Ovos de Parasitas , Carga Parasitária , Esquistossomose mansoni/parasitologiaRESUMO
Freshwater snails are used as brilliant biomarkers of aquatic ecosystem pollution by chemical compounds. The objective of this study is to highlight the ecotoxicological impacts of the insecticide Match 5%EC (its active ingredient is lufenuron 5% EC) on Biomphalaria alexandrina snails the intermediate host of Schistosoma mansoni in Egypt. The present investigation recorded a remarkable molluscicidal effect of lufenuron 5% EC on these snails and there was a decrease in total number of their hemocytes after exposure. Three morphologically distinct populations of circulating hemocytes were identified (round small cells, granulocytes and hyalinocytes) and results showed that some hyalinocytes had a shrunk nucleus and some were degenerated. Significant increase of transaminases (ALT and AST), while, a decrease of the total protein and albumin content in hemolymph was recorded. The results of alkaline comet assay in the present study demonstrated that lufenuron 5% EC has a genotoxic effect especially when its concentration increases. It can be concluded that Biomphalaria alexandrina snails can be used as bio monitor to screen the deleterious effects of lufenuron 5% EC insecticide as a cause of the environmental pollution, and this insecticide can be used in controlling schistosomiasis because of its molluscicidal effects on B. alexandrina snails.
Assuntos
Benzamidas , Biomphalaria/efeitos dos fármacos , Inseticidas , Moluscocidas/toxicidade , Animais , Biomphalaria/genética , Biomphalaria/fisiologia , Ensaio Cometa , Egito , Granulócitos/efeitos dos fármacos , Hemócitos/efeitos dos fármacos , Hemolinfa/efeitos dos fármacos , Hemolinfa/metabolismo , Controle de Pragas , Schistosoma mansoniRESUMO
Many chemicals are applied for disinfecting purposes. Although chlorination is the most common procedure, it has many drawbacks. So there becomes an urgent need for new chemicals which are both effective and less harmful to other water fauna. The present work aims at investigating the comparative effects of chlorine and Huwa-san as a new disinfectant on Biomphalaria alexandrina snails which act as bioindicators of toxicity, besides evaluating their miracicidal and cercaricidal activities. The results showed that Huwa-san was more toxic on tested snails than chlorine, where the LC50 values were 21 and 1368.9 ppm, respectively after 24 h. Also, it was found that the activities of catalase (CAT), superoxide dismutase (SOD), glutathione S-transferase (GST), and glutathione peroxidase (GPX) in snails' tissues were either induced or inhibited according to the tested disinfectant. Regarding reduced glutathione (GSH) content, it was increased as chlorine concentrations increased, while it reached its minimum content at the highest Huwa-san concentration. Such fluctuations were supported by histopathological examination of digestive and hermaphrodite glands, as prolonged exposure to chlorine led to more detrimental effects than Huwa-san concentrations. Moreover, Huwa-san was more effective on Schistosoma mansoni miracidia than on its cercariae, while the reverse was observed with chlorine. In conclusion, Huwa-san as a newly applied disinfectant can also be used as miracicidal and cercaricidal agent at small concentrations. Despite being more toxic to B. alexandrina snails, the chronic effect of its sublethal concentrations is less harmful than chlorine.
Assuntos
Biomphalaria/efeitos dos fármacos , Cloro/farmacologia , Desinfetantes/farmacologia , Schistosoma mansoni/efeitos dos fármacos , Animais , Larva/efeitos dos fármacosRESUMO
CONTEXT: Praziquantel (PZQ) is a highly efficacious anthelmintic against many flatworms including schistosomes. PZQ has been in use for more than 25 years, and concern is increasing that resistance has emerged in human schistosomes in Egypt and other endemic countries. OBJECTIVE: The current study was designed to evaluate a recently described method for induction of PZQ resistance in Schistosoma mansoni. MATERIALS AND METHODS: Successive subcurative drug treatments of Biomphalaria alexandrina snails infected with an Egyptian strain of S. mansoni were undertaken. Cercariae shed from snails exposed and unexposed to PZQ were used to infect mice. Forty-five days after infection, mice were treated with a single oral dose of PZQ in 2% aqueous solution of Cremophor-EL®. The concentration of PZQ was 0, 200, 400, or 800 mg/kg. Thirty-three days after treatment, all groups of mice were dissected to collect the S. mansoni worms by the perfusion technique. In addition, the oogram pattern was examined to study the production, maturity, and death of S. mansoni eggs in the different groups of mice. RESULTS: The present study has shown that the sublethal dose for induction of PZQ resistance in the intra-molluscan S. mansoni stages was 500 mg/kg. The worm count and the percentage of immature eggs in different groups of mice were significantly affected by the intra-molluscan exposure to PZQ and the drug concentration used to treat infected mice. DISCUSSION AND CONCLUSION: The results obtained herein confirm the possibility of using successive drug treatments of infected B. alexandrina to induce PZO resistance in S. mansoni.
Assuntos
Anti-Helmínticos/farmacologia , Praziquantel/farmacologia , Schistosoma mansoni/efeitos dos fármacos , Esquistossomose mansoni , Caramujos/efeitos dos fármacos , Animais , Anti-Helmínticos/uso terapêutico , Avaliação Pré-Clínica de Medicamentos/métodos , Resistência a Medicamentos/efeitos dos fármacos , Camundongos , Praziquantel/uso terapêutico , Esquistossomose mansoni/tratamento farmacológico , Esquistossomose mansoni/mortalidade , Caramujos/parasitologiaRESUMO
Higher usage of copper oxide nanomaterials in industrial and biomedical fields may cause an increase of these nanoparticles in aquatic environments, which could have a detrimental ecological effect. Thus, the objective of this study was to evaluate the acute toxicity of copper oxide nanoparticles on the freshwater gastropod, Biomphalaria alexandrina. Transmission electron microscopy, x-ray diffraction analysis and UV-VIS spectrophotometer of CuO NPs revealed a typical TEM image and a single crystal structure with average crystallite size of approximately 40 nm also, a sharp absorption band was appeared. Following exposure to sub-lethal concentrations of CuO NPs (LC10, 15.6 mg/l and LC25, 27.2 mg/l), treated snails revealed a significant decrease (p < 0.05) in total antioxidant capacity, reduced glutathione contents as well as catalase, and sodium dismutase activities were significantly declined (p < 0.05) in comparison to the control group. Also, histopathological alterations were observed in the digestive gland, including ruptured and vacuolated digestive cells, and a marked increase in the number of secretory cells and the severity of the damage increased with rising concentrations. Furthermore, changes in RAPD profiles were detected in the treated snails. In conclusion, our research highlights the potential ecological impact of CuO NPs release in aquatic ecosystems and advocates for improved monitoring and regulation of CuO NPs industrial usage and disposal.
Assuntos
Biomphalaria , Cobre , Nanopartículas Metálicas , Estresse Oxidativo , Animais , Cobre/toxicidade , Biomphalaria/efeitos dos fármacos , Biomphalaria/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Nanopartículas Metálicas/toxicidade , Nanopartículas Metálicas/química , Poluentes Químicos da Água/toxicidade , Difração de Raios X , Dano ao DNA/efeitos dos fármacos , Antioxidantes/metabolismo , Catalase/metabolismo , Glutationa/metabolismoRESUMO
PURPOSE: The aim of the present study is to assess the molluscicidal, larvicidal and genotoxicological activities of papain and how it can affect the host-parasite interactions. METHODS: Toxicity of papain on snails by making series of concentrations to calculate LC50, and then study its larvicide effect on the free larval stages of S. mansoni and infection rate of snails. RESULTS: Papain has a molluscicidal activity on adult snails of Biomphalaria alexandrina with a lethal concentration LC50 equals to 43.1 mg/L. In addition, it has activity on miracidia with half Lethal time (LT50) of 16.11 min., and on cercariae with 12.1 min. compared to control ones. The sub lethal concentration LC10 and LC25 (6.9 or 24.1 mg/L, respectively) decreased the survival rate of snails at the first cercarial shedding, the rate of infection, the average total number of cercariae per snail, the shedding period and the life span of snails, while the prepatent period was significantly increased than the control ones. The morphological alterations in cercariae after exposure to papain were occurred where the cercariae lacked motility and some had a dark tail with complete detachment of head and tail. Compared to the control group, the levels of cytochrome oxidase subunit I (COI) and (ND1) genes significantly decreased in snails after exposure to papain. CONCLUSIONS: Papain could be used as a potential molluscicide for elimination of schistosomiasis and decrease its transmission and deterioration of host-parasite interaction.
RESUMO
BACKGROUND: Trematode infections of the genus Schistosoma can induce physiological and behavioral changes in intermediate snail hosts. This is because the parasite consumes essential resources necessary for the host's survival, prompting hosts to adapt their behavior to maintain some level of fitness before parasite-induced mortality occurs. METHODS: In this study, the reproductive and biochemical parameters of Biomphalaria alexandrina and Bulinus truncatus were examined during the cercareal shedding stage of infection with Schistosoma mansoni and Schistosoma haematobium, respectively, compared with controls. RESULTS: The study revealed an infection rate of 34.7% for S. mansoni and 30.4% for S. haematobium. In B. alexandrina infected with S. mansoni, a survival rate of 65.2% was recorded, along with a mean prepatent period of 30.3 ± 1.41 days, a mean shedding duration of 14.2 ± 0.16 days, and a mean lifespan of 44.1 ± 0.24 days. Meanwhile, in B. truncatus infected with S. haematobium, a survival rate of 56.4% was observed, with a mean prepatent period of 44.3 ± 1.41 days, a mean shedding duration of 22.6 ± 2.7 days, and a mean lifespan of 66.9 ± 1.6 days. Feeding increased in both infected species of snails, while the net reproductive rate (Ro) of the infected snails decreased. Total antioxidant (TAO) and lipid peroxidation activity increased in the two infected snail species during shedding, while Glutathione-S-transferase levels decreased. Lipid peroxidase activity and nitrogen oxide levels significantly decreased in infected B. alexandrina and increased in infected Bulinus. Steroid hormone levels were elevated in infected Biomphalaria, whereas they were reduced in infected Bulinus. Comet assay parameters showed an increase in the two infected genera after infection compared to control snails, indicating genotoxic damage and histopathological damage was observed. CONCLUSIONS: These findings demonstrate that infection with larva species diverse biochemical, hormonal, genotoxic, and histopathological changes in the tissues responsible for fecundity and reproduction in B. alexandrina and B. truncates comparing with controls.
Assuntos
Biomphalaria , Bulinus , Interações Hospedeiro-Parasita , Schistosoma mansoni , Animais , Biomphalaria/parasitologia , Schistosoma mansoni/fisiologia , Bulinus/parasitologia , Schistosoma haematobium/genética , Schistosoma haematobium/fisiologia , Comportamento Alimentar , Cercárias/fisiologia , ReproduçãoRESUMO
Schistosomiasis is a neglected tropical disease with considerable morbidity. The lone effective drug, praziquantel (PZQ), is showing emergence of drug resistance hence, searching for new supportive treatment is crucial. This study aimed to evaluate the efficacy of mucus and nucleoproteins (NPs) extracted from Biomphalaria alexandrina (B. alexandrina) snails on miracidia, cercariae and Schistosoma mansoni (S. mansoni) adults in vitro and assess their experimental in vivo effect through parasitological, histopathological, and biochemical parameters. The in vivo study included 90 male Swiss albino mice. Mice were grouped into 9 groups; G1-G5 were infected and treated with; GI: PZQ, GII: mucus, GIII: combined PZQ and mucus, GIV: NPs, GV: combined PZQ and NPs. Control groups; C1: Non infected non treated (negative control), C2: Infected non treated (positive control), C3: Non infected mucus treated and C4: Non infected NPs treated. The in vitro study proved that the mucus had a better lethal effect on cercariae than miracidia, while NPs had better lethal effect on miracidia. The mucus lethal effect on adults surpassed the NPs as 100% and 60%, respectively. The in vivo study proved that the combined NPs or mucus with PZQ added to the effect of individual PZQ resulting in 100% total worm burden (TWB) reduction. As regard oxidative stress markers, the lowest level of nitric oxide (NO) was shown with combined PZQ and NPs. While, the highest glutathione (GSH) level was produced by individual PZQ. The study concluded that mucus and NPs of B. alexandrina had cercaricidal, miracidicidal and anti-schistosomal effect in vitro and that their combination could be considered a contribution to PZQ potentiality in vivo.
RESUMO
Because of their low ecological impact, plant molluscicides have garnered much attention. The work aimed to find out if Annona squamosa (AS) seed extract has a molluscicidal impact on Biomphalaria alexandrina snails and enhances this extract by adding CuO nanoparticles (NPs). Using a scanning electron microscope (SEM), transmission electron microscope (TEM), and PANalytical X'Pert PRO X-ray diffractometer (XRD), the presence of the green A. squamosa-based CuO NPs (AS-CuO NPs) was confirmed. After 24 h of exposure, the half-lethal concentration (LC50) of AS-CuO NPs was more toxic to mature B. alexandrina than the aqueous extract of AS seeds (LC50: 119.25 mg/L vs. 169.03 mg/L). The results show that snails exposed to sublethal doses of AS-CuO NPs at LC10 or LC25 (95.4 or 106.7 mg/L, respectively) had much higher glucose levels and alkaline phosphatase activity than those not exposed. Nevertheless, there was no discernible change in the protein content in general or glycogen phosphorylase production. Histological and immunohistochemical analysis showed that snails exposed to A. squamosa-derived CuO NPs LC10 had shrinking digestive tubules and degeneration as well as vacuolation of many digestive, secretory, ova, and sperm cells, with PCNA expressing positively in the hermaphrodite gland and digestive tubule cells. The toxic profile of green CuO NPs produced by A. squamosa may damage the biological activity of B. alexandrina snails; thus, this compound could be used as a molluscicidal base. Furthermore, B. alexandrina proved to be a useful biomarker of nanomaterial contamination.
Assuntos
Annona , Biomphalaria , Moluscocidas , Nanopartículas , Animais , Cobre/farmacologia , Sementes , Moluscocidas/toxicidade , Extratos Vegetais/farmacologia , Comportamento Alimentar , ÓxidosRESUMO
The present work aims to evaluate the impact of Lake Manzala development, started in 2017, on lake water quality and biomarkers of Lake Oreochromis niloticus and Biomphalaria alexandrina samples from Dakahlia and Port Said during 2021 and compare it with the results of a series of studies concerning the same criteria in Lake Manzala during 2015. Results showed a remarkable increase in water EC, indicating a higher water exchange with the sea, a significant decrease in Pb, Cd, Cu, and Zn levels in water samples, and a remarkable decline in Cd and Pb bioaccumulation in all fish and snail samples. Macroinvertebrate samples showed higher taxa richness than in 2015, indicating biologically improved lake water quality. Results showed no trematode transmission, while there were natural infections in B. alexandrina snails during 2015. Biochemically, liver enzymes and hematological criteria in fish and snail samples during 2021 showed levels nearer to control at Port Said, indicating a less stressed liver and more healthy specimens than in 2015. Histopathological examination of fish organs (except spleen) and snail tissues pointed to their improved tissue architecture in Port Said than that of Dakahlia (2021). However, the 2021 samples were better than those of 2015. The immunohistochemical study showed higher expression of IL-6 in Dakahlia samples than the other samples, denoting higher tissue inflammation and humoral immune response. So, all the examined criteria indicated that Manzala Lake is positively impacted by the developmental and purification process, especially in Port Said.
Assuntos
Ciclídeos , Poluentes Químicos da Água , Animais , Ecossistema , Lagos , Egito , Cádmio , Chumbo , Poluentes Químicos da Água/análise , Monitoramento Ambiental , Caramujos/metabolismo , Biomarcadores , Ciclídeos/metabolismoRESUMO
Bisphenol A (BPA) is one of the most potent endocrine-disrupting chemicals (EDCs) that adversely affect aquatic organisms. The present investigation explored the effects of exposure to BPA at 0.1 and 1 mgL-1 concentrations on the fecundity of Biomphalaria alexandrina, snail's infection with Schistosoma mansoni, and histology of the ovotestis and topographical structure of S. mansoni cercariae emerged from exposed snails. The 24 h LC50 and LC90 values of BPA against B. alexandrina were 8.31 and 10.88 mgL-1 BPA, respectively. The exposure of snails to 0.1 or 1 mgL-1 BPA did not affect the snail's survival. However, these concentrations caused an increase in the reproductive rate (Ro) of infected snails. A slight decrease in egg production was observed in snails exposed to 0.1 mgL-1 BPA after being infected (infected then exposed). However, a significant increase in egg production was noted in snails exposed to 1 mgL-1 BPA after infection with S. mansoni. Histopathological investigations indicated a clear alteration in the ovotestis tissue structure of exposed and infected-exposed groups compared to the control snails. Chronic exposure to BPA caused pathological alterations in the gametogenic cells. SEM preparations of S. mansoni cercariae emerged from infected-exposed snails showed obvious body malformations. From a public health perspective, BPA pollution may negatively impact schistosomiasis transmission, as indicated by the disturbance in cercarial production and morphology. However, it has adverse effects on the reproduction and architecture of reproductive organs of exposed snails, indicating that B. alexandrina snails are sensitive to sublethal BPA exposure.