Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Metabolomics ; 20(4): 74, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38980520

RESUMO

BACKGROUND AND AIMS: Biopterins, including tetrahydrobiopterin (BH4), dihydrobiopterin (BH2), and biopterin (B), were crucial enzyme cofactors in vivo. Despite their recognized clinical significance, there remain notable research gaps and controversies surrounding experimental outcomes. This study aims to clarify the biopterins-related issues, including analytical art, physiological intervals, and pathophysiological implications. MATERIALS AND METHODS: A novel LC-MS/MS method was developed to comprehensively profile biopterins in plasma, utilizing chemical derivatization and cold-induced phase separation. Subsequently, apparently healthy individuals were enrolled to investigate the physiological ranges. And the relationships between biopterins and biochemical indicators were analyzed to explore the pathophysiological implications. RESULTS: The developed method was validated as reliable for detecting biopterins across the entire physiological range. Timely anti-oxidation was found to be essential for accurate assessment of biopterins. The observed overall mean ± SDs levels were 3.51 ± 0.94, 1.54 ± 0.48, 2.45 ± 0.84 and 5.05 ± 1.14 ng/mL for BH4, BH2, BH4/BH2 and total biopterins. The status of biopterins showed interesting correlations with age, gender, hyperuricemia and overweight. CONCLUSION: In conjunction with proper anti-oxidation, the newly developed method enables accurate determination of biopterins status in plasma. The observed physiological intervals and pathophysiological implications provide fundamental yet inspiring support for further clinical researches.


Assuntos
Biopterinas , Espectrometria de Massas em Tandem , Humanos , Biopterinas/análogos & derivados , Biopterinas/sangue , Biopterinas/metabolismo , Feminino , Masculino , Adulto , Espectrometria de Massas em Tandem/métodos , Pessoa de Meia-Idade , Cromatografia Líquida/métodos , Adulto Jovem , Idoso , Biomarcadores/sangue
2.
Metab Brain Dis ; 38(8): 2645-2651, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37688715

RESUMO

Inflammation is thought to be involved in the pathogenesis of autism spectrum disorder (ASD). Pteridine metabolites are biomarkers of inflammation that increase on immune system activation. In this study, we investigated the urinary pteridine metabolites in ASD patients as a possible biomarker for immune activation and inflammation. This observational, cross-sectional, prospective study collected urine samples from 212 patients with ASD and 68 age- and sex-matched healthy individuals. Urine neopterin (NE) and biopterin (BIO) levels were measured. Patients who had chronic disorders, active infection at the time of sampling, or high C-reactive protein levels were excluded. The urine NE and BIO concentrations were determined by high-performance liquid chromatography. The ratios of both NE and BIO to creatinine (CRE) were used to standardise the measurements. The NE/CRE and NE/BIO levels were significantly higher in ASD patients than controls. Univariate and multivariate models revealed a significant increase in NE/CRE and NE/BIO in ASD patients. There was a significant relationship between the NE/BIO [average area under the curve (AUC) = 0.717; range: 0.637-0.797] and NE/CRE (average AUC = 0.756; range: 0.684-0.828) ratios, which distinguished individuals with ASD from controls. The elevated NE/CRE and NE/BIO ratios suggest that inflammation and T cell-mediated immunity are involved in the pathophysiology of autism. NE/BIO could serve as a diagnostic inflammatory marker in the pathogenesis of ASD.


Assuntos
Transtorno do Espectro Autista , Biopterinas , Humanos , Neopterina , Estudos Transversais , Estudos Prospectivos , Pteridinas/urina , Biomarcadores/urina , Inflamação
3.
Metab Eng ; 66: 283-295, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33930546

RESUMO

CRISPR-Cas transcriptional programming in bacteria is an emerging tool to regulate gene expression for metabolic pathway engineering. Here we implement CRISPR-Cas transcriptional activation (CRISPRa) in P. putida using a system previously developed in E. coli. We provide a methodology to transfer CRISPRa to a new host by first optimizing expression levels for the CRISPRa system components, and then applying rules for effective CRISPRa based on a systematic characterization of promoter features. Using this optimized system, we regulate biosynthesis in the biopterin and mevalonate pathways. We demonstrate that multiple genes can be activated simultaneously by targeting multiple promoters or by targeting a single promoter in a multi-gene operon. This work will enable new metabolic engineering strategies in P. putida and pave the way for CRISPR-Cas transcriptional programming in other bacterial species.


Assuntos
Engenharia Metabólica , Pseudomonas putida , Sistemas CRISPR-Cas/genética , Escherichia coli/genética , Pseudomonas putida/genética , Ativação Transcricional/genética
4.
Ann Hematol ; 99(1): 41-47, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31760485

RESUMO

In the present study, the possible activation of cellular immunity in SCD patients was investigated. As immune activation parameters, neopterin concentrations and kynurenine/tryptophan ratio for tryptophan degradation in 35 pediatric patients with sickle cell disease (31 HbSS and 4 HbSß) were determined. Our results have shown that neopterin levels (both urinary and serum) are increased in pediatric patients with sickle cell disease. The increase in neopterin concentration was accompanied by significantly increased biopterin, kynurenine concentration and kynurenine/tryptophan ratio. The mechanism of immune activation and the effects of inflammatory mediators in sickle cell disease are poorly understood, especially in terms of cell-mediated immunity. Further in-vivo and in-vitro studies are required to illuminate the association between neopterin levels and neutrophil activation in sickle cell disease.


Assuntos
Anemia Falciforme/sangue , Anemia Falciforme/urina , Neopterina/sangue , Neopterina/urina , Adolescente , Anemia Falciforme/imunologia , Criança , Pré-Escolar , Feminino , Humanos , Inflamação/sangue , Inflamação/imunologia , Inflamação/urina , Masculino , Neopterina/imunologia , Ativação de Neutrófilo , Neutrófilos/imunologia , Neutrófilos/metabolismo
5.
Allergol Int ; 68(1): 96-100, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30297096

RESUMO

BACKGROUND: Pteridines are metabolites of tetrahydrobiopterin, which serves as co-enzyme of nitric oxide synthase. We sought to investigate the usefulness of pteridines as biomarkers for childhood asthma control. METHODS: We conducted a single-center prospective cohort study involving 168 asthmatic children aged 4-17 years who visited the periodical asthma checkup program. Serum neopterin and biopterin levels were measured as pteridines at each visit along with measurement of FeNO, respiratory function tests, nasal eosinophil test, blood eosinophil count, and IgE level. We calculated coefficients for relation between pteridines and asthma control, which was assessed by questionnaires (JPAC: Japanese Pediatric Asthma Control Program). RESULTS: A total of 168 participants aged 10.3 ± 3.39 years (mean ± SD) with asthma were recruited. The participants in this study contained 58 patients (34.5%) of complete-controlled based on JPAC, 132 patients (76.0%) of well-controlled group based on GINA. FeNO and serum neopterin level did not correlate with following period's JPAC scores. In contrast, serum biopterin level significantly correlated with following period's JPAC total score (Coefficients 0.398; 95% CI 0.164 to 0.632; p value 0.001) and frequency of wheezing during exercise (Coefficients 0.272; 95% CI 0.217 to 0.328; p value < 0.001). CONCLUSIONS: We found serum biopterin effected the following period's control status of asthmatic children, thus monitoring biopterin level will be a useful for management of asthma to adjust treatment.


Assuntos
Asma/sangue , Biopterinas/sangue , Adolescente , Asma/fisiopatologia , Biomarcadores/sangue , Testes Respiratórios , Criança , Feminino , Humanos , Masculino , Óxido Nítrico/metabolismo , Estudos Prospectivos , Sons Respiratórios , Espirometria
6.
Scand Cardiovasc J ; 52(3): 163-169, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29566572

RESUMO

OBJECTIVE: Tetrahydrobiopterin (BH4) is the essential cofactor of endothelial nitric oxide synthase (eNOS) and intracellular levels of BH4 is regulated by oxidative stress. The aim of this paper was to describe the influence of exogenous endothelin-1 on intracellular BH4 and its oxidation products dihydrobiopterin (BH2) and biopterin (B) in a wide range of vascular tissue. DESIGN: Segments of internal mammary artery (IMA) and human saphenous vein (SV) from 41 patients undergoing elective surgery were incubated in ET-1 (0.1 µM). Aorta and lung from transgenic mice overexpressing ET-1 in the endothelium (ET-TG) were analysed with regards to intracellular biopterin levels. Human umbilical vein endothelial cells (HUVEC) were incubated in ET-1 (0.1 µM) and intracellular biopterin levels were analysed. From 6 healthy women undergoing caesarean section, subcutaneous fat was harvested and the resistance arteries in these biopsies were tested for ET-mediated endothelial dysfunction. RESULTS: In HUVEC, exogenous ET-1 (0.1 µM) did not significantly change intracellular BH4, 1.54 ± 1.7 vs 1.68 ± 1.8 pmol/mg protein; p = .8. In IMA and SV, exogenous ET-1(0.1 µM) did not change intracellular BH4 n = 10, p = .4. In aorta from wild type vs ET-TG mice there was no significant difference in intracellular BH4 between the groups: 1.3 ± 0.49 vs 1.23 ± 0.3 pmol/mg protein; p = .6. In resistance arteries (n = 6) BH4 together with DTE (an antioxidant) was not able to prevent ET-mediated endothelial dysfunction. CONCLUSION: ET-1 did not significantly alter intracellular tetrahydrobiopterin levels in IMA, SV, HUVEC or aorta from ET-TG mice. These findings are important for future research in ET-1 mediated superoxide production and endothelial dysfunction.


Assuntos
Biopterinas/análogos & derivados , Endotelina-1/farmacologia , Artéria Torácica Interna/efeitos dos fármacos , Veia Safena/efeitos dos fármacos , Gordura Subcutânea/irrigação sanguínea , Idoso , Animais , Antioxidantes/farmacologia , Aorta/metabolismo , Biopterinas/metabolismo , Linhagem Celular , Endotelina-1/genética , Endotelina-1/metabolismo , Feminino , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Pulmão/metabolismo , Masculino , Artéria Torácica Interna/metabolismo , Camundongos Transgênicos , Pessoa de Meia-Idade , Óxido Nítrico Sintase Tipo III , Gravidez , Veia Safena/metabolismo , Superóxidos/metabolismo , Técnicas de Cultura de Tecidos , Vasodilatação/efeitos dos fármacos
7.
Microvasc Res ; 114: 114-128, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28729163

RESUMO

In cardiovascular and neurovascular diseases, an increase in oxidative stress and endothelial dysfunction has been reported. There is a reduction in tetrahydrobiopterin (BH4), which is a cofactor for the endothelial nitric oxide synthase (eNOS), resulting in eNOS uncoupling. Studies of the enhancement of BH4 availability have reported mixed results for improvement in endothelial dysfunction. Our understanding of the complex interactions of eNOS uncoupling, oxidative stress and BH4 availability is not complete and a quantitative understanding of these interactions is required. In the present study, we developed a computational model for eNOS uncoupling that considers the temporal changes in biopterin ratio in the oxidative stress conditions. Using the model, we studied the effects of cellular oxidative stress (Qsupcell) representing the non-eNOS based oxidative stress sources and BH4 synthesis (QBH4) on eNOS NO production and biopterin ratio (BH4/total biopterins (TBP)). Model results showed that oxidative stress levels from 0.01 to 1nM·s-1 did not affect eNOS NO production and eNOS remained in coupled state. When the Qsupcell increased above 1nM·s-1, the eNOS coupling and NO production transitioned to an oscillatory state. Oxidative stress levels dynamically changed the biopterin ratio. When Qsupcell increased from 1 to 100nM·s-1, the endothelial cell NO production, TBP levels and biopterin ratio reduced significantly from 26.5 to 2nM·s-1, 3.75 to 0.002µM and 0.99 to 0.25, respectively. For an increase in BH4 synthesis, the improvement in NO production rate and BH4 levels were dependent on the extent of cellular oxidative stress. However, a 10-fold increase in QBH4 at higher oxidative stresses did not restore the NO-production rate and the biopterin ratio. Our mechanistic analysis reveals that a combination of enhancing tetrahydrobiopterin level with a reduction in cellular oxidative stress may result in significant improvement in endothelial dysfunction.


Assuntos
Biopterinas/análogos & derivados , Simulação por Computador , Células Endoteliais/enzimologia , Modelos Cardiovasculares , Óxido Nítrico Sintase Tipo III/metabolismo , Estresse Oxidativo , Biologia de Sistemas/métodos , Animais , Biopterinas/metabolismo , Humanos , Cinética , Óxido Nítrico/metabolismo , Análise Numérica Assistida por Computador , Transdução de Sinais
8.
Mol Cell Biochem ; 435(1-2): 97-108, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28534121

RESUMO

Tetrahydrobiopterin (BH4) is a common coenzyme of phenylalanine-, tyrosine-, and tryptophan hydroxylases, alkylglycerol monooxygenase, and NO synthases (NOS). Synthetic BH4 is used medicinally for BH4-responsive phenylketonuria and inherited BH4 deficiency. BH4 supplementation has also drawn attention as a therapy for various NOS-related cardio-vascular diseases, but its use has met with limited success in decreasing BH2, the oxidized form of BH4. An increase in the BH2/BH4 ratio leads to NOS dysfunction. Previous studies revealed that BH4 supplementation caused a rapid urinary loss of BH4 accompanied by an increase in the blood BH2/BH4 ratio and an involvement of probenecid-sensitive but unknown transporters was strongly suggested in these processes. Here we show that OAT1 and OAT3 enabled cells to take up BP (BH4 and/or BH2) in a probenecid-sensitive manner using rat kidney slices and transporter-expressing cell systems, LLC-PK1 cells and Xenopus oocytes. Both OAT1 and OAT3 preferred BH2 and sepiapterin as their substrate roughly 5- to 10-fold more than BH4. Administration of probenecid acutely reduced the urinary exclusion of endogenous BP accompanied by a rise in blood BP in vivo. These results indicated that OAT1 and OAT3 played crucial roles: (1) in determining baseline levels of blood BP by excluding endogenous BP through the urine, (2) in the rapid distribution to organs of exogenous BH4 and the exclusion to urine of a BH4 excess, particularly when BH4 was administered, and (3) in scavenging blood BH2 by cellular uptake as the gateway to the salvage pathway of BH4, which reduces BH2 back to BH4.


Assuntos
Biopterinas/análogos & derivados , Proteína 1 Transportadora de Ânions Orgânicos/metabolismo , Transportadores de Ânions Orgânicos Sódio-Independentes/metabolismo , Animais , Transporte Biológico Ativo/efeitos dos fármacos , Transporte Biológico Ativo/fisiologia , Biopterinas/genética , Biopterinas/metabolismo , Linhagem Celular , Oócitos , Proteína 1 Transportadora de Ânions Orgânicos/genética , Transportadores de Ânions Orgânicos Sódio-Independentes/genética , Probenecid/farmacologia , Ratos , Ratos Sprague-Dawley , Xenopus
9.
Eur J Pediatr ; 176(7): 917-924, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28540433

RESUMO

The tetrahydrobiopterin (BH4) cofactor is essential for the activity of various enzymes, including phenylalanine (Phe) hydroxylase. In phenylketonuria (PKU) patients, who are chronically exposed to high Phe levels, high urinary excretion of BH4 metabolites neopterin and biopterin is observed. The aim of this longitudinal study was to investigate consistence and variability of the urinary excretion of pterins (neopterin and biopterin) in PKU patients in relation to age and concomitant blood Phe and tyrosine levels. The study was based on the result of 274 pterin examinations (3-13 exams per subject) performed in 47 PKU patients (aged 6 days to 37 years). Multivariate analysis showed that urinary biopterin and neopterin excretion was affected by age and concomitant blood Phe concentration. The influence of blood Phe on both biopterin and neopterin levels was greater in patients younger than 4 months. Later on, interindividual variability was higher than intraindividual variability for both biopterin and neopterin. CONCLUSION: Common metabolic (blood Phe levels) and individual (age) factors implicated in the assessment of PKU outcome account only marginally and transiently for the variability of neopterin and biopterin excretion in PKU patients. Other unknown homeostatic factors may probably affect the individual response to chronically elevated Phe levels. What is Known: • In PKU patients, a high urinary excretion of biopterin and neopterin is found. • Biopterin and neopterin excretion is influenced by age and phenylalanine levels. W hat is New: • Blood phenylalanine concentration is the major determinant on pterin excretion in PKU patients in the first months of life. • In older PKU patients, the influence of phenylalanine on pterin excretion is less prominent.


Assuntos
Biopterinas/análogos & derivados , Neopterina/urina , Fenilalanina/sangue , Fenilcetonúrias/metabolismo , Tirosina/sangue , Adolescente , Adulto , Biomarcadores/metabolismo , Biopterinas/urina , Estudos de Casos e Controles , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Recém-Nascido , Estudos Longitudinais , Masculino , Análise Multivariada , Estudos Retrospectivos , Adulto Jovem
10.
Br J Nutr ; 116(2): 223-46, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27264638

RESUMO

The endothelium, a thin single sheet of endothelial cells, is a metabolically active layer that coats the inner surface of blood vessels and acts as an interface between the circulating blood and the vessel wall. The endothelium through the secretion of vasodilators and vasoconstrictors serves as a critical mediator of vascular homeostasis. During the development of the vascular system, it regulates cellular adhesion and vessel wall inflammation in addition to maintaining vasculogenesis and angiogenesis. A shift in the functions of the endothelium towards vasoconstriction, proinflammatory and prothrombic states characterise improper functioning of these cells, leading to endothelial dysfunction (ED), implicated in the pathogenesis of many diseases including diabetes. Major mechanisms of ED include the down-regulation of endothelial nitric oxide synthase levels, differential expression of vascular endothelial growth factor, endoplasmic reticulum stress, inflammatory pathways and oxidative stress. ED tends to be the initial event in macrovascular complications such as coronary artery disease, peripheral arterial disease, stroke and microvascular complications such as nephropathy, neuropathy and retinopathy. Numerous strategies have been developed to protect endothelial cells against various stimuli, of which the role of polyphenolic compounds in modulating the differentially regulated pathways and thus maintaining vascular homeostasis has been proven to be beneficial. This review addresses the factors stimulating ED in diabetes and the molecular mechanisms of natural polyphenol antioxidants in maintaining vascular homeostasis.


Assuntos
Antioxidantes/farmacologia , Doenças Cardiovasculares/fisiopatologia , Complicações do Diabetes/fisiopatologia , Diabetes Mellitus/fisiopatologia , Endotélio Vascular/efeitos dos fármacos , Extratos Vegetais/farmacologia , Polifenóis/farmacologia , Animais , Antioxidantes/uso terapêutico , Doenças Cardiovasculares/sangue , Doenças Cardiovasculares/prevenção & controle , Complicações do Diabetes/sangue , Complicações do Diabetes/prevenção & controle , Diabetes Mellitus/sangue , Diabetes Mellitus/tratamento farmacológico , Estresse do Retículo Endoplasmático , Endotélio Vascular/patologia , Endotélio Vascular/fisiopatologia , Humanos , Inflamação/etiologia , Óxido Nítrico Sintase/sangue , Estresse Oxidativo , Extratos Vegetais/uso terapêutico , Polifenóis/uso terapêutico , Fator A de Crescimento do Endotélio Vascular/sangue
11.
Free Radic Biol Med ; 222: 625-637, 2024 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-39004235

RESUMO

Neuronal cell dysfunction plays an important role in neurodegenerative diseases. Oxidative stress can disrupt the redox balance within neuronal cells and may cause neuronal nitric oxide synthase (nNOS) to uncouple, contributing to the neurodegenerative processes. Experimental studies and clinical trials using nNOS cofactor tetrahydrobiopterin (BH4) and antioxidants in neuronal cell dysfunction have shown inconsistent results. A better mechanistic understanding of complex interactions of nNOS activity and oxidative stress in neuronal cell dysfunction is needed. In this study, we developed a computational model of neuronal cell using nNOS biochemical pathways to explore several key mechanisms that are known to influence neuronal cell redox homeostasis. We studied the effects of oxidative stress and BH4 synthesis on nNOS nitric oxide production and biopterin ratio (BH4/total biopterin). Results showed that nNOS remained coupled and maintained nitric oxide production for oxidative stress levels less than 230 nM/s. The results showed that neuronal oxidative stress above 230 nM/s increased the degree of nNOS uncoupling and introduced instability in the nitric oxide production. The nitric oxide production did not change irrespective of initial biopterin ratio of 0.05-0.99 for a given oxidative stress. Oxidative stress resulted in significant reduction in BH4 levels even when nitric oxide production was not affected. Enhancing BH4 synthesis or supplementation improved nNOS coupling, however the degree of improvement was determined by the levels of oxidative stress and BH4 synthesis. The results of our mechanistic analysis indicate that there is a potential for significant improvement in neuronal dysfunction by simultaneously increasing BH4 levels and reducing cellular oxidative stress.

12.
J Clin Med ; 13(15)2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39124632

RESUMO

Background/Objectives: As COVID-19 can be severe, early predictive markers of both severity and onset of secondary bacterial infections are needed. This study first examined changes over time in the levels of plasma neopterin (NP) and biopterins (BPs), among others, in patients with COVID-19 and then in those with secondary bacterial infection complications. Methods: Fifty-two patients with COVID-19 admitted to two tertiary care centers were included. They were divided into a severe group (intubated + mechanical ventilation) (n = 10) and a moderate group (non-intubated + oxygen administration) (n = 42), and changes over time in plasma NP, plasma BPs, IFN-γ, lymphocyte count, CRP, and IL-6 were investigated. Four of the patients in the severe group (n = 10) developed secondary bacterial infections during treatment. Plasma NP and plasma BPs of patients with bacterial sepsis (no viral infection) (n = 25) were also examined. Results: The plasma NP, IL-6, CRP, and SOFA levels were significantly higher in the severe group, while the IFN-γ level and lymphocyte count were significantly lower. The higher plasma NP in the severe group persisted only up to 1 week after symptom onset. The plasma BPs were higher in complications of bacterial infection. Conclusions: The timing of sample collection is important for assessing severity through plasma NP, while plasma BPs may be a useful diagnostic tool for identifying the development of secondary bacterial infection in patients with COVID-19. Further investigation is needed to clarify the mechanism by which NP and BPs, which are involved in the same biosynthetic pathway, are differentially activated depending on the type of pathogen.

13.
J Asthma Allergy ; 17: 251-259, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38524101

RESUMO

Purpose: Pteridines are metabolites of tetrahydrobiopterin (BH4), being coenzymes for nitric oxide synthase (NOS). No study has clarified the relationship among pteridines and NOS, fractional exhaled nitric oxide (FeNO) generated by pteridines, and reactive oxygen species. In this study, we administered arginine, a precursor of NO, and confirmed changes in the levels of pteridines, FeNO, and reactive oxygen species and their relationship to clarify the pathogenesis of airway inflammation in which oxidative stress is involved, such as bronchial asthma. Patients and Methods: This is a prospective, randomized open-label study. Children, aged 2 to 15 years, who were scheduled for growth hormone stimulation tests and were able to undergo a respiratory function test were recruited. They were randomly divided into two groups: arginine-administered and control groups. In the former, L-arginine hydrochloride was intravenously administered. After administration, the levels of diacron-reactive oxygen metabolites (d-ROMs), serum pteridines, serum amino acids, and fractional exhaled NO (FeNO) were measured. Results: We analyzed 15 children aged 4 to 14 years. In the arginine-administered group, there was an increase in the FeNO level and a decrease in the d-ROMs level, reaching a peak 30 min after administration, compared with the control group. In addition, there was a decrease in the serum biopterin level and an increase in the d-ROMs level, reaching peak 60 min after administration. Conclusion: The administration of L-arginine increased the NO level and decreased the d-ROMs level. Due to this, biopterin may be consumed and decreased, leading to an increase in the d-ROMs level. As a reduction in reactive oxygen species leads to the relief of inflammation, arginine and biopterin may be useful for inhibiting inflammation.

14.
Cell Metab ; 36(5): 984-999.e8, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38642552

RESUMO

The relevance of biopterin metabolism in resistance to immune checkpoint blockade (ICB) therapy remains unknown. We demonstrate that the deficiency of quinoid dihydropteridine reductase (QDPR), a critical enzyme regulating biopterin metabolism, causes metabolite dihydrobiopterin (BH2) accumulation and decreases the ratio of tetrahydrobiopterin (BH4) to BH2 in pancreatic ductal adenocarcinomas (PDACs). The reduced BH4/BH2 ratio leads to an increase in reactive oxygen species (ROS) generation and a decrease in the distribution of H3K27me3 at CXCL1 promoter. Consequently, myeloid-derived suppressor cells are recruited to tumor microenvironment via CXCR2 causing resistance to ICB therapy. We discovered that BH4 supplementation is capable to restore the BH4/BH2 ratio, enhance anti-tumor immunity, and overcome ICB resistance in QDPR-deficient PDACs. Tumors with lower QDPR expression show decreased responsiveness to ICB therapy. These findings offer a novel strategy for selecting patient and combining therapies to improve the effectiveness of ICB therapy in PDAC.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/imunologia , Neoplasias Pancreáticas/metabolismo , Humanos , Animais , Camundongos , Carcinoma Ductal Pancreático/imunologia , Carcinoma Ductal Pancreático/patologia , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/genética , Microambiente Tumoral , Linhagem Celular Tumoral , Inibidores de Checkpoint Imunológico/uso terapêutico , Inibidores de Checkpoint Imunológico/farmacologia , Camundongos Endogâmicos C57BL , Biopterinas/análogos & derivados , Biopterinas/metabolismo , Feminino , Masculino , Espécies Reativas de Oxigênio/metabolismo
15.
Front Psychiatry ; 15: 1347178, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38414497

RESUMO

Depressive disorder is a severe mental condition. In addition to genetic factors, immunological-inflammatory factors, oxidative stress, and disturbances in neurotransmitter metabolism, kynurenine and serotonin pathways may play a role. The exact mechanisms, especially in depressed children and adolescents, are not fully understood. Our primary hypothesis was whether the metabolites of tryptophan degradation in children and adolescents with depressive disorder might be influenced by omega-3 FAs compared to omega-6 FAs during a 12-week supplementation. A secondary hypothesis was to investigate whether tryptophan metabolites in children and adolescents are associated with markers of inflammatory response, oxidative stress, cortisol, and the serum omega-6/omega-3 FA ratio. Metabolites of tryptophan degradation and pteridines, neopterin, and biopterin in urine were analyzed with an HPLC system. Surprisingly, omega-3 FAs stimulated both kynurenine (kynurenine/tryptophan ratio) and serotonin (5-hydroxytryptophan) pathways, whereas omega-6 FAs only increased the kynurenine/tryptophan ratio. Neopterin and biopterin were not different from the healthy controls. Biopterin increased after omega-3 FA supplementation. Serotonin was positively correlated with lipoperoxidation and a marker of oxidative protein damage. Of the monitored tryptophan metabolites, only 5-hydroxyindolacetic acid was positively correlated with the severity of depression, total cholesterol, and negatively with brain-derived neurotrophic factor and glutathione peroxidase. In conclusion, in children and adolescents, both supplemented FAs stimulated the kynurenine pathway (kynurenine/tryptophan ratio) and kynurenine formation. However, the serotonin pathway (5-hydroxytryptophan) was stimulated only by omega-3 FA. Tryptophan metabolism is associated with oxidative stress, inflammation, total cholesterol, and cortisol. We are the first to point out the association between the kynurenine pathway (KYN/TRP ratio) and the omega-6/omega-3 FA ratio. The metabolite 5-HIAA could play a role in the pathophysiology of depressive disorder in children and adolescents. Clinical Trial Registration: https://www.isrctn.com/ISRCTN81655012, identifier ISRCTN81655012.

16.
Artigo em Inglês | MEDLINE | ID: mdl-36089162

RESUMO

INTRODUCTION: Pteridines, such as neopterin, biopterin, and tetrahydrobiopterin (BH4), may be involved in depression pathophysiology owing to their links to immune-inflammatory response, oxidative and nitrosative stress, and monoaminergic transmission. Nonetheless, studies assessing pteridines in depression are inconsistent. We conducted a systematic review and meta-analysis of observational studies comparing blood pteridine concentrations between subjects with depression and healthy controls (HCs). METHODS: We searched Embase, MEDLINE, and PsycInfo for articles indexed through November 2021. Study quality was appraised, evaluating age and gender comparability between groups, sample representativeness, and methods to assess depression. Random-effects meta-analyses were carried out, generating pooled standardized mean differences (SMDs). Heterogeneity across studies was estimated using the I2 statistic. RESULTS: Twenty-four studies, involving 3075 subjects, were included. Individuals with depression showed blood neopterin concentrations higher than HCs (k = 19; SMD = 0.36; p < 0.001) with moderate heterogeneity across studies (I2 = 58.2%). No moderating role of age, gender, or type of blood sample was found. Sensitivity analyses showed no impact of inconsistency and quality of studies on findings. Neopterin concentrations were higher among individuals with major depressive disorder compared to HCs (SMD = 0.44; p < 0.001). This held true also when considering only drug-free subjects (SMD = 0.68; p = 0.003). No differences in biopterin concentrations were found between subjects with depression and HCs (k = 5; SMD = -0.35; p = 0.086), though this result was limited by inconsistency of findings (I2 = 77.9%) and quality of studies. Finally, no sufficient data were available for a meta-analysis on BH4. CONCLUSIONS: As a whole, our work partly supports the hypothesis of an imbalance of pteridine metabolism in depression.


Assuntos
Depressão , Transtorno Depressivo Maior , Humanos , Neopterina , Biopterinas , Pteridinas
17.
Biomolecules ; 13(2)2023 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-36830627

RESUMO

Butyrate, a short-chain fatty acid, is utilized by the gut epithelium as energy and it improves the gut epithelial barrier. More recently, it has been associated with beneficial effects on immune and cardiovascular homeostasis. Conversely, tumor necrosis factor alpha (TNFα) is a pro-inflammatory and pro-hypertensive cytokine. While butyrate and TNFα are both linked with hypertension, studies have not yet addressed their interaction in the colon. Here, we investigated the capacity of butyrate to modulate a host of effects of TNFα in primary rodent colonic cells in vitro. We measured ATP levels, cell viability, mitochondrial membrane potential (MMP), reactive oxygen species (ROS), mitochondrial oxidative phosphorylation, and glycolytic activity in colonocytes following exposure to either butyrate or TNFα, or both. To address the potential mechanisms, transcripts related to oxidative stress, cell fate, and cell metabolism (Pdk1, Pdk2, Pdk4, Spr, Slc16a1, Slc16a3, Ppargc1a, Cs, Lgr5, Casp3, Tnfr2, Bax, Bcl2, Sod1, Sod2, and Cat) were measured, and untargeted liquid chromatography-tandem mass spectrometry (LC-MS/MS) was employed to profile the metabolic responses of colonocytes following exposure to butyrate and TNFα. We found that both butyrate and TNFα lowered cellular ATP levels towards a quiescent cell energy phenotype, characterized by decreased oxygen consumption and extracellular acidification. Co-treatment with butyrate ameliorated TNFα-induced cytotoxicity and the reduction in cell viability. Butyrate also opposed the TNFα-mediated decrease in MMP and mitochondrial-to-intracellular calcium ratios, suggesting that butyrate may protect colonocytes against TNFα-induced cytotoxicity by decreasing mitochondrial calcium flux. The relative expression levels of pyruvate dehydrogenase kinase 4 (Pdk4) were increased via co-treatment of butyrate and TNFα, suggesting the synergistic inhibition of glycolysis. TNFα alone reduced the expression of monocarboxylate transporters slc16a1 and slc16a3, suggesting effects of TNFα on butyrate uptake into colonocytes. Of the 185 metabolites that were detected with LC-MS, the TNFα-induced increase in biopterin produced the only significant change, suggesting an alteration in mitochondrial biogenesis in colonocytes. Considering the reports of elevated colonic TNFα and reduced butyrate metabolism in many conditions, including in hypertension, the present work sheds light on cellular interactions between TNFα and butyrate in colonocytes that may be important in understanding conditions of the colon.


Assuntos
Butiratos , Hipertensão , Ratos , Animais , Butiratos/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Cálcio/metabolismo , Cromatografia Líquida , Mucosa Intestinal/metabolismo , Espectrometria de Massas em Tandem , Hipertensão/metabolismo , Trifosfato de Adenosina/metabolismo
18.
Cells ; 12(6)2023 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-36980253

RESUMO

Endothelial dysfunction result from inflammation and excessive production of reactive oxygen species as part of the surgical stress response. Remote ischemic preconditioning (RIPC) potentially exerts anti-oxidative and anti-inflammatory properties, which might stabilise the endothelial function after non-cardiac surgery. This was a single centre randomised clinical trial including 60 patients undergoing sub-acute laparoscopic cholecystectomy due to acute cholecystitis. Patients were randomised to RIPC or control. The RIPC procedure consisted of four cycles of five minutes of ischaemia and reperfusion of one upper extremity. Endothelial function was assessed as the reactive hyperaemia index (RHI) and circulating biomarkers of nitric oxide (NO) bioavailability (L-arginine, asymmetric dimethylarginine (ADMA), L-arginine/ADMA ratio, tetra- and dihydrobiopterin (BH4 and BH2), and total plasma biopterin) preoperative, 2-4 h after surgery and 24 h after surgery. RHI did not differ between the groups (p = 0.07). Neither did levels of circulating biomarkers of NO bioavailability change in response to RIPC. L-arginine and L-arginine/ADMA ratio was suppressed preoperatively and increased 24 h after surgery (p < 0.001). The BH4/BH2-ratio had a high preoperative level, decreased 2-4 h after surgery and remained low 24 h after surgery (p = 0.01). RIPC did not influence endothelial function or markers of NO bioavailability until 24 h after sub-acute laparoscopic cholecystectomy. In response to surgery, markers of NO bioavailability increased, and oxidative stress decreased. These findings support that a minimally invasive removal of the inflamed gallbladder countereffects reduced markers of NO bioavailability and increased oxidative stress caused by acute cholecystitis.


Assuntos
Hiperemia , Precondicionamento Isquêmico , Humanos , Precondicionamento Isquêmico/métodos , Arginina , Biomarcadores , Estresse Oxidativo
19.
J Biochem ; 170(4): 559-567, 2021 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-34181024

RESUMO

Neopterin (NP), biopterin (BP) and monapterin (MP) exist in saliva. The physiological role of salivary NP as well as the pathophysiological role of increased NP in the immune-activated state has been unclear. Saliva is a characteristic specimen different from other body fluids. In this study, we analysed salivary NP and related pterin compounds, BP and MP and revealed some of its feature. High-performance liquid chromatography (HPLC) analysis of saliva and plasma obtained from 26 volunteers revealed that salivary NP existed mostly in its fully oxidized form. The results suggested that salivary NP as well as BP would mostly originate from the oral cavity, perhaps the salivary glands, and that salivary NP levels might not reflect those in the plasma. We also found that a gender difference existed in correlations between concentrations of salivary total concentrations of NP (tNP) and BP (tBP). HPLC analysis of saliva obtained from 5 volunteers revealed that the concentrations of salivary tNP as well as tBP fluctuated in an irregular fashion in various individuals. MP, a diastereomer of NP, might have come from oral cavity NP itself or its precursor. These results indicated that the nature of salivary NP might be different from that of NP in the blood or urine.


Assuntos
Neopterina/análise , Pterinas/análise , Saliva/química , Adulto , Biopterinas/análise , Biopterinas/sangue , Cromatografia Líquida de Alta Pressão/métodos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Boca , Neopterina/sangue , Pterinas/sangue , Fatores Sexuais , Manejo de Espécimes/métodos , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA