Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.755
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(21): e2313207121, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38753512

RESUMO

Arginine vasopressin (AVP) neurons of the hypothalamic paraventricular region (AVPPVN) mediate sex-biased social behaviors across most species, including mammals. In mice, neural sex differences are thought to be established during a critical window around birth ( embryonic (E) day 18 to postnatal (P) day 2) whereby circulating testosterone from the fetal testis is converted to estrogen in sex-dimorphic brain regions. Here, we found that AVPPVN neurons are sexually dimorphic by E15.5, prior to this critical window, and that gestational bisphenol A (BPA) exposure permanently masculinized female AVPPVN neuronal numbers, projections, and electrophysiological properties, causing them to display male-like phenotypes into adulthood. Moreover, we showed that nearly twice as many neurons that became AVP+ by P0 were born at E11 in males and BPA-exposed females compared to control females, suggesting that AVPPVN neuronal masculinization occurs between E11 and P0. We further narrowed this sensitive period to around the timing of neurogenesis by demonstrating that exogenous estrogen exposure from E14.5 to E15.5 masculinized female AVPPVN neuronal numbers, whereas a pan-estrogen receptor antagonist exposed from E13.5 to E15.5 blocked masculinization of males. Finally, we showed that restricting BPA exposure to E7.5-E15.5 caused adult females to display increased social dominance over control females, consistent with an acquisition of male-like behaviors. Our study reveals an E11.5 to E15.5 window of estrogen sensitivity impacting AVPPVN sex differentiation, which is impacted by prenatal BPA exposure.


Assuntos
Compostos Benzidrílicos , Neurônios , Fenóis , Diferenciação Sexual , Animais , Compostos Benzidrílicos/toxicidade , Fenóis/toxicidade , Feminino , Masculino , Camundongos , Diferenciação Sexual/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Gravidez , Hipotálamo/metabolismo , Hipotálamo/efeitos dos fármacos , Neurogênese/efeitos dos fármacos , Arginina Vasopressina/metabolismo , Vasopressinas/metabolismo , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Núcleo Hipotalâmico Paraventricular/efeitos dos fármacos , Núcleo Hipotalâmico Paraventricular/metabolismo , Camundongos Endogâmicos C57BL , Estrogênios/metabolismo , Estrogênios/farmacologia
2.
BMC Genomics ; 25(1): 589, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38867150

RESUMO

BACKGROUND: Bisphenol S (BPS) is a substitute for bisphenol A in plastic manufacturing and, as a potential endocrine disruptor, may alter the physiology of the oviduct, in which fertilization and early embryo development take place in mammals. The objective of this study was to assess the effect of a daily dietary exposure to BPS combined with a contrasted diet on the oviduct fluid proteome using an ovine model. RESULTS: Eighty adult cyclic ewes were allotted to four groups (20/group): overfed (OF) consuming 50 µg/kg/day of BPS in their diet, underfed (UF) consuming 50 µg/kg/day of BPS, and non-exposed controls in each diet group. After three months, the mean body condition score, plasma levels of glucose and non-esterified fatty acids were significantly higher in OF than in UF females. The proteins in collected OF samples (50 µg) were analyzed by nanoliquid chromatography coupled with tandem mass spectrometry (nanoLC-MS/MS). Overall, 1563 proteins were identified, among which 848 were quantified. Principal component analysis of the data revealed a clear discrimination of samples according to the diet and a segregation between BPS-exposed and non-exposed females in overfed ewes. Hierarchical clustering of differentially abundant proteins (DAPs) identified two clusters of 101 and 78 DAPs according to the diet. Pairwise comparisons between groups revealed a stronger effect of BPS in OF than in UF females (70 vs. 24 DAPs) and a stronger effect of the diet in BPS-exposed than non-exposed females (56 vs. 36 DAPs). Functional analysis of DAPs showed an enrichment in metabolic processes, immune system, cell response to stress, and reproductive processes. CONCLUSIONS: This work highlights for the first time the important impact of BPS on the oviduct proteome, with larger effects seen in OF than UF females. These results, together with previous ones, raise health concerns for everyone and call for a greater regulation of BPS in the food industry.


Assuntos
Oviductos , Fenóis , Proteoma , Sulfonas , Animais , Feminino , Ovinos , Fenóis/toxicidade , Proteoma/metabolismo , Oviductos/metabolismo , Oviductos/efeitos dos fármacos , Sulfetos/administração & dosagem , Proteômica , Administração Oral , Dieta
3.
Curr Issues Mol Biol ; 46(5): 4935-4950, 2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38785564

RESUMO

Bisphenol A (BPA) and high-fat diets (HFD) are known to adversely affect the kidneys. However, the combined effects of both cases on kidney health and the potential benefits of N-acetylcysteine (NAC) in mitigating these effects have not been investigated. To explore these aspects, male Wistar rats were fed with HFD and allocated to receive a vehicle or BPA. At week twelve, the BPA-exposed rats were subdivided to receive a vehicle or NAC along with BPA until week sixteen. Rats fed HFD and exposed to BPA showed renal dysfunction and structural abnormalities, oxidative stress, inflammation, and mitochondrial dysfunction, with alterations in key proteins related to mitochondrial oxidative phosphorylation (OXPHOS), bioenergetics, oxidative balance, dynamics, apoptosis, and inflammation. Treatment with NAC for 4 weeks significantly improved these conditions. The findings suggest that NAC is beneficial in protecting renal deterioration brought on by prolonged exposure to BPA in combination with HFD, and modulation of sirtuin 3 (SIRT3) signaling by NAC appears to play a key role in the preservation of homeostasis and integrity within the mitochondria by enhancing OXPHOS activity, maintaining redox balance, and reducing inflammation. This study provides valuable insights into potential therapeutic strategies for preserving kidney health in the face of environmental and dietary challenges.

4.
Toxicol Appl Pharmacol ; 487: 116953, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38705400

RESUMO

INTRODUCTION: Research has unveiled the neurotoxicity of Bisphenol A (BPA) linked to neuropathological traits of Alzheimer's disease (AD) through varied mechanisms. This study aims to investigate the neuroprotective properties of cyanidin, an anthocyanin, in an in vivo model of BPA-induced Alzheimer's-like neuropathology. METHODS: Three-week-old Sprague-Dawley rats were randomly assigned to four groups: vehicle control, negative control (BPA exposure), low-dose cyanidin treatment (BPA + cyanidin 5 mg/kg), and high-dose cyanidin treatment (BPA + cyanidin 10 mg/kg). Spatial memory was assessed through behavioral tests, including the Y-maze, novel object recognition, and Morris water maze. After behavioral tests, animals were euthanized, and brain regions were examined for acetylcholinesterase inhibition, p-tau, Wnt3, GSK3ß, and ß-catenin levels, antioxidant activities, and histopathological changes. RESULTS: BPA-exposed groups displayed memory impairments, while cyanidin-treated groups showed significant memory improvement (p < 0.0001). Cyanidin down regulated p-tau and glycogen synthase kinase-3ß (GSK3ß) and restored Wnt3 and ß-catenin levels (p < 0.0001). Moreover, cyanidin exhibited antioxidant properties, elevating catalase and superoxide dismutase levels. The intervention significantly reduced the concentrations of acetylcholinesterase in the cortex and hippocampus in comparison to the groups treated with BPA (p < 0.0001). Significant gender-based disparities were not observed. CONCLUSION: Cyanidin demonstrated potent neuroprotection against BPA-induced Alzheimer's-like neuropathology by enhancing antioxidant defenses, modulating tau phosphorylation by restoring the Wnt/ß-catenin pathway, and ameliorating spatial memory deficits. This study highlights the therapeutic potential of cyanidin in countering neurotoxicity linked to BPA exposure.


Assuntos
Doença de Alzheimer , Antocianinas , Compostos Benzidrílicos , Cognição , Fármacos Neuroprotetores , Fenóis , Ratos Sprague-Dawley , Memória Espacial , Via de Sinalização Wnt , Animais , Fenóis/farmacologia , Fenóis/toxicidade , Compostos Benzidrílicos/toxicidade , Compostos Benzidrílicos/farmacologia , Antocianinas/farmacologia , Antocianinas/uso terapêutico , Doença de Alzheimer/induzido quimicamente , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/patologia , Memória Espacial/efeitos dos fármacos , Masculino , Ratos , Via de Sinalização Wnt/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Cognição/efeitos dos fármacos , Modelos Animais de Doenças , Aprendizagem em Labirinto/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/patologia
5.
Crit Rev Biotechnol ; : 1-11, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38839596

RESUMO

Additives, such as bisphenol A (BPA) that are added to packaging material to enhance functionality may migrate into food products creating a concern for food safety. BPA has been linked to various chronic diseases, such as: diabetes, obesity, prostate cancer, impaired thyroid function, and several other metabolic disorders. To safeguard consumers, BPA migration limits have been defined by regulatory bodies. However, it is important to address the underlying factors and mechanisms so that they can be optimized in order to minimize BPA migration. In this review, we determine the relative importance of the factors, i.e. temperature, contact time, pH, food composition, storage time and temperature, package type, cleaning, and aging, and packaging damage that promote BPA migration in foods. Packaging material seems to be the key source of BPA and the temperature (applied during food production, storage, can sterilization and cleaning processes) was the critical driver influencing BPA migration.

6.
Cell Commun Signal ; 22(1): 28, 2024 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-38200540

RESUMO

BACKGROUND: Bisphenol A (BPA) levels are high in women with polycystic ovary syndrome (PCOS). The mechanism by which BPA induces abnormal glucose metabolism in PCOS patients is largely unknown. METHODS: Serum and urine samples were collected from women with and without PCOS (control) at the reproductive medicine center with informed consent. Non-PCOS patients who received in vitro fertilization were recruited for collection of ovarian follicular fluid and granular cells. Wild-type C57BL/6 and AhR -/- mice were used to verify the effects of BPA on PCOS. Real-time PCR, western blotting, and ELISA were conducted to analyze the function of BPA. Chip-qPCR verified the role of AhR in GLUT4 transcription. Flow cytometry was performed to determine glucose uptake. RESULTS: A positive correlation was observed between BPA concentration and serum BPA levels in PCOS patients. BPA aggravated the changes in PCOS with abnormal glucose metabolism, impaired fertility, and increased body fat. Mechanistically, we showed that BPA activated AhR and led to decreased glucose transport via GLUT4 downregulation in ovarian granular cells. Therefore, the use of inhibitors or knockout of AhR could effectively rescue BPA-induced metabolic disorders in PCOS mice. CONCLUSIONS: Our results revealed that BPA suppressed GLUT4 expression and induced abnormal glucose metabolism by activating AhR, causing insulin resistance, and is thus a potential contributor to the development of PCOS. Therefore, AhR could be a potential new therapeutic target for PCOS. Video Abstract.


Assuntos
Compostos Benzidrílicos , Fenóis , Síndrome do Ovário Policístico , Humanos , Feminino , Animais , Camundongos , Camundongos Endogâmicos C57BL , Receptores de Hidrocarboneto Arílico , Glucose
7.
Crit Rev Toxicol ; 54(5): 291-314, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38726570

RESUMO

The use of bisphenol A (BPA), a substance of very high concern, is proposed to be banned in food contact materials (FCMs) in the European Union. To prevent regrettable substitution of BPA by alternatives with similar or unknown hazardous properties, it is of importance to gain the relevant toxicological information on potential BPA alternative substances and monitor them adequately. We created an inventory of over 300 substances mentioned as potential BPA alternatives in regulatory reports and scientific literature. This study presents a prioritization strategy to identify substances that may be used as an alternative to BPA in FCMs. We prioritized 20 potential BPA alternatives of which 10 are less familiar. We subsequently reviewed the available information on the 10 prioritized less familiar substances regarding hazard profiles and migration potential obtained from scientific literature and in silico screening tools to identify a possible risk of the substances. Major data gaps regarding the hazard profiles of the prioritized substances exist, although the scarce available data give some indications on the possible hazard for some of the substances (like bisphenol TMC, 4,4-dihydroxybenzophenone, and tetrachlorobisphenol A). In addition, very little is known about the actual use and exposure to these substances. More toxicological research and monitoring of these substances in FCMs are, therefore, required to avoid regrettable substitution of BPA in FCM.


Assuntos
Compostos Benzidrílicos , Contaminação de Alimentos , Embalagem de Alimentos , Fenóis , Fenóis/toxicidade , Compostos Benzidrílicos/toxicidade , Humanos , Medição de Risco , União Europeia , Animais
8.
Liver Int ; 44(5): 1093-1105, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38407523

RESUMO

Plastics, while providing modern conveniences, have become an inescapable source of global concern due to their role in environmental pollution. Particularly, the focus on bisphenol A (BPA) reveals its biohazardous nature and association with liver issues, specifically steatosis. However, research indicates that BPA is just one facet of the problem, as other bisphenol analogues, microplastics, nanoplastics and additional plastic derivatives also pose potential risks. Notably, BPA is implicated in every stage of non-alcoholic fatty liver disease (NAFLD) onset and progression, surpassing hepatitis B virus as a primary cause of chronic liver disease worldwide. As plastic contamination tops the environmental contaminants list, urgent action is needed to assess causative factors and mitigate their impact. This review delves into the molecular disruptions linking plastic pollutant exposure to liver diseases, emphasizing the broader connection between plastics and the rising prevalence of NAFLD.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Fenóis , Humanos , Hepatopatia Gordurosa não Alcoólica/epidemiologia , Plásticos , Compostos Benzidrílicos
9.
Pharmacol Res ; 204: 107201, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38704108

RESUMO

Neuropsychiatric disorders shorten human life spans through multiple ways and become major threats to human health. Exercise can regulate the estrogen signaling, which may be involved in depression, Alzheimer's disease (AD) and Parkinson's disease (PD), and other neuropsychiatric disorders as well in their sex differences. In nervous system, estrogen is an important regulator of cell development, synaptic development, and brain connectivity. Therefore, this review aimed to investigate the potential of estrogen system in the exercise intervention of neuropsychiatric disorders to better understand the exercise in neuropsychiatric disorders and its sex specific. Exercise can exert a protective effect in neuropsychiatric disorders through regulating the expression of estrogen and estrogen receptors, which are involved in neuroprotection, neurodevelopment, and neuronal glucose homeostasis. These processes are mediated by the downstream factors of estrogen signaling, including N-myc downstream regulatory gene 2 (Ndrg2), serotonin (5-HT), delta like canonical Notch ligand 1 (DLL1), NOD-like receptor thermal protein domain associated protein 3 (NLRP3), etc. In addition, exercise can act on the estrogen response element (ERE) fragment in the genes of estrogenic downstream factors like ß-amyloid precursor protein cleavase 1 (BACE1). However, there are few studies on the relationship between exercise, the estrogen signaling pathway, and neuropsychiatric disorders. Hence, we review how the estrogen signaling mediates the mechanism of exercise intervention in neuropsychiatric disorders. We aim to provide a theoretical perspective for neuropsychiatric disorders affecting female health and provide theoretical support for the design of exercise prescriptions.


Assuntos
Estrogênios , Terapia por Exercício , Transtornos Mentais , Animais , Humanos , Estrogênios/metabolismo , Exercício Físico/fisiologia , Transtornos Mentais/metabolismo , Transtornos Mentais/terapia , Receptores de Estrogênio/metabolismo , Transdução de Sinais
10.
Fish Shellfish Immunol ; 151: 109716, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38909636

RESUMO

Previous studies show that bisphenol A (BPA) and its analogs induce oxidative stress and promote inflammatory response. However, the key molecules in regulating this process remain unclear. Here, we report significant inductive effects of BPA and bisphenol AF (BPAF) on a newly found long non-coding RNA linc-93.2 accompanied by oxidative stress and activation of pro-inflammatory pathways in treated fish and fish primary macrophages. Silencing linc-93.2 in fish primary macrophages in vitro or fish in vivo significantly promotes the expression of anti-oxidative stress-related genes and anti-inflammatory cytokines. This inhibition of pro-inflammatory cytokine expression, showing cell status disruption towards to M2 polarization. Followed by exposure to BPA or BPAF, silencing linc-93.2 in vitro or in vivo significantly attenuates the increased production of reactive oxygen species and malondialdehyde level aroused by bisphenol treatment, possibly owing to the enhancement of total antioxidant capacity observed in cells and tissue after linc-93.2 knockdown. RNA-sequencing further revealed regulation of nuclear factor-kappa b (NF-κB) in linc-93.2's downstream network, combining with our previous observation on the upstream regulation of linc-93.2 via NF-κB, which together suggest a critical role of linc-93.2 in promoting NF-κB positive feedback loop that may be an important molecular event initiating the immunotoxicity of bisphenols.


Assuntos
Compostos Benzidrílicos , Carpas , Macrófagos , Estresse Oxidativo , Fenóis , RNA Longo não Codificante , Animais , RNA Longo não Codificante/genética , RNA Longo não Codificante/imunologia , Compostos Benzidrílicos/toxicidade , Fenóis/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Carpas/genética , Carpas/imunologia , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Poluentes Químicos da Água/toxicidade , Fluorocarbonos
11.
Fish Shellfish Immunol ; 144: 109277, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38072138

RESUMO

Along with environmental pollution caused by rapid economic development and industrialization, plastic waste is emerging as a global concern in relation to marine ecosystems and human health. Among the microplastics, fiber-type microfibers (MF) and bisphenol A (BPA), which are widely used as plasticizers, do not decompose well in the ocean, and tend to accumulate in organisms, generating an increased oxidative stress response. This study investigated the abalones' antioxidant and cell death responses following exposure to the environmental pollutants MF and BPA. Levels of malondialdehyde (MDA) and DNA damage increased over time, demonstrating the degree of lipid peroxidation and DNA damage in abalones exposed to individual and combined environmental conditions of MF and BPA. Compared to the single MF and BPA exposure groups, the combined exposure group showed a higher expression of antioxidant enzymes. A similar pattern was seen in the expression of the apoptosis enzyme caspase-3. Both MF and BPA caused oxidative stress and antioxidant enzymes were expressed to alleviate it, but it is believed that cell damage occurred because the stress level exceeded the allowed range.


Assuntos
Antioxidantes , Gastrópodes , Humanos , Animais , Antioxidantes/metabolismo , Microplásticos , Plásticos/toxicidade , Bioacumulação , Ecossistema , Estresse Oxidativo , Gastrópodes/genética , Gastrópodes/metabolismo
12.
Fish Shellfish Immunol ; 146: 109384, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38246267

RESUMO

Bisphenol A (BPA) and its analogues are still one of the most important substances that pollute aquatic systems and pose a threat to aquatic organisms. Tannic acid (TAN) is a kind of glycosyl compound, which has the functions of anti-oxidation, anti-inflammation and anti-apoptosis. However, it is unknown if BPA can regulate PTEN/PI3K/AKT pathway to induce pyroptosis of grass carp hepatocytes (L8824) and the antagonistic effect of tannic acid (TAN) through oxidative stress. Therefore, we established the grass carp hepatocytes (L8824) cell model treated with BPA. The oxidative stress indexes (SOD, CAT, GSH, H2O2 and T-AOC) were detected by oxidative stress kit, mRNA and protein expression of associated genes were examined using qRT-PCR and western blotting. The results showed that BPA treatment increased the content of hydrogen peroxide and decreased the activities of antioxidant enzymes and antioxidants (SOD, CAT, GSH, and T-AOC) in L8824 cells. We also found that PTEN/PI3K/AKT pathway was activated dramatically and the expression of pyroptosis-related genes (GSDMD, NLRP3, Caspase1, ASC and IL-1ß) was increased significantly. In addition, TAN could significantly reduce the toxicity of BPA on L8824 cells. After the addition of PTEN specific inhibitor SF1670, the activation of PTEN/PI3K/AKT pathway decreased by BPA was inhibited and the expression of scorch related genes was decreased. On the whole, TAN inhibits BPA-induced pyroptosis of L8824 by modulating the PTEN/PI3K/AKT pathway. The present study provides a novel perspective for toxicological mechanism of BPA, and new insights into the detoxification mechanism of TAN.


Assuntos
Compostos Benzidrílicos , Carpas , Fenóis , Polifenóis , Proteínas Proto-Oncogênicas c-akt , Animais , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Fosfatidilinositol 3-Quinases/metabolismo , Carpas/genética , Carpas/metabolismo , Piroptose , Peróxido de Hidrogênio/farmacologia , Antioxidantes/farmacologia , Hepatócitos/metabolismo , Superóxido Dismutase/metabolismo , Espécies Reativas de Oxigênio/metabolismo
13.
Cell Biol Toxicol ; 40(1): 37, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38777957

RESUMO

Bisphenol A (BPA) is a common component in the manufacture of daily plastic consumer goods. Recent studies have suggested that prenatal exposure to BPA can increase the susceptibility of offspring to mental illness, although the underlying mechanisms remain unclear. In this study, we performed transcriptomic and epigenomic profiling in the adult mouse brain following prenatal exposure to low-dose BPA. We observed a sex-specific transcriptional dysregulation in the cortex, with more significant differentially expressed genes was observed in adult cortex from male offspring. Moreover, the upregulated genes primarily influenced neuronal functions, while the downregulated genes were significantly associated with energy metabolism pathways. More evidence supporting impaired mitochondrial function included a decreased ATP level and a reduced number of mitochondria in the cortical neuron of the BPA group. We further investigated the higher-order chromatin regulatory patterns of DEGs by incorporating published Hi-C data. Interestingly, we found that upregulated genes exhibited more distal interactions with multiple enhancers, while downregulated genes displayed relatively short-range interactions among adjacent genes. Our data further revealed decreased H3K9me3 signal on the distal enhancers of upregulated genes, whereas increased DNA methylation and H3K27me3 signals on the promoters of downregulated genes. In summary, our study provides compelling evidence for the potential health risks associated with prenatal exposure to BPA, and uncovers sex-specific transcriptional changes with a complex interplay of multiple epigenetic mechanisms.


Assuntos
Compostos Benzidrílicos , Encéfalo , Metilação de DNA , Epigênese Genética , Fenóis , Efeitos Tardios da Exposição Pré-Natal , Animais , Compostos Benzidrílicos/toxicidade , Fenóis/toxicidade , Feminino , Gravidez , Efeitos Tardios da Exposição Pré-Natal/genética , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Epigênese Genética/efeitos dos fármacos , Masculino , Camundongos , Encéfalo/metabolismo , Encéfalo/efeitos dos fármacos , Metilação de DNA/efeitos dos fármacos , Transcriptoma/efeitos dos fármacos , Transcriptoma/genética , Camundongos Endogâmicos C57BL
14.
Environ Sci Technol ; 58(12): 5290-5298, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38468128

RESUMO

Hyperuricemia is characterized by elevated blood uric acid (UA) levels, which can lead to certain diseases. Epidemiological studies have explored the association between environmental contaminant exposure and hyperuricemia. However, few studies have investigated the role of chemical exposure in the development of hyperuricemia. Here, we sought to investigate the effects of bisphenol exposure on the occurrence of hyperuricemia. Fifteen bisphenol chemicals (BPs) were detected in human serum and urine samples collected from an area with a high incidence of hyperuricemia in China. Serum UA levels positively correlated with urinary bisphenol S (BPS), urinary bisphenol P (BPP), and serum bisphenol F (BPF). The effects of these three chemicals on UA levels in mice were explored at various exposure concentrations. An increase in serum UA levels was observed in BPS- and BPP-exposed mice. The results showed that BPS exposure increased serum UA levels by damaging the structure of the kidneys, whereas BPP exposure increased serum UA levels by disturbing purine metabolism in the liver. Moreover, BPF did not induce an increase in serum UA levels owing to the inhibition of guanine conversion to UA. In summary, we provide evidence of the mechanisms whereby exposure to three BPs disturbs UA homeostasis. These findings provide new insights into the risks of exposure to bisphenol chemicals.


Assuntos
Experimentação Animal , Hiperuricemia , Fenóis , Humanos , Animais , Camundongos , Hiperuricemia/induzido quimicamente , Exposição Ambiental , Compostos Benzidrílicos/toxicidade
15.
Environ Sci Technol ; 58(8): 3931-3941, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38349611

RESUMO

High global plastic production volumes have led to the widespread presence of bisphenol compounds in human living and working environments. The most common bisphenol, bisphenol A (BPA), despite being endocrine disruptive and estrogenic, is still not fully banned worldwide, leading to continued human exposure via particles in air, dust, and surfaces in both outdoor and indoor environments. While its abundance is well documented, few studies have addressed the chemical transformations of BPA, the properties of its reactive products, and their toxicity. Here, the first gas-surface multiphase ozonolysis experiment of BPA thin films, at a constant ozone mixing ratio of 100 ppb, was performed in a flow tube for periods up to 24 h. Three transformation products involving the addition of 1, 2, and 3 oxygen atoms to the molecule were identified by LC-ESI-HRMS analyses. Exposure of indoor air to thin BPA surface films and BPA-containing thermal paper over periods of days validated the flow tube experiments, demonstrating the rapid nature of this multiphase ozonolysis reaction at atmospherically relevant ozone levels. Multiple transformation pathways are proposed that are likely applicable to not only BPA but also emerging commercial bisphenol products.


Assuntos
Compostos Benzidrílicos , Ozônio , Humanos , Fenóis , Ozônio/análise , Poeira/análise
16.
Environ Sci Technol ; 58(2): 1022-1035, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38165294

RESUMO

There is epidemiological evidence in humans that exposure to endocrine-disrupting chemicals such as bisphenol A (BPA) is tied to abnormal neuroendocrine function with both behavioral and intestinal symptoms. However, the underlying mechanism of this effect, particularly the role of gut-brain regulation, is poorly understood. We exposed zebrafish embryos to a concentration series (including environmentally relevant levels) of BPA and its analogues. The analogue bisphenol G (BPG) yielded the strongest behavioral impact on zebrafish larvae and inhibited the largest number of neurotransmitters, with an effective concentration of 0.5 µg/L, followed by bisphenol AF (BPAF) and BPA. In neurod1:EGFP transgenic zebrafish, BPG and BPAF inhibited the distribution of enteroendocrine cells (EECs), which is associated with decreased neurotransmitters level and behavioral activity. Immune staining of ace-α-tubulin suggested that BPAF inhibited vagal neural development at 50 and 500 µg/L. Single-cell RNA-Seq demonstrated that BPG disrupted the neuroendocrine system by inducing inflammatory responses in intestinal epithelial cells via TNFα-trypsin-EEC signaling. BPAF exposure activated apoptosis and inhibited neural developmental pathways in vagal neurons, consistent with immunofluorescence imaging studies. These findings show that both BPG and BPAF affect the neuroendocrine system through the gut-brain axis but by different mechanisms, revealing new insights into the modes of bisphenol-mediated neuroendocrine disruption.


Assuntos
Sistemas Neurossecretores , Fenóis , Peixe-Zebra , Animais , Humanos , Compostos Benzidrílicos/toxicidade , Encéfalo , Neurotransmissores/metabolismo
17.
Environ Sci Technol ; 58(1): 63-74, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38112512

RESUMO

The detrimental effects of bisphenol (BP) exposure are a concern for vulnerable species, Indo-Pacific humpback dolphins (Sousa chinensis). To investigate the characteristics of BP profiles and their adverse impact on humpback dolphins, we assessed the concentrations of six BPs, including bisphenol A (BPA), bisphenol S (BPS), bisphenol F (BPF), bisphenol AF (BPAF), bisphenol B (BPB), and bisphenol P (BPP) in blubber (n = 26) and kidney (n = 12) of humpback dolphins stranded in the Pearl River Estuary, China. BPS accounted for the largest proportion of the total bisphenols (∑BPs) in blubber (55%) and kidney (69%). The concentration of ∑BP in blubber was significantly higher than that in the kidney and liver. The EC50 values of five BPA alternatives were lower than those of BPA in humpback dolphin skin fibroblasts (ScSF) and human skin fibroblasts (HSF). ScSF was more sensitive to BPS, BPAF, BPB, and BPP than HSF. The enrichment pathway of BPA was found to be associated with inflammation and immune dysregulation, while BPP and BPS demonstrated a preference for genotoxicity. BPA, BPP, and BPS, which had risk quotients (RQs) > 1, were found to contribute to subhealth and chronic disease in humpback dolphins. According to the EC50-based risk assessment, BPS poses a higher health risk than BPA for humpback dolphins. This study successfully evaluated the risks of bisphenols in rare and endangered cetacean cell lines using a noninvasive method. More in vivo and in field observations are necessary to know whether the BPA alternatives are likely to be regrettable substitutions.


Assuntos
Golfinhos , Poluentes Químicos da Água , Animais , Humanos , Golfinhos/metabolismo , Poluentes Químicos da Água/toxicidade , China , Compostos Benzidrílicos/toxicidade
18.
Environ Sci Technol ; 58(26): 11320-11330, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38898774

RESUMO

Placental DNA methylation (DNAm) may be a potential mechanism underlying the effects of prenatal bisphenol analogues (BPs) exposure on reproductive health. Based on the Shanghai-Minhang Birth Cohort Study (S-MBCS), this study investigated associations of placental DNAm at reproduction-related genes with prenatal BPs exposure and children's digit ratios at age 4 using multiple linear regression models, and mediation analysis was further used to examine the mediating role of placental DNAm in the associations between prenatal BPs exposure and digit ratios among 345 mother-child pairs. Prenatal exposure to bisphenol A (BPA) was associated with hypermethylation at Protocadherin 8 (PCDH8), RBMX Like 2 (RBMXL2), and Sperm Acrosome Associated 1 (SPACA1), while bisphenol F (BPF) exposure was associated with higher methylation levels of Fibroblast Growth Factor 13 (FGF13). Consistent patterns were found in associations between higher DNAm at the 4 genes and increased digit ratios. Further mediation analysis showed that about 15% of the effect of BPF exposure on increased digit ratios was mediated by placental FGF13 methylation. In conclusion, the altered placental DNAm status might be a mediator underlying the feminizing effect of prenatal BPs exposure.


Assuntos
Metilação de DNA , Fenóis , Placenta , Humanos , Feminino , Gravidez , Placenta/efeitos dos fármacos , Placenta/metabolismo , Fenóis/toxicidade , Estudos de Coortes , Efeitos Tardios da Exposição Pré-Natal , Masculino , Compostos Benzidrílicos , Coorte de Nascimento , Reprodução/efeitos dos fármacos , Exposição Materna , Adulto , Dedos/anatomia & histologia , Pré-Escolar
19.
Environ Sci Technol ; 58(18): 8043-8052, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38648493

RESUMO

Bisphenol A (BPA), as a typical leachable additive from microplastics and one of the most productive bulk chemicals, is widely distributed in sediments, sewers, and wastewater treatment plants, where active sulfur cycling takes place. However, the effect of BPA on sulfur transformation, particularly toxic H2S production, has been previously overlooked. This work found that BPA at environmentally relevant levels (i.e., 50-200 mg/kg total suspended solids, TSS) promoted the release of soluble sulfur compounds and increased H2S gas production by 14.3-31.9%. The tryptophan-like proteins of microbe extracellular polymeric substances (EPSs) can spontaneously adsorb BPA, which is an enthalpy-driven reaction (ΔH = -513.5 kJ mol-1, ΔS = -1.60 kJ mol-1K -1, and ΔG = -19.52 kJ mol-1 at 35 °C). This binding changed the composition and structure of EPSs, which improved the direct electron transfer capacity of EPSs, thereby promoting the bioprocesses of organic sulfur hydrolysis and sulfate reduction. In addition, BPA presence enriched the functional microbes (e.g., Desulfovibrio and Desulfuromonas) responsible for organic sulfur mineralization and inorganic sulfate reduction and increased the abundance of related genes involved in ATP-binding cassette transporters and sulfur metabolism (e.g., Sat and AspB), which promoted anaerobic sulfur transformation. This work deepens our understanding of the interaction between BPA and sulfur transformation occurring in anaerobic environments.


Assuntos
Enxofre , Enxofre/metabolismo , Anaerobiose , Sulfeto de Hidrogênio/metabolismo , Fenóis/metabolismo , Compostos Benzidrílicos/metabolismo
20.
Environ Sci Technol ; 58(6): 2817-2829, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38291630

RESUMO

Over the past few decades, extensive research has indicated that exposure to bisphenol A (BPA) increases the health risks in humans. Toxicological studies have demonstrated that BPA can bind to the androgen receptor (AR), resulting in endocrine-disrupting effects. In recent investigations, many alternatives to BPA have been detected in various environmental media as major pollutants. However, related experimental evaluations of BPA alternatives have not been systematically implemented for the assessment of chemical safety and the effects of structural characteristics on the antagonistic activity of the AR. To promote the green development of BPA alternatives, high-throughput toxicological screening is fundamental for prioritizing chemical tests. Therefore, we proposed a hybrid deep learning architecture that combines molecular descriptors and molecular graphs to predict AR antagonistic activity. Compared to previous models, this hybrid architecture can extract substantial chemical information from various molecular representations to improve the model's generalization ability for BPA alternatives. Our predictions suggest that lignin-derivable bisguaiacols, as alternatives to BPA, are likely to be nonantagonist for AR compared to bisphenol analogues. Additionally, molecular dynamics (MD) simulations identified the dihydrotestosterone-bound pocket, rather than the surface, as the major binding site of bisphenol analogues. The conformational changes of key helix H12 from an agonistic to an antagonistic conformation can be evaluated qualitatively by accelerated MD simulations to explain the underlying mechanism. Overall, our computational study is helpful for toxicological screening of BPA alternatives and the design of environmentally friendly BPA alternatives.


Assuntos
Simulação de Dinâmica Molecular , Fenóis , Receptores Androgênicos , Humanos , Receptores Androgênicos/metabolismo , Compostos Benzidrílicos , Aprendizado de Máquina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA