Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Materials (Basel) ; 17(4)2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38399069

RESUMO

Blast furnace dust waste (BFDW) proved efficient as a photocatalyst for the decolorization of methylene blue (MB) dye in water. Structural analysis unequivocally identified α-Fe2O3 as the predominant phase, constituting approximately 92%, with a porous surface showcasing unique 10-30 nm agglomerated nanoparticles. Chemical and thermal analyses indicated surface-bound water and carbonate molecules, with the main phase's thermal stability up to 900 °C. Electrical conductivity analysis revealed charge transfer resistance values of 616.4 Ω and electrode resistance of 47.8 Ω. The Mott-Schottky analysis identified α-Fe2O3 as an n-type semiconductor with a flat band potential of 0.181 V vs. Ag/AgCl and a donor density of 1.45 × 1015 cm-3. The 2.2 eV optical bandgap and luminescence stem from α-Fe2O3 and weak ferromagnetism arises from structural defects and surface effects. With a 74% photocatalytic efficiency, stable through three photodegradation cycles, BFDW outperforms comparable waste materials in MB degradation mediated by visible light. The elemental trapping experiment exposed hydroxyl radicals (OH•) and superoxide anions (O2-•) as the primary species in the photodegradation process. Consequently, iron oxide-based BFDW emerges as an environmentally friendly alternative for wastewater treatment, underscoring the pivotal role of its unique physical properties in the photocatalytic process.

2.
Environ Sci Pollut Res Int ; 31(15): 22339-22361, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38433174

RESUMO

Blast furnace dust (BFD) is the solid powder and particulate matter produced by dust removal process in ironmaking industry. The element composition of BFD is complex, and a direct return to sintering will lead to heavy metal enrichment and blast furnace lining corrosion. In recent years, the application of BFD in wastewater treatment has attracted widespread attention. Based on the mechanisms of action of BFD in wastewater, this paper discusses in detail the application of BFD in iron-carbon micro-electrolysis, biological enhancement, adsorption, flocculation, and Fenton/Fenton-like reactions. Iron oxides and carbon in BFD are key substances. Thus, BFD has great potential as a raw material in wastewater treatment, and the waste utilization of BFD can be realized. However, the difference in elements and composition of BFD limits its large-scale application. We can classify BFD according to different proportions of elements. In the future, it is necessary to focus on the service life of BFD in water and whether it shall bring secondary pollution to water.


Assuntos
Poeira , Águas Residuárias , Ferro , Água , Carbono
3.
Polymers (Basel) ; 15(20)2023 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-37896425

RESUMO

The demand for materials with improved properties and less negative impact on the environment is growing. Artificial stones are examples of these materials produced with up to 90% of particulate material joined by a binder. This article evaluates the physical and mechanical properties of two artificial stones produced with processing steel residue (blast furnace dust waste) and quartz powder. Two binders were used: pure epoxy resin, denoted as ASPB100, or a mixture of 70 wt% epoxy resin with 30 wt% cashew nut shell oil, denoted as ASPB7030. The process took place under vibration, compression (3 MPa/20 min and 90 °C) and vacuum (80 Pa). ASPB100 showed water absorption of 0.07%, while for ASPB7030, it was 0.54%. They were classified as having high mechanical strength associated with bending stress values equal to 32 and 25 MPa, respectively. Stain resistance indicated that both artificial stones had their stains removed with the tested cleaning agents. In this way, the novel artificial stones produced are sustainable alternatives for the application of blast furnace waste and cashew nut shell oil, reducing their negative impacts on the environment.

4.
Chemosphere ; 314: 137592, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36566794

RESUMO

Hazardous solid waste blast furnace dust (BFD) is rich in valuable metal components such as iron (Fe), zinc (Zn), manganese (Mn), and its recycling or harmless treatment is a major challenge. This paper creatively proposes the strategy of "treating waste with waste" by using BFD for desulfurization. The experimental results show that BFD slurry can achieve high-efficiency desulfurization and recovery of Zn resources. The characterization results indicate that ZnO and Fe2O3 in BFD slurry are the main active components of desulfurization, and the consumption of active components is the main reason for the decline of BFD slurry activity. Further semi-continuous experimental research shows that Zn, Fe, and Mn ions in BFD slurry play a crucial role in the catalytic oxidation of sulfur dioxide (SO2). Additionally, the effects of reaction temperature, stirring speed, inlet SO2 concentration, and inlet gas flow rate on the leaching rate of Zn and Fe were investigated. Under optimal conditions (SO2 concentration = 3000 mg‧m-3, reaction temperature = 40 °C, inlet gas flow rate = 300 mL‧min-1, solid-liquid ratio = 0.5 g/300 mL, stirring speed = 600 rpm), the desulfurization rate reaches 100%, and the maximum leaching rate of Zn can reach 44.6%. Based on the experimental and characterization results, the possible mechanism of BFD slurry desulfurization was proposed. This study provides a reference for the application of BFD in the field of wet desulfurization.


Assuntos
Poeira , Resíduos Sólidos , Metais , Dióxido de Enxofre , Zinco , Manganês
5.
Chemosphere ; 327: 138416, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36996917

RESUMO

In this study, a novel electrocoagulation electrode, based on blast furnace dust (BFD) from steelworks waste, was prepared for indigo wastewater treatment, and the performance was compared with different ratios of Fe-C composite electrodes. The BFD electrode exhibited great electrochemical performance and removal effect. The presence of Fe-C micro-electrolysis in the electrocoagulation system of the BFD electrode was demonstrated by FT-IR, Raman, ESR, and quenching experiments. Density Functional Theory (DFT) calculations further demonstrated that the iron-carbon ratio could influence the degree of O-O breaking and enhance ·OH generation. Finally, the BFD electrode's operating parameters were perfected, and the COD removal and decolorization could reach 75.7% and 95.8% within 60 min, respectively. Fe-C composite electrodes reduce energy consumption compared with the traditional Fe/Al electrode and have a lower production cost, which provides a potential way to recycle and reuse the resources of solid waste in steelworks, the concept of "waste controlled by waste" is realized.


Assuntos
Índigo Carmim , Eliminação de Resíduos Líquidos , Águas Residuárias , Poluentes Químicos da Água , Eletrocoagulação , Eletrodos , Eletrólise , Concentração de Íons de Hidrogênio , Índigo Carmim/análise , Índigo Carmim/química , Resíduos Industriais/análise , Espectroscopia de Infravermelho com Transformada de Fourier , Purificação da Água , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/química
6.
Environ Pollut ; 337: 122574, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37722474

RESUMO

Polyvinyl alcohol (PVA) has been widely used as a water-soluble plastic in laundry and dish detergent pods, yet wastewater contaminated with PVA is too difficult to be treated due to its high salinity and foaming. Here, we fabricated blast furnace dust (BFD) particle electrodes, and developed a three-dimensional electrocatalytic system (3DEC) to treat saline PVA wastewater. The optimum preparation condition for BFD particle electrode was iron carbon ratio of 2:1 doping with TiO2. The optimal parameters of 3DECs for PVA wastewater degradation were thoroughly investigated, with current density of 30 mA/cm2, electrode distance of 30 mm, pH value of 7.0, and particle electrode filling rate of 50%. PVA wastewater degradation rate could reach 89.33% within 120 min. The underlying mechanism of iron-carbon micro electrolysis and electrocatalytic system was further studied. PVA wastewater was degraded by direct catalytic oxidation from electrodes. A scavenger experiment showed that free radicals consisting of •OH and HClO mainly contributed to the PVA wastewater degradation. HClO was generated by Cl- at the electrocatalysis and micro electrolysis of particles. In addition, the lifetime of the prepared BFD particle electrode was 120 h, which exhibited electrochemical stability. These findings highlight that the 3DECs coupled with BFD particle electrode is a promising electrocatalysis process for the removal of PVA wastewater.


Assuntos
Águas Residuárias , Poluentes Químicos da Água , Álcool de Polivinil , Poluentes Químicos da Água/análise , Oxirredução , Carbono , Eletrodos , Ferro
7.
Nanomaterials (Basel) ; 12(23)2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36500896

RESUMO

A micro-electrolysis material (MEM) was successfully prepared from carbothermal reduction of blast furnace dust (BFD) and coke as raw materials in a nitrogen atmosphere. The MEM prepared from BFD had strong ability in removing methyl orange, methylene blue, and rose bengal (the removal rates of methyl orange and methylene blue were close to 100%). X-ray diffraction showed that the iron mineral in BFD was ferric oxide, which was converted to zero-valent iron after being reduced by calcination. Scanning electron microscopy showed that nano-scale zero-valent iron particles were formed in the MEM. In short, the MEM prepared from BFD can effectively degrade organic pollutants.

8.
Waste Manag ; 139: 116-123, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-34959087

RESUMO

Blast furnace dust (BFD) contains ferrous and nonferrous metals and carbon, and is usually categorized as a typical secondary resource and hazardous waste produced by the iron-making process. The thermodynamic calculation and experimental investigation of the selective separation of zinc and iron/carbon from BFD via a NaCl-HCl-H2O system were carried out. Quantitative zinc and iron/carbon separation and recovery was achieved via a zinc-chloride (ZnCli2-i (i = 0, 1, 2, 3, 4)) cooperative leaching methodology using 3 mol/L NaCl at pH of 4, an L/S ratio of 4:1, a leaching temperature of 70 °C, a HCl concentration of 0.25 mol/L, and a leaching time of 2 h. Moreover, the total Cl- concentration used in for leaching was 2.09 mol (as concluded by the dosages of HCl and NaCl, and material). Results demonstrate that zinc was effectively leached from BFD, while the leaching of iron was hindered, in the acidic region. 93.2% of the zinc was extracted into a leaching solution containing 19.8 g/L zinc under the optimal conditions, and the ratio of the leaching agent to BFD was 300 mL to 75 g. The XRD and SEM-EDS analysis results of the residue reveal that ZnO and ZnS were leached, and the zinc-iron spinel (ZnFe2O4) was not leached and was present together with the iron oxide in the leaching residue. Iron and carbon in the leaching residue was enriched from 49.4% to 60.38%, and the iron and carbon were recovered as secondary resources that can be reused in the iron-making system.


Assuntos
Ferro , Zinco , Carbono , Poeira , Metalurgia , Zinco/análise
9.
Environ Sci Pollut Res Int ; 29(11): 15642-15653, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34633620

RESUMO

To control the SO2 emission and achieve the target of "waste controlled by waste", a novel desulfurization method with blast furnace dust slurry was proposed. The effects of reaction temperature, oxygen concentration, and solid-liquid ratio on SO2 removal efficiency were investigated. The optimal conditions were reaction temperature of 35 ℃, oxygen concentration of 10 vol.%, and solid-liquid ratio of 0.5 g/300 mL. Under the optimal conditions, the desulfurization efficiency reached 100% for 4 h. Response surface methodology (RSM) results showed that oxygen concentration significantly influenced the SO2 removal efficiency. Finally, the possible desulfurization mechanism of blast furnace dust was proposed based on the EDX, XRD, SEM-EDS, ICP, and IC. The blast furnace dust (main components are CaZn8(SO4)2(OH)12Cl2·(H2O)9, Mn6.927Si6O15·(OH)8, ZnO, Fe2O3) reacted with H+ to form Zn2+, Fe3+, and Mn2+ which shows a key effect on the SO2 liquid catalytic oxidation. This study provides a promising, feasible, and low-cost desulfurization technology by reusing blast furnace dust.


Assuntos
Poeira , Dióxido de Enxofre , Oxirredução , Temperatura
10.
Materials (Basel) ; 15(22)2022 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-36431725

RESUMO

Blast furnace (BF) dust is a typical refractory iron resource. A novel technology-based utilization of BF dust as iron carbide and carbon concentrate by applying carburization roasting followed by magnetic separation and acid leaching is proposed. Under optimized conditions, an electric arc furnace (EAF) burden assaying 80.79% Fe and 7.63% C with a corresponding iron recovery rate of 87.26% and a carbon concentrate assaying 67.06% C with a corresponding carbon recovery rate of 81.23% were prepared. Furthermore, the carburization behavior and separation mechanism were revealed using X-ray powder diffraction, scanning electron microscopy, and optical microscopy. The results show that the separation efficiency of iron carbide, gangue, and carbon is very low. Na2SO4 is a highly effective additive to strengthen the separation efficiency as it can enhance the carburization index, enlarge the iron carbide particle size, improve the embed embedded relationship of iron carbide and gangue, and promote the gangue leaching efficiency. The study demonstrates that preparation of iron carbide and carbon concentrate from BF dust using the proposed technology is a feasible method.

11.
Waste Manag ; 135: 389-396, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34610538

RESUMO

In this study, a novel method for producing direct reduced iron (DRI) powders based on microwave-assisted self-reduction of core-shell composite pellets composed of blast furnace (BF) dust and hazardous electric arc furnace (EAF) dust followed by magnetic separation was reported. The proper core-shell structure of the composite pellets was designed according to the rule of impedance matching and properties of BF dust and EAF dust by adjusting the thickness of shell (i.e., thickness of impedance matching layer) via controlling the C/O molar ratio of the raw materials from 0.55 to 0.70. The results showed that the EAF dust with high content of CaO was beneficial to the mechanical strength of green, dried, and metallized pellets (collected after reduction), while the BF dust with high content of carbon enabled sufficient microwave-assisted reduction of the pellets, facilitating subsequent magnetic separation and also the removal of zinc from EAF dust. By reduction of the core-shell BF dust-EAF dust composite pellets with the C/O molar ratio of 0.65 at 1050 °C for 15 min, the resulting metallized pellets showed superior reduction and magnetic separation indexes with higher removal percentages of zinc and lead, in comparison with conventional metallized pellets. The DRI powders obtained after magnetic separation had total iron content of 91.2 wt%, iron metallization degree of 95.8%, yield of 68.1%, and iron recovery of 88.0%. This study provided a good example for efficient and environmentally friendly comprehensive utilization of typical and hazardous wastes in the iron and steel industry.


Assuntos
Poeira , Ferro , Eletricidade , Aço , Zinco
12.
J Hazard Mater ; 383: 121215, 2020 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-31546220

RESUMO

Blast furnace dust (BFD), a hazardous metallurgical waste, is generated during the iron-making process and consists plenty of Fe and C. This study is among the first to apply BFD in catalytic-ceramic-filler (CCF) preparation and degradation of ciprofloxacin (CIP). The novel BFD based Fe-Ni CCF obviously enhanced the removal of CIP (from around 42%-72% after 3 h) in comparation with troditional Fe-C ceramic-filler(CF). The Fe-Ni CCF was further applied in a coupled system of electrolysis assisted catalytic micro-electrolysis (E-CME) process for CIP wastewater treatment. Under optimal operating conditions (iron rod as anode, voltage of 10v and HRT of 3 h), nearly 97% of CIP, 90% of total organic carbon (TOC) and 99% of total phosphorus (TP) were removed by E-CME process in near-neutral solution. The degradation mechanism analysis by LC-MS revealed that polyhydroxy sub-stituted, piperazine rings cleavage and so on were the main reaction of CIP in E-CME process. Additionally, the chemical oxygen demand (COD) residue after E-CME process could be effectively eliminated by up-flow anaerobic filter (UAF), owing to the significant improvement of wastewater biodegradability by E-CME pretreatment. This study provides a new way for co-friend recycling of BFD and a highly-efficient, cost-sffective technology for CIP wastewater treatment.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Cerâmica , Ciprofloxacina , Poeira , Eletrólise , Eliminação de Resíduos Líquidos , Águas Residuárias/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA