RESUMO
Increasing evidence has shown that light exists in a diverse range of deep-sea environments. We unexpectedly found that blue light is necessary to produce excess zero-valent sulfur (ZVS) in Erythrobacter flavus 21-3, a bacterium that has been recently isolated from a deep-sea cold seep. E. flavus 21-3 is able to convert thiosulfate to ZVS using a novel thiosulfate oxidation pathway comprising a thiosulfate dehydrogenase (TsdA) and a thiosulfohydrolase (SoxB). Using proteomic, bacterial two-hybrid and heterologous expression assays, we found that the light-oxygen-voltage histidine kinase LOV-1477 responds to blue light and activates the diguanylate cyclase DGC-2902 to produce c-di-GMP. Subsequently, the PilZ domain-containing protein mPilZ-1753 binds to c-di-GMP and activates TsdA through direct interaction. Finally, Raman spectroscopy and gene knockout results verified that TsdA and two SoxB homologs cooperate to regulate ZVS production. As ZVS is an energy source for E. flavus 21-3, we propose that deep-sea blue light provides E. flavus 21-3 with a selective advantage in the cold seep, suggesting a previously unappreciated relationship between light-sensing pathways and sulfur metabolism in a deep-sea microorganism.
Assuntos
Proteômica , Tiossulfatos , Tiossulfatos/metabolismo , Bactérias/metabolismo , Oxirredução , Enxofre/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismoRESUMO
Light and temperature sensing are important features of many organisms. Light may provide energy but may also be used by non-photosynthetic organisms for orientation in the environment. Recent evidence suggests that plant and fungal phytochrome and plant phototropin serve dual functions as light and temperature sensors. Here we characterized the fungal LOV-domain blue-light receptor LreA of Alternaria alternata and show that it predominantly contains FAD as chromophore. Blue-light illumination induced ROS production followed by protein agglomeration in vitro. In vivo ROS may control LreA activity. LreA acts as a blue-light photoreceptor but also triggers temperature-shift-induced gene expression. Both responses required the conserved amino acid cysteine 421. We therefore propose that temperature mimics the photoresponse, which could be the ancient function of the chromoprotein. Temperature-dependent gene expression control with LreA was distinct from the response with phytochrome suggesting fine-tuned, photoreceptor-specific gene regulation.
Assuntos
Alternaria , Luz Azul , Flavina-Adenina Dinucleotídeo , Proteínas Fúngicas , Fotorreceptores Microbianos , Alternaria/metabolismo , Flavina-Adenina Dinucleotídeo/metabolismo , Flavina-Adenina Dinucleotídeo/química , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/química , Regulação Fúngica da Expressão Gênica , Fotorreceptores Microbianos/metabolismo , Fotorreceptores Microbianos/química , Fotorreceptores Microbianos/genética , Fitocromo/metabolismo , Fitocromo/química , Fitocromo/genética , Domínios Proteicos , Espécies Reativas de Oxigênio/metabolismo , TemperaturaRESUMO
NONPHOTOTROPIC HYPOCOTYL3 (NPH3) is a key regulator of hypocotyl phototropism under both low- and high-intensity blue light (LBL/HBL), mediating phototropin1 (phot1) and phot2 signaling. NPH3 undergoes dephosphorylation and is released from the plasma membrane (PM) upon blue light irradiation. However, how its phosphorylation status and PM localization mediate phot1 and phot2 signaling in Arabidopsis (Arabidopsis thaliana) remains elusive. In this study, we found that fusing NPH3 with GFP at its C terminus (N3G) impaired its release from the PM, a defect exacerbated by a phosphorylation-deficient mutation, resulting in a dephosphorylated NPH3-GFP (N3AG). Unlike N3G, transgenic lines expressing N3AG exhibited defective hypocotyl phototropism under HBL, which could be rescued by myristoylation at the N-terminus of N3AG (mN3AG), indicating that NPH3 phosphorylation is not essential for HBL-induced phototropic responses when it is artificially anchored at the PM via its N terminus. Furthermore, genetic analysis revealed that N3AG anchored to the PM by its N terminus (as in mN3AG) only rescues phot1-mediated HBL responses, which require RPT2. However, N3AG failed to regulate phot2-mediated HBL signaling, regardless of its PM orientation. Taken together, our results revealed that NPH3 phosphorylation is essential for phot2-mediated hypocotyl phototropism under HBL, but is not required for phot1-mediated HBL signaling when the NPH3 N terminus is PM-anchored.
RESUMO
Perovskite quantum dots (QDs) are emerging as excellent light sources for light-emitting diodes (LEDs). However, the performance of blue perovskite QD-based LEDs (QLEDs) still lags behind that of red and green counterparts, which is hindered by blue perovskite QDs with broad bandgaps that tend to increase nonradiative recombination. Here, we designed a gradient energy for hole injection utilizing multiple hole injection layers (HTLs) combined with carbazole-based small-molecule modification to reduce the hole injection barrier between HTLs and QD layers and improve the hole injection efficiency, realizing efficient exciton recombination in blue perovskite QLEDs. Moreover, the QD film on the designed HTLs demonstrates a lower surface roughness and improved photoluminescence properties. The optimized blue CsPbCl3-xBrx QLEDs exhibit an impressive external quantum efficiency of 20.7% with an electroluminescence peak at 475 nm and a turn-on voltage of 2.6 V, representing the state-of-the-art for blue perovskite LEDs emitting in the range of 460-480 nm.
RESUMO
The safe and smooth functioning of photosynthesis in plants is ensured by the operation of numerous regulatory mechanisms that adjust the density of excitation resulting from photon absorption to the capabilities of the photosynthetic apparatus. Such mechanisms include the movement of chloroplasts inside cells and the quenching of electronic excitations in the pigment-protein complexes. Here, we address the problem of a possible cause-and-effect relationship between these two mechanisms. Both the light-induced chloroplast movements and quenching of chlorophyll excitations were analyzed simultaneously with the application of fluorescence lifetime imaging microscopy of Arabidopsis thaliana leaves, wild-type and impaired in chloroplast movements or photoprotective excitation quenching. The results show that both regulatory mechanisms operate over a relatively wide range of light intensities. By contrast, impaired chloroplast translocations have no effect on photoprotection at the molecular level, indicating the direction of information flow in the coupling of these two regulatory mechanisms: from the photosynthetic apparatus to the cellular level. The results show also that the presence of the xanthophyll zeaxanthin is necessary and sufficient for the full development of photoprotective quenching of excessive chlorophyll excitations in plants.
Assuntos
Arabidopsis , Cloroplastos , Cloroplastos/metabolismo , Fotossíntese , Clorofila/metabolismo , Xantofilas/metabolismoRESUMO
Humans are persistently exposed to massive amounts of blue light via sunlight, computers, smartphones, and similar devices. Although the positive and negative effects of blue light on living organisms have been reported, its impact on learning and memory remains unknown. Herein, we examined the effects of widespread blue light exposure on the learning and memory abilities of blue light-exposed mice. Ten-week-old male ICR mice were divided into five groups (five mice/group) and irradiated with blue light from a light-emitting diode daily for 6 months. After 6 months of blue light irradiation, mice exhibited a decline in memory and learning abilities, assessed using the Morris water maze and step-through passive avoidance paradigms. Blue light-irradiated mice exhibited a decreased expression of the clock gene brain and muscle arnt-like 1 (Bmal1). The number of microglia and levels of M1 macrophage CC-chemokine receptor 7 and inducible nitric oxide synthase were increased, accompanied by a decrease in M2 macrophage arginase-1 levels. Levels of angiopoietin-like protein 2 and inflammatory cytokines interleukin-6, tumor necrosis factor-α, and interleukin-1ß were elevated. Our findings suggest that long-term blue light exposure could reduce Bmal1 expression, activate the M1 macrophage/Angptl2/inflammatory cytokine pathway, induce neurodegeneration, and lead to a decline in memory.
RESUMO
Cryptochromes (CRYs) are blue light (BL) photoreceptors to regulate a variety of physiological processes including DNA double-strand break (DSB) repair. SUPPRESSOR OF GAMMA RADIATION 1 (SOG1) acts as the central transcription factor of DNA damage response (DDR) to induce the transcription of downstream genes, including DSB repair-related genes BRCA1 and RAD51. Whether CRYs regulate DSB repair by directly modulating SOG1 is unknown. Here, we demonstrate that CRYs physically interact with SOG1. Disruption of CRYs and SOG1 leads to increased sensitivity to DSBs and reduced DSB repair-related genes' expression under BL. Moreover, we found that CRY1 enhances SOG1's transcription activation of DSB repair-related gene BRCA1. These results suggest that the mechanism by which CRYs promote DSB repair involves positive regulation of SOG1's transcription of its target genes, which is likely mediated by CRYs-SOG1 interaction.
Assuntos
Proteínas de Arabidopsis , Arabidopsis , Criptocromos , Quebras de DNA de Cadeia Dupla , Reparo do DNA , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Criptocromos/metabolismo , Criptocromos/genética , Regulação da Expressão Gênica de Plantas , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genéticaRESUMO
Cryptochromes (CRYs) act as blue light photoreceptors to regulate various plant physiological processes including photomorphogenesis and repair of DNA double strand breaks (DSBs). ADA2b is a conserved transcription co-activator that is involved in multiple plant developmental processes. It is known that ADA2b interacts with CRYs to mediate blue light-promoted DSBs repair. Whether ADA2b may participate in CRYs-mediated photomorphogenesis is unknown. Here we show that ADA2b acts to inhibit hypocotyl elongation and hypocotyl cell elongation in blue light. We found that the SWIRM domain-containing C-terminus mediates the blue light-dependent interaction of ADA2b with CRYs in blue light. Moreover, ADA2b and CRYs act to co-regulate the expression of hypocotyl elongation-related genes in blue light. Based on previous studies and these results, we propose that ADA2b plays dual functions in blue light-mediated DNA damage repair and photomorphogenesis.
Assuntos
Proteínas de Arabidopsis , Arabidopsis , Regulação da Expressão Gênica de Plantas , Hipocótilo , Luz , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/efeitos da radiação , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Regulação da Expressão Gênica de Plantas/efeitos da radiação , Hipocótilo/crescimento & desenvolvimento , Hipocótilo/metabolismo , Hipocótilo/efeitos da radiação , Hipocótilo/genética , Criptocromos/metabolismo , Criptocromos/genética , Reparo do DNA/efeitos da radiação , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Morfogênese/efeitos da radiação , Luz AzulRESUMO
BACKGROUND: Different metabolic compounds give pepper leaves and fruits their diverse colors. Anthocyanin accumulation is the main cause of the purple color of pepper leaves. The light environment is a critical factor affecting anthocyanin biosynthesis. It is essential that we understand how to use light to regulate anthocyanin biosynthesis in plants. RESULT: Pepper leaves were significantly blue-purple only in continuous blue light or white light (with a blue light component) irradiation treatments, and the anthocyanin content of pepper leaves increased significantly after continuous blue light irradiation. This green-to-purple phenotype change in pepper leaves was due to the expression of different genes. We found that the anthocyanin synthesis precursor-related genes PAL and 4CL, as well as the structural genes F3H, DFR, ANS, BZ1, and F3'5'H in the anthocyanin synthesis pathway, had high expression under continuous blue light irradiation. Similarly, the expression of transcription factors MYB1R1-like, MYB48, MYB4-like isoform X1, bHLH143-like, and bHLH92-like isoform X3, and circadian rhythm-related genes LHY and COP1, were significantly increased after continuous blue light irradiation. A correlation network analysis revealed that these transcription factors and circadian rhythm-related genes were positively correlated with structural genes in the anthocyanin synthesis pathway. Metabolomic analysis showed that delphinidin-3-O-glucoside and delphinidin-3-O-rutinoside were significantly higher under continuous blue light irradiation relative to other light treatments. We selected 12 genes involved in anthocyanin synthesis in pepper leaves for qRT-PCR analysis, and the accuracy of the RNA-seq results was confirmed. CONCLUSIONS: In this study, we found that blue light and 24-hour irradiation together induced the expression of key genes and the accumulation of metabolites in the anthocyanin synthesis pathway, thus promoting anthocyanin biosynthesis in pepper leaves. These results provide a basis for future study of the mechanisms of light quality and photoperiod in anthocyanin synthesis and metabolism, and our study may serve as a valuable reference for screening light ratios that regulate anthocyanin biosynthesis in plants.
Assuntos
Capsicum , Transcriptoma , Antocianinas/metabolismo , Capsicum/genética , Capsicum/metabolismo , Luz Azul , Metaboloma , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Isoformas de Proteínas/metabolismo , Regulação da Expressão Gênica de PlantasRESUMO
An experiment was conducted in a greenhouse to determine the effects of different supplemental light spectra on the growth, nutrient uptake, and fruit quality of four strawberry cultivars. The plants were grown under natural light and treated with blue (460 nm), red (660 nm), and red/blue (3:1) lights. Results showed that the "Parous" and "Camarosa" had higher fresh and dry mass of leaves, roots, and crowns compared to the "Sabrina" and "Albion". The use of artificial LED lights improved the vegetative growth of strawberry plants. All three supplemental light spectra significantly increased the early fruit yield of cultivars except for "Parous". The red/blue supplemental light spectrum also increased the fruit mass and length of the "Albion". Supplemental light increased the total chlorophyll in "Camarosa" and "Albion", as well as the total soluble solids in fruits. The "Albion" had the highest concentration of fruit anthocyanin, while the "Sabrina" had the lowest. The use of supplemental light spectra significantly increased the fruit anthocyanin concentration in all cultivars. Without supplemental light, the "Camarosa" had the lowest concentration of K and Mg, which increased to the highest concentration with the use of supplemental light spectra. All three spectra increased Fe concentration to the highest value in the "Sabrina", while only the red/blue light spectrum was effective on the "Camarosa". In conclusion, the use of supplemental light can increase the yield and fruit quality of strawberries by elevating nutrients, chlorophyll, and anthocyanin concentrations in plants.
Assuntos
Antocianinas , Fragaria , Frutas , Luz , ClorofilaRESUMO
The fabrication of perovskite light-emitting diodes (PeLEDs) with vacuum deposition shows great potential and commercial value in realizing large-area display panel manufacturing. However, the electroluminescence (EL) performance of vacuum-deposited PeLEDs still lags behind the counterparts fabricated by solution process, especially in the field of blue PeLEDs. Here, the fabrication of high-quality CsPbBr3- x Clx film through tri-source co-evaporation is reported to achieve high photoluminescence quantum yield (PLQY). Compared with the conventional traditional dual-source co-evaporation, the tri-source co-evaporation method allows for freely adjustable elemental ratios, enabling the introduction of the lattice-matched Cs4 Pb(Br/Cl)6 phase with the quantum-limited effect into the inorganic CsPb(Br/Cl)3 emitter. By adjusting the phase distribution, the surface defects of the emitter can be effectively reduced, leading to better blue emission and film quality. Further, the effects of Cs/Pb ratio and Br/Cl ratio on the PLQY and carrier recombination dynamics of perovskite films are investigated. By optimizing the deposition rate of each precursor source, spectrally stable blue PeLEDs are achieved with tunable emission ranging from 468 to 488 nm. Particularly, the PeLEDs with an EL peak at 488 nm show an external quantum efficiency (EQE) of 4.56%, which is the highest EQE value for mixed-halide PeLEDs fabricated by vacuum deposition.
RESUMO
Quasi-2D (Q-2D) perovskites with typical varied n-phase structures deserve promising candidates in pursuing high-performance perovskite light-emitting diodes (PeLEDs). Whereas their weakness in precise n-phase distribution control disables the optical property of PeLEDs since the n = 1 phase is dominated by severe nonradiative recombination. Here, an effective phase distribution tailoring strategy is developed for pure blue PeLEDs by introducing taurine (TAU) into mixed halide Q-2D perovskites. The sulfonic acid group in TAU can coordinate with Pb2+ to suppress the formation of the n = 1 phase while promoting the growth of Q-2D perovskites into domains with the graded distribution of n = 2 and 3. The amino group in TAU forms hydrogen bonds with electronegative halide ions, suppressing the formation of halide vacancies and reducing the defect density in the Q-2D perovskite films. As a result, optimized blue Q-2D perovskite films boosted PLQY to 92%. Target blue PeLED was endowed with a peak EQE of 14.82% (average 12.6%) at 475 nm and a maximum luminance of 1937 cd m-2 , which is among the reported high-level pure blue PeLEDs. This work demonstrates a feasible approach to regulate the phase distribution of Q-2D perovskites for high-performance blue PeLEDs.
RESUMO
MAIN CONCLUSION: Supplying monochromatic blue LED light during the day, but not at night, promotes early coloration and improves anthocyanin accumulation in the skin of grape berries. Specific light spectra, such as blue light, are known to promote the biosynthesis and accumulation of anthocyanins in fruit skins. However, research is scarce on whether supplement of blue light during different periods of one day can differ in their effect. Here, we compared the consequences of supplying blue light during the day and night on the accumulation of anthocyanins in pigmented grapevine (Vitis vinifera) berries. Two treatments of supplemented monochromatic blue light were tested, with light emitting diodes (LED) disposed close to the fruit zone, irradiating between 8:00 and 18:00 (Dayblue) or between 20:00 and 6:00 (Nightblue). Under the Dayblue treatment, berry coloration was accelerated and total anthocyanins in berry skins increased faster than the control (CK) and also when compared to the Nightblue condition. In fact, total anthocyanin content was similar between CK and Nightblue. qRT-PCR analysis indicated that Dayblue slightly improved the relative expression of the anthocyanin-structural gene UFGT and its regulator MYBA1. Instead, the expression of the light-reception and -signaling related genes CRY, HY5, HYH, and COP1 rapidly increased under Dayblue. This study provides insights into the effect of supplementing monochromatic LED blue light during the different periods of one day, on anthocyanins accumulation in the berry skin.
Assuntos
Antocianinas , Frutas , Luz , Vitis , Vitis/efeitos da radiação , Vitis/metabolismo , Vitis/genética , Antocianinas/metabolismo , Frutas/efeitos da radiação , Frutas/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos da radiação , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Pigmentação/efeitos da radiaçãoRESUMO
MAIN CONCLUSION: After blue-light exposure, ubiquitination of PHOTOTROPIN1 lysine 526 enhances phototropic responses. Arabidopsis blue-light photoreceptor, PHOTOTROPIN1 (PHOT1) mediates a series of blue-light responses that function to optimize photosynthesis efficiency. Blue-light sensing through the N-terminal sensory domain activates the C-terminal kinase activity of PHOT1, resulting in autophosphorylation. In addition to phosphorylation, PHOT1 lysine residue 526 (Lys526), after blue-light exposure, was found to carry a double glycine attachment, indicative of a possible ubiquitination modification. The functionality of PHOT1 Lys526 was investigated by reverse genetic approaches. Arginine replacements of PHOT1 Lys526, together with Lys527, complemented phot1-5 phot2-1 double mutant with attenuated phototropic bending, while blue-light responses: leaf expansion and stomatal opening, were restored to wild type levels. Transgenic seedlings were not different in protein levels of phot1 Lys526 527Arg than the wild type control, suggesting the reduced phototropic responses was not caused by reduction in protein levels. Treating the transformants with proteosome inhibitor, MG132, did not restore phototropic sensitivity. Both transgenic protein and wild type PHOT1 also had similar dark recovery of kinase activity, suggesting that phot1 Lys526 527Arg replacement did not affect the protein stability to cause the phenotype. Together, our results indicate that blocking Lys526 ubiquitination by arginine substitution may have caused the reduced phototropic phenotype. Therefore, the putative ubiquitination on Lys526 functions to enhance PHOT1-mediated phototropism, rather than targeting PHOT1 for proteolysis.
Assuntos
Proteínas de Arabidopsis , Arabidopsis , Fototropismo , Proteínas Serina-Treonina Quinases , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arginina , Luz , Lisina/metabolismo , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Plantas Geneticamente Modificadas/genética , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismoRESUMO
The prevalence of electronic screens in modern society has significantly increased our exposure to high-energy blue and violet light wavelengths. Accumulating evidence links this exposure to adverse visual and cognitive effects and sleep disturbances. To mitigate these effects, the optical industry has introduced a variety of filtering glasses. However, the scientific validation of these glasses has often been based on subjective reports and a narrow range of objective measures, casting doubt on their true efficacy. In this study, we used electroencephalography (EEG) to record brain wave activity to evaluate the effects of glasses that filter multiple wavelengths (blue, violet, indigo, and green) on human brain activity. Our results demonstrate that wearing these multi-colour light filtering glasses significantly reduces beta wave power (13-30 Hz) compared to control or no glasses. Prior research has associated a reduction in beta power with the calming of heightened mental states, such as anxiety. As such, our results suggest that wearing glasses such as the ones used in this study may also positively change mental states, for instance, by promoting relaxation. This investigation is innovative in applying neuroimaging techniques to confirm that light-filtering glasses can induce measurable changes in brain activity.
Assuntos
Ondas Encefálicas , Humanos , Cor , Eletroencefalografia , Ansiedade , EmoçõesRESUMO
Blue light (BL)-induced retinal injury has become a very common problem due to over exposure to blue light-emitting sources. This study aimed to investigate the possible ameliorating impact of stromal vascular fraction cells (SVFCs) on BL-induced retinal injury. Forty male albino rats were randomly allocated into four groups. The control group rats were kept in 12-h light/12-h dark. Rats of SVFC-control as the control group, but rats were intravenously injected once by SVFCs. Rats of both the BL-group and BL-SVFC group were exposed to BL for 2 weeks; then rats of the BL-SVFC group were intravenously injected once by SVFCs. Following the BL exposure, rats were kept for 8 weeks. Physical and physiological studies were performed; then retinal tissues were collected for biochemical and histological studies. The BL-group showed physical and physiological changes indicating affection of the visual function. Biochemical marker assessment showed a significant increase in MDA, TLR4 and MYD88 tissue levels with a significant decrease in TAC levels. Histological and ultrastructural assessment showed disruption of the normal histological architecture with retinal pigment epithelium, photoreceptors, and ganglion cell deterioration. A significant increase in NF-κB, caspase-3, and GFAP immunoreactivity was also detected. BL-SVFC group showed a significant improvement in physical, physiological, and biochemical parameters. Retinal tissues revealed amelioration of retinal structural and ultrastructural deterioration and a significant decrease in NF-κB and caspase-3 immunoreactivity with a significant increase in GFAP immunoreaction. This study concluded that SVFCs could ameliorate the BL-induced retinal injury through TLR-4/MYD-88/NF-κB signaling inhibition, regenerative, anti-oxidative, and anti-apoptotic effects.
RESUMO
Light is essential not only for photosynthesis but also for the regulation of various physiological and developmental processes in plants. While the mechanisms by which light regulates transcription and protein stability are well established, the effects of light on RNA methylation and their subsequent impact on plant growth and development are less understood. Upon exposure to blue light, the photoreceptor cryptochromes form nuclear speckles or nuclear bodies, termed CRY photobodies. The CRY2 photobodies undergo light-induced homo-oligomerization and liquid-liquid phase separation (LLPS), which are crucial for their physiological activity. Recent studies have proposed that blue light-induced CRY2 LLPS increases the local concentration or directly enhances the biochemical activities of RNA N6-methyladenosine (m6A) methyltransferases, thus, to regulate circadian clock and maintain Chl homeostasis through processes of RNA decay or translation. This review aimed to elucidate the functions of CRY2 and LLPS in RNA methylation, focusing on the light-controlled reversible phase transitions regulon and the outstanding questions that remain in RNA methylation.
RESUMO
Plants integrate environmental stimuli to optimize photosynthesis vs water loss by controlling stomatal apertures. However, stomatal responses to temperature elevation and the underlying molecular genetic mechanisms remain less studied. We developed an approach for clamping leaf-to-air vapor pressure difference (VPDleaf) to fixed values, and recorded robust reversible warming-induced stomatal opening in intact plants. We analyzed stomatal temperature responses of mutants impaired in guard cell signaling pathways for blue light, abscisic acid (ABA), CO2, and the temperature-sensitive proteins, Phytochrome B (phyB) and EARLY-FLOWERING-3 (ELF3). We confirmed that phot1-5/phot2-1 leaves lacking blue-light photoreceptors showed partially reduced warming-induced stomatal opening. Furthermore, ABA-biosynthesis, phyB, and ELF3 were not essential for the stomatal warming response. Strikingly, Arabidopsis (dicot) and Brachypodium distachyon (monocot) mutants lacking guard cell CO2 sensors and signaling mechanisms, including ht1, mpk12/mpk4-gc, and cbc1/cbc2 abolished the stomatal warming response, suggesting a conserved mechanism across diverse plant lineages. Moreover, warming rapidly stimulated photosynthesis, resulting in a reduction in intercellular (CO2). Interestingly, further enhancing heat stress caused stomatal opening uncoupled from photosynthesis. We provide genetic and physiological evidence that the stomatal warming response is triggered by increased CO2 assimilation and stomatal CO2 sensing. Additionally, increasing heat stress functions via a distinct photosynthesis-uncoupled stomatal opening pathway.
RESUMO
Aberrant RNA modifications can lead to dysregulated gene expression and impeded growth in plants. Ribosomal RNA (rRNA) constitutes a substantial portion of total RNA, while the precise functions and molecular mechanisms underlying rRNA modifications in plants remain largely elusive. Here, we elucidated the exclusive occurrence of the canonical RNA modification N6-methyladenosine (m6A) solely 18S rRNA, but not 25S rRNA. We identified a completely uncharacterized protein, ATMETTL5, as an Arabidopsis m6A methyltransferase responsible for installing m6A methylation at the 1771 site of the 18S rRNA. ATMETTL5 is ubiquitously expressed and localized in both nucleus and cytoplasm, mediating rRNA m6A methylation. Mechanistically, the loss of ATMETTL5-mediated methylation results in attenuated translation. Furthermore, we uncovered the role of ATMETTL5-mediated methylation in coordinating blue light-mediated hypocotyl growth by regulating the translation of blue light-related messenger RNAs (mRNAs), specifically HYH and PRR9. Our findings provide mechanistic insights into how rRNA modification regulates ribosome function in mRNA translation and the response to blue light, thereby advancing our understanding of the role of epigenetic modifications in precisely regulating mRNA translation in plants.
Assuntos
Adenosina , Proteínas de Arabidopsis , Arabidopsis , Regulação da Expressão Gênica de Plantas , Metiltransferases , Adenosina/análogos & derivados , Adenosina/metabolismo , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Hipocótilo/crescimento & desenvolvimento , Hipocótilo/genética , Metilação , Metiltransferases/metabolismo , Metiltransferases/genética , Biossíntese de Proteínas , RNA Mensageiro/metabolismo , RNA Mensageiro/genética , RNA Ribossômico 18S/genética , RNA Ribossômico 18S/metabolismoRESUMO
Light intensity and quality influence photosynthesis directly but also have an indirect effect by increasing stomatal apertures and enhancing gas exchange. Consequently, in areas such as the upper canopy, a high water demand for transpiration and temperature regulation is created. This paper explores how light intensity and the natural high Blue-Light (BL) : Red-Light (RL) ratio in these areas, is important for controlling leaf hydraulic conductance (Kleaf ) by BL signal transduction, increasing water permeability in cells surrounding the vascular tissue, in supporting the enormous water demands. Conversely, shaded inner-canopy areas receive less radiation, have lower water and cooling demands, and exhibit reduced Kleaf due to diminished intensity and BL induction. Intriguingly, shaded leaves display higher water-use efficiency (compared with upper-canopy) due to decreased transpiration and cooling requirements while the presence of RL supports photosynthesis.