Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(3)2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36769144

RESUMO

Surfactants are functional molecules utilized in various situations. The self-assembling property of surfactants enables several molecular arrangements that can be employed to build up nanometer-sized architectures. This is beneficial in the construction of functional inorganic-organic hybrids holding the merits of both inorganic and organic components. Among several surfactants, bolaamphiphile surfactants with two hydrophilic heads are effective, as they have multiple connecting or coordinating sites in one molecule. Here, a functional polyoxotungstate inorganic anion was successfully hybridized with a bolaamphiphile to form single crystals with anisotropic one-dimensional alignment of polyoxotungstate. Keggin-type metatungstate ([H2W12O40]6-, H2W12) was employed as an inorganic anion, and 1,12-dodecamethylenediammonium (C12N2) derived from 1,12-dodecanediamine was combined as an organic counterpart. A simple and general ion-exchange reaction provided a hybrid crystal consisting of H2W12 and C12N2 (C12N2-H2W12). Single crystal X-ray structure analyses revealed a characteristic honeycomb structure in the C12N2-H2W12 hybrid crystal, which is possibly effective for the emergence of conductivity due to the dissociative protons of C12N2.


Assuntos
Tensoativos , Conformação Molecular , Tensoativos/química
2.
Molecules ; 28(17)2023 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-37687047

RESUMO

DFT calculations were carried out to examine geometries and binding energies of H-bond-driven peptide nanotubes. A bolaamphiphile molecule, consisting of two N-α amido glycylglycine head groups linked by either one CH2 group or seven CH2 groups, is used as a building block for nanotube self-assembly. In addition to hydrogen bonds between adjacent carboxy or amide groups, nanotube formation is also driven by weak C-H· · ·O hydrogen bonds between a methylene group and the carboxy OH group, and between a methylene group and an amide O=C group. The intratubular O-H· · ·O=C hydrogen bonds account for approximately a third of the binding energies. Binding energies calculated with the wB97XD/DGDZVP method show that the hydrocarbon chains play a stabilizing role in nanotube self-assembly. The shortest nanotube has the length of a single monomer and a diameter than increases with the number of monomers. Lengthening of the tubular structure occurs through intertubular O-H· · ·O=C hydrogen bonds. The average intertubular O-H· · ·O=C hydrogen bond binding energy is estimated to change with the size of the nanotubes, decreasing slightly towards some plateau value near 15 kcal/mol according to the wB97XD/DGDZVP method.

3.
Angew Chem Int Ed Engl ; 60(17): 9712-9718, 2021 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-33501758

RESUMO

We present the first example of macroscalar helices co-assembled from temperature-responsive carbohydrate-based bolaamphiphiles (CHO-Bolas) and 1,4-benzenediboronic acid (BDBA). The CHO-Bolas contained hydrophilic glucose or mannose moieties and a hydrophobic coumarin dimer. They showed temperature-responsive reversible micelle-to-vesicle transition (MVT) in aqueous solutions. After the binding of carbohydrate moieties with boronic acids of BDBA in their alkaline solutions, right-handed helices were formed via the temperature-driven chirality transfer of d-glucose or d-mannose from the molecular to supramolecular level. These helices were co-assembled by unreacted BDBA, boronate esters (B-O-C bonds) between CHO-Bolas and BDBA, as well as boroxine anhydrides (B-O-B bonds) of self-condensed BDBA. After heating at 300 °C under nitrogen, the helices displayed excellent morphological stability. Moreover, they emitted bright blue luminescence caused by strong self-condensation of BDBA and decomposition of coumarin dimers.

4.
Chemistry ; 25(24): 6092-6097, 2019 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-30861225

RESUMO

Targeted synthesis of piezoresponsive small molecules and in-depth understanding of their mechanism is of utmost importance for the development of smart devices. This work reports the synthesis, structure and piezosensitivity of a bola-amphiphile 1,4-bis(pentyloxy)-2,5-bis(2-pyridineethynyl)-benzene (C5-PPB). Depending on the rate of compression, two different phases in C5-PPB can be generated. The ambient-pressure α-phase is stable up to 0.8 GPa, beyond which it undergoes an isostructural transformation to ß-phase, accompanied by a clearly visible elongation of the crystal. This α-to-ß phase transition requires the sample to be compressed slowly. When quickly compressed, phase α persists to about 1.5 GPa, beyond which its amorphization starts, accompanied by the appearance of irregular grooves on the largest faces. Mechanical pressure also affects the optical property of C5-PPB, which shows reversible mechanochromism with a green to cyan transformation in the emission, associated with a 15 nm shift in the maxima. The conductivity of C5-PPB as a direct outcome of its crystal packing has also been studied.

5.
Chemphyschem ; 20(13): 1690-1697, 2019 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-31074563

RESUMO

The ability to design amphiphiles with predictable solubility properties is of everlasting interest in supramolecular chemistry. Relevant structural parameters include the hydrophobic-hydrophilic balance and structural flexibility. In this work, we investigate the water solubility of azobenzene-based triglycerol bolaamphiphiles (TGBAs). In particular, we analyzed the structural effects of backbone hydrophobicity, flexibility, and cis/trans isomerization on the water solubility of a subset of five TGBAs. This leads to the first example of a non-ionic bolaamphiphile whose water solubility can be changed by irradiation with light. The underlying kinetics were monitored using liquid chromatography and a closer analysis of the underlying aggregation processes provides a mechanistic understanding of the light-driven dissolution process. We anticipate that the results obtained will help to engineer bolaamphiphiles with predictable solution properties in the future.

6.
Colloids Surf A Physicochem Eng Asp ; 523: 9-18, 2017 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-29051686

RESUMO

VECAR are novel bolaamphiphilic molecules consisting of two hydrophilic molecular groups, a carnosine derivative and a chromanol group, covalently linked by a hydrophobic alkyl spacer of varying length. Despite the potential for application in various biomedical applications VECAR properties, including their bulk properties, are still largely unknown. The early stage of the self-assembly process of VECAR molecules in water is studied using molecular dynamics simulations. The study reveals that the length of the hydrophobic spacer in VECAR affects the aggregation kinetics as well as the size, shape, density, and atomistic structure of the self-assembled aggregates. A mechanism based on cooperative interactions between water, the hydrophilic hydroxyl group, and the hydrophobic benzene ring of the chromanol head is proposed to explain the ordered packings of chromanols in the self-assembled aggregate structures at the aggregate-water interface.

7.
J Colloid Interface Sci ; 659: 385-396, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38181702

RESUMO

HYPOTHESIS: Chronic wounds, particularly those caused by diabetes, pose a significant challenge for clinical treatment due to their prolonged healing process and associated complications, which can lead to increased morbidity. A biocompatible hydrogel with strong antibacterial properties and the ability to promote angiogenesis can be directly absorbed in the wound site for healing. EXPERIMENTS: A series of self-healing, antibacterial bolaamphiphilic supramolecular self-assembling hydrogels (HLQMes/Cu) were developed based on metal-ligand coordination between various concentrations of Cu2+ solution and the head group of l-histidine methyl ester in HLQMes. This is the first report on the application of bola-molecular supramolecular hydrogels for the treatment of chronic wounds. FINDINGS: The bola-molecular hydrogels reduced the toxicity of copper ions by coordination, and the HLQMes/Cu hydrogel, with 1.3 mg/mL Cu2+ (HLQMes/Cu1.3), demonstrated good biocompatibility and antibacterial properties and effectively enhanced wound healing in a diabetic wound model with full-thickness injuries. Immunohistochemical analysis revealed that the HLQMes/Cu1.3 hydrogel enhanced epithelial formation and collagen deposition in wounds. Immunofluorescence studies confirmed that the HLQMes/Cu1.3 hydrogel attenuated the expression of proinflammatory factor (IL-6) and promoted angiogenesis by upregulating α-SMA and CD31. These findings demonstrate the potential of this bolaamphiphilic supramolecular self-assembling hydrogel as a promising candidate for diabetic wound treatment.


Assuntos
Diabetes Mellitus , Hidrogéis , Humanos , Hidrogéis/farmacologia , Hidrogéis/química , Cobre/farmacologia , Cicatrização , Antibacterianos/química
8.
Chempluschem ; 89(8): e202400147, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38623044

RESUMO

In the field of molecular self-assembly, the core of an assembly is always made up of hydrophobic moiety like a long alkyl chain, whereas the outer part has always been a hydrophilic moiety such as poly(ethylene glycol) (PEG), or charged species. Hence, reversing the trend to manifest self-assembled structures with a PEG core and a surface consisting of alkyl chains in aqueous system is incredibly challenging. Herein, we architected a unique class of cationic bolaamphiphiles containing low molecular weight PEG and alkyl chains of different lengths. The bolaamphiphiles spontaneously form vesicles without external stimuli. These vesicles are unprecedented because PEG makes up the vesicle core, while the alkyl chains appear on the vesicles' exterior. Hence, this particular design reverses the usual trend of self-assembly formation. The vesicle size increases with the increase in alkyl chain-length. To our great surprise, we obtained large micelles for longest alkyl-chain amphiphile, which in turn act as a gemini amphiphile. The shift from a particular bolaamphiphile to gemini amphiphile with the variation of alkyl chain is also unexplored. Therefore, this specific class of self-assembled structure would compound a new paradigm in molecular self-assembly and supramolecular chemistry.

9.
J Colloid Interface Sci ; 608(Pt 2): 1685-1695, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-34742083

RESUMO

Though the function of peptide based nanotubes are well correlated with its shape and size, controlling the dimensions of nanotubes still remains a great challenge in the field of peptide self-assembly. Here, we demonstrated that the shell structure of nanotubes formed by a bola peptide Ac-KI3VK-NH2 (KI3VK, in which K, I, and V are abbreviations of lysine, isoleucine, and valine) can be regulated by mixing it with the salt sodium tartrate (STA). The ratio of KI3VK and STA had a great impact on shell structure of the nanotubes. Bilayer nanotubes can be constructed when the molar ratio of KI3VK and STA was less than 1:2. Both the two hydroxyls and the negative charges carried by STA were proved to play important roles in the bilayer nanotubes formation. Observations of different intermediates provided obvious evidence for the varied pathway of the bilayer nanotubes formation. Based on these experimental results, the possible mechanism for bilayer nanotubes formation was proposed. Such a study provides a simple and effective way for regulating the shell structure of the nanotubes and may expand their applications in different fields.


Assuntos
Nanotubos de Peptídeos , Nanotubos , Peptídeos , Tartaratos
10.
ACS Biomater Sci Eng ; 7(8): 3545-3572, 2021 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-34309378

RESUMO

Bolaamphiphile, which is a class of amphiphilic molecules, has a unique structure of two hydrophilic head groups at the ends of the hydrophobic center. Peptidic bolaamphiphiles that employ peptides or amino acids as their hydrophilic groups exhibit unique biochemical activities when they self-organize into supramolecular structures, which are not observed in a single molecule. The self-assembled peptidic bolaamphiphiles hold considerable promise for imitating proteins with biochemical activities, such as specific affinity toward heterogeneous substances, a catalytic activity similar to a metalloenzyme, physicochemical activity from harmonized amino acid segments, and the capability to encapsulate genes like a viral vector. These diverse activities give rise to large research interest in biomaterials engineering, along with the synthesis and characterization of the assembled structures. This review aims to address the recent progress in the applications of peptidic bolaamphiphile assemblies whose densely packed peptide motifs on their surface and their stacked hydrophobic centers exhibit unique protein-like activity and designer functionality, respectively.


Assuntos
Biomimética , Peptídeos , Furanos , Proteínas , Piridonas
11.
J Colloid Interface Sci ; 583: 553-562, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33038605

RESUMO

In spite of extensive research, it remains a formidable challenge to control the dimension of the nanostructures self-assembled from short designed peptides. In this work, we show that peptide bolaamphiphiles form monolayer wall nanotubes, facilitated by the interplay between the side chain structure and hydrophobicity of the central residues. The peptide KI4K self-assembles into nanotubes with a width of ~ 100 nm, but changes in the molecular structure of amino acid side chains could hugely impact the nanostructures formed. The three variants of KI4K, via the substitution of aromatic amino acids (F, Y, and Dopa) for the I residue closest to the C-terminus, could substantially reduce nanotube diameters, indicating a significant steric hindrance of the benzene rings on the lateral packing of ß-sheets. However, the introduction of hydroxyl groups on the benzene rings alleviates the steric effect, with nanotube diameter increasing in the order of KI3FK, KI3YK, and KI3DopaK, suggesting the formation of side chain H-bonds between ß-sheets in addition to hydrophobic contacts. Because the self-assembly process of KI3DopaK nanotubes is slow, key intermediates and their structural details are well characterized. With increasing incubation time, monolayered twisted ribbons and helical ribbons grow into mature KI3DopaK nanotubes via the pitch closing route.


Assuntos
Nanotubos , Furanos , Interações Hidrofóbicas e Hidrofílicas , Peptídeos , Piridonas
12.
ACS Nano ; 15(2): 3152-3160, 2021 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-33507061

RESUMO

A bolaamphiphile possessing a hydrophobic skeleton and two hydrophilic groups at both ends represents an important class of building blocks toward a rich variety of self-assembled materials for use in ion transport, optoelectronic devices, and drug and gene delivery. Herein, we report a one-step synthesis of an array of rationally designed anionic bolaamphiphiles and unravel the correlation between molecular structure of anionic bolaamphiphiles and their disparate self-assemblies via synergistic and meticulous tailoring of a set of interactions. Intriguingly, by delicately regulating the interactions among these supramolecular interactions, two-dimensional (2D) nanosheets are crafted via self-assembly of anionic bolaamphiphiles. Particularly, single-layered 2D nanosheets are formed through the synergy of aromatic π-π stacking, hydrophobic, hydrogen-bonding, and electrostatic repulsion interactions. In contrast, the selective converting of anionic headgroups of bolaamphiphiles into nonpolar alkyl chain screens the electrostatic repulsion between neighboring bolaamphiphiles while keeping the other segments of bolaamphiphiles intact, thereby allowing them to self-assemble into multilayered 2D nanosheets. Interestingly, the intrinsically charged 2D nanosheets could anchor oppositely charged metal nanoparticles via electrostatic attraction. Conceptually, anionic bolaamphiphile-derived 2D nanosheets may function as a substrate to position a diversity of nanocrystals and conjugated polymers for a broad range of applications in catalysis, optical devices, and photothermal therapy.


Assuntos
Furanos , Piridonas , Ligação de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas
13.
J Oleo Sci ; 69(11): 1437-1443, 2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-33055440

RESUMO

We report the synthesis of bolaamphiphilic alkenyl phosphonic acid (BPC12) through the olefin crossmetathesis reaction of vinylphosphonic acid with 1,11-dodecadiene in the presence of a Ru-carbene catalyst. BPC12 possesses two trans-P-C=C moieties and is thus readily soluble in water up to 3.4 g L-1, as confirmed by 1H nuclear magnetic resonance (NMR) measurements. Surface tension measurements revealed that BPC12 reduced the surface tension of water from 72.0 to 47.0 mN m‒1. The occupied area per molecule at the air/water interface (A) of BPC12 (216 Å2) was ten times larger than that of dodecenyl phosphonic acid PC12 (23 Å2). Moreover, dynamic light scattering measurement of an aqueous BPC12 solution (5 mM) revealed the formation of large aggregates with an average diameter of 81.8±27.0 nm.


Assuntos
Alcenos/química , Metano/análogos & derivados , Organofosfonatos/química , Ácidos Fosforosos/síntese química , Compostos de Vinila/química , Ar , Catálise , Difusão Dinâmica da Luz , Espectroscopia de Ressonância Magnética , Metano/química , Fenômenos de Química Orgânica , Tamanho da Partícula , Ácidos Fosforosos/química , Solubilidade , Tensão Superficial , Água
14.
Int J Pharm ; 590: 119897, 2020 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-32971176

RESUMO

Curcumin is highly effective against various types of cancers; however, its low aqueous solubility, high metabolism and non-specificity hinder its efficacy. This study reports the synthesis of three lactobionic acid containing bola-amphiphiles and their investigation for curcumin nano-vesicular delivery into cancer cells. Synthesized bola-amphiphiles were capable of forming nano-vesicles and curcumin loading in a lipophilicity dependent manner. Bola-amphiphile with higher lipophilicity (C12) caused 89.55 ± 5.52% drug encapsulation in its spherical shape nano-vesicles (195.90 ± 0.83 nm). Bola-amphiphile resulting increased curcumin encapsulation with minimum vesicles size was further investigated for cellular uptake and in-vitro anticancer activity. Anticancer activity of curcumin significantly increased against the tested cancer cells upon loading in bola-amphiphile nano-vesicles. Furthermore, nano-vesicular drug delivery of curcumin enhanced its cellular uptake even at the lowest concentration of 1.25 µg/mL.It is concluded that the synthesized bola-amphiphile based nano-vesicles can efficiently deliver curcumin to the tested cancer cells and needs to be tested for established anticancer drugs against different cancer cell lines for effective treatment of cancer.


Assuntos
Antineoplásicos , Curcumina , Nanopartículas , Neoplasias , Técnicas de Cultura de Células , Dissacarídeos , Micelas
15.
ACS Appl Bio Mater ; 2(4): 1652-1659, 2019 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35026899

RESUMO

Rationally designed bolaamphiphiles are known to self-assemble into nanotube structures. Herein, we report the formation of an inclusion complex between a nanotube and bovine serum albumin (BSA). This complex formation was confirmed by ultraviolet (UV) absorbance and electrophoretic light scattering (ELS). The structure for different mixing ratios of BSA to the nanotube was also investigated by transmission electron microscopy (TEM) and small-angle X-ray scattering (SAXS). The structural analysis with our proposed model has revealed that the BSA molecules were contained within the internal space of the nanotube with maintenance of its tubular structure.

16.
Biotechnol J ; 14(3): e1800020, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29802765

RESUMO

Cationic bolaamphiphile polymers had been previously studied as efficient delivery system for the delivery of proteins with relatively low toxicity. Here, the authors investigate the use of a protein delivery system based on a cationic bolaamphiphile to sensitize cancer cells toward apoptosis-inducing drugs as a novel approach for cancer therapy. The authors demonstrates the efficacy of the system by two strategies. The first strategy involves delivery of a survivin antibody to inhibit survivin activity. Sensitization of MCF-7 cells to doxorubicin is observed by survivin inhibition by antibodies. The IC50 of doxorubicin is reduced ≈2.5-fold after delivery of survivin antibodies to breast cancer cells and induction of apoptosis is shown by Western blotting with apoptosis specific antibodies. In a second approach, functional wild type p53 is delivered into p53-null liver cancer (Hep3B) cells, sensitizing the cells toward the p53 pathway drug, Nutlin. Nutlin reduced the viability of Hep3B cells by ≈42% at 15 µM concentration, demonstrating the effectiveness of p53 delivery. The expression of p21, a downstream target of p53 further confirmed the functional status of the delivered protein. In conclusion. The successful delivery of apoptosis inducing proteins and sensitization of cancer cells via cationic bolaamphiphile polymer represents a promising system for cancer therapeutics.


Assuntos
Proteínas Reguladoras de Apoptose/metabolismo , Apoptose/efeitos dos fármacos , Cátions/farmacologia , Furanos/farmacologia , Piridonas/farmacologia , Linhagem Celular , Linhagem Celular Tumoral , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Doxorrubicina/farmacologia , Células Hep G2 , Humanos , Neoplasias Hepáticas/metabolismo , Células MCF-7 , Transdução de Sinais/efeitos dos fármacos , Survivina/metabolismo , Proteína Supressora de Tumor p53/metabolismo
17.
Biomaterials ; 178: 458-466, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29705001

RESUMO

Obesity is a major risk factor for diabetes, heart disease and other health problems. Adipose tissue plays a central role in the development of obesity and obesity-associated diseases. Gene therapy targeting adipose tissue may provide a promising strategy for obesity treatment. However, nucleic acid delivery to adipose tissue or even cultured adipocytes is challenging due to low delivery efficacy and high toxicity of the current cationic lipid based delivery systems, or monoamphiphiles. Herein, we report using dendritic peptide bolaamphiphiles (bolas) to deliver siRNA to primary adipocytes and hepatocytes. The bola consists of two l-Lysine dendrons connected to a fluorocarbon core through disulfide linkages. The Lysine dendrons are functionalized with l-histidine and l-tryptophan to promote endosomal escape and cellular uptake. The bola exhibited over 70% knockdown of GAPDH gene in both primary adipocytes and hepatocytes. Importantly, different from Lipofectamine that significantly reduced genes involved in lipolysis, lipogenesis, fatty acid oxidation and ketogenesis, the bolas had little to no effect on these genes. These results demonstrate the bola as a promising new vector for clinical and experimental applications for delivery of siRNA to metabolic organs.


Assuntos
Adipócitos/metabolismo , Furanos/química , Técnicas de Transferência de Genes , Peptídeos/química , Piridonas/química , RNA Interferente Pequeno/administração & dosagem , Células 3T3-L1 , Adipócitos/citologia , Animais , Diferenciação Celular , Células Cultivadas , Coloides/química , Furanos/síntese química , Hepatócitos/metabolismo , Humanos , Rim/fisiologia , Metabolismo dos Lipídeos , Fígado/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Peptídeos/síntese química , Piridonas/síntese química
18.
Mater Sci Eng C Mater Biol Appl ; 75: 637-645, 2017 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-28415509

RESUMO

A novel bolaamphiphile surfactant N,N'-(dodecane-1, 12-diyl) bis (2,6-diaminohexanamide) (DADL) was designed and synthesized using l-lysine and 1,12-diaminododecane as the hydrophilic and hydrophobic part, respectively. After separation and purification, the structure of the synthetic bolaamphiphile surfactant was verified by FTIR, MS and 1H NMR. The synthetic bolaamphiphile was able to self-assemble to form vesicles. After formulation screening, vesicles loaded with 5-Fluorouracil (5-Fu) were prepared with Tween 60 and DADL by sonication and were examined by dynamic light scattering and transmission electron microscopy. Micro-FTIR was applied to investigate the conformation of the bola molecules within the vesicle membrane. The release profile of the vesicles showed a pH-sensitive and sustained release. No significant toxicity was observed in an in vitro cell viability assay. The antitumor efficacy of the 5-Fu-loaded vesicles on H22 tumor-bearing mice was remarkably high due to the EPR effects. These results show that our novel bolaamphiphile derived from lysine has excellent potential as a pH-sensitive drug carrier.


Assuntos
Antimetabólitos Antineoplásicos , Sistemas de Liberação de Medicamentos/métodos , Fluoruracila , Lisina , Neoplasias Experimentais/tratamento farmacológico , Animais , Antimetabólitos Antineoplásicos/química , Antimetabólitos Antineoplásicos/farmacocinética , Antimetabólitos Antineoplásicos/farmacologia , Fluoruracila/química , Fluoruracila/farmacocinética , Fluoruracila/farmacologia , Células Hep G2 , Humanos , Lisina/química , Lisina/farmacocinética , Lisina/farmacologia , Camundongos , Camundongos Nus , Neoplasias Experimentais/metabolismo , Neoplasias Experimentais/patologia , Ensaios Antitumorais Modelo de Xenoenxerto
19.
Polymers (Basel) ; 9(11)2017 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-30965876

RESUMO

Investigations regarding the self-assembly of (bola)phospholipids in aqueous media are crucial to understand the complex relationship between chemical structure of lipids and the shape and size of their aggregates in water. Here, we introduce a new asymmetrical glycerol diether bolaphospholipid, the compound Me2PE-Gly(2C16)C32-OH. This bolalipid contains a long (C32) ω-hydroxy alkyl chain bond to glycerol in the sn-3 position, a C16 alkyl chain at the sn-2 position, and a protonable phosphodimethylethanolamine (Me2PE) headgroup at the sn-1 position of the glycerol. The aggregation behavior of this bolalipid was studied as a function of temperature and pH using transmission electron microscopy (TEM), differential scanning calorimetry (DSC), and Fourier transform infrared (FTIR) spectroscopy. We show that this bolalipid aggregates into condensed lamellar sheets in acidic milieu and in large sheet-like aggregates at neutral pH-value. By contrast, at a pH-value of 10, where the Me2PE headgroup is only partially protonated, small lipid disks with diameter 50⁻100 nm were additionally found. Moreover, the miscibility of this asymmetrical bolalipid with the bilayer-forming phosphatidylcholine DPPC was investigated by means of DSC and TEM. The incorporation of bolalipids into phospholipid membranes could result in stabilized liposomes applicable for drug delivery purposes. We show that mixtures of DPPC and Me2PE-Gly(2C16)C32-OH form large lamellar aggregates at pH of 5, 7, and 10. However, closed lipid vesicles (liposomes) with an increased thermal stability were not found.

20.
Colloids Surf B Biointerfaces ; 142: 360-366, 2016 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-26970824

RESUMO

In this study, a novel cysteinyl bolaamphiphilic molecule was synthesized and its self-assembled planar suprastructure was applied as a biomimetic matrix to create a hemoglobin-mimetic oxygen adsorbent that exploits the ability of cysteine thiols to bind hemin. Self-assembly of the cysteinyl bolaamphiphilic molecule exposed cysteine thiols on its surface in the presence of ß-mercaptoethanol, known to reduce disulfide bonds, without which, helically coiled structures were generated. The self-assembled planar structure was used as a soft matrix to create a hemoglobin-mimetic oxygen adsorbent. The surface-exposed cysteine thiols were used to attach hemin, producing a hemin-bound, planar structure mimicking hemoglobin. This hemoglobin mimic strongly adsorbed oxygen and remained stable up to 50°C. The cysteinyl bolaamphiphile self-assembled structure provided a biomimetic platform that allowed for the association of biological substances in a manner similar to natural proteins.


Assuntos
Cisteína/química , Furanos/química , Hemina/química , Hemoglobinas/química , Oxigênio/química , Piridonas/química , Sítios de Ligação , Materiais Biomiméticos , Estabilidade de Medicamentos , Furanos/síntese química , Ligantes , Mercaptoetanol/química , Modelos Moleculares , Mimetismo Molecular , Estrutura Molecular , Piridonas/síntese química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA