Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
BMC Oral Health ; 24(1): 52, 2024 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-38191383

RESUMO

BACKGROUND: With effective antiretroviral therapy, people with HIV (PWH) are living longer and aging; the majority of PWH in the United States are now over the age of 50 and in women have gone through the menopause transition. Menopause potentiates skeletal bone loss at the spine, hip, and radius in PWH. The alveolar bone which surronds the teeth is different than long bones because it is derived from the neural crest. However, few studies have assessed the oral health and alveolar bone in middle aged and older women with HIV. Therefore, the objective of this study was to evaluate periodontal disease and alveolar bone microarchitecture in postmenopausal women with HIV. METHODS: 135 self-reported postmenopausal women were recruited (59 HIV-, 76 HIV + on combination antiretroviral therapy with virological suppression) from a single academic center. The following parameters were measured: cytokine levels (IFN-γ, TNF-α, IL-1ß, IL-2, IL-5, IL-6, IL-7, IL-8, IL-10, IL-12p70, IL-13, IL-17 A, OPG, and RANKL) in gingival crevicular fluid, bleeding on probing, probing depth, clinical attachment loss, number of teeth present, alveolar crestal height, and alveolar bone microarchitecture. RESULTS: The mean age of participants was 57.04+/-6.25 years and a greater proportion of women with HIV were black/African American (HIV + 68.42%, HIV- 23.73%; p < 0.001). There was no significant difference in bleeding on probing (p = 0.17) and attachment loss (p = 0.39) between women who were HIV infected vs. HIV uninfected. Women with HIV had significantly higher RANKL expression in Gingival Crevicular Fluid (HIV + 3.80+/-3.19 pg/ul, HIV- 1.29+/-2.14 pg/ul ; p < 0.001), fewer teeth present (HIV + 17.75+/-7.62, HIV- 22.79+/-5.70; p < 0.001), ), lower trabecular number (HIV + 0.08+/-0.01, HIV- 0.09+/-0.02; p = 0.004) and greater trabecular separation (HIV + 9.23+/-3.11, HIV- 7.99+/-3.23; p = 0.04) compared to women without HIV that remained significant in multivariate logistic regression analysis in a sub-cohort after adjusting for age, race/ethnicity, smoking status, and diabetes. CONCLUSION: Postmenopausal women with HIV have deterioration of the alveolar trabecular bone microarchitecture that may contribute to greater tooth loss.


Assuntos
Doenças Periodontais , Perda de Dente , Pessoa de Meia-Idade , Humanos , Feminino , Idoso , Pós-Menopausa , Envelhecimento , Processo Alveolar
2.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 55(2): 256-262, 2024 Mar 20.
Artigo em Chinês | MEDLINE | ID: mdl-38645858

RESUMO

Runt-related transcription factor (RUNX1) is a transcription factor closely involved in hematopoiesis. RUNX1 gene mutation plays an essential pathogenic role in the initiation and development of hematological tumors, especially in acute myeloid leukemia. Recent studies have shown that RUNX1 is also involved in the regulation of bone development and the pathological progression of bone-related diseases. RUNX1 promotes the differentiation of mesenchymal stem cells into chondrocytes and osteoblasts and modulates the maturation and extracellular matrix formation of chondrocytes. The expression of RUNX1 in mesenchymal stem cells, chondrocytes, and osteoblasts is of great significance for maintaining normal bone development and the mass and quality of bones. RUNX1 also inhibits the differentiation and bone resorptive activities of osteoclasts, which may be influenced by sexual dimorphism. In addition, RUNX1 deficiency contributes to the pathogenesis of osteoarthritis, delayed fracture healing, and osteoporosis, which was revealed by the RUNX1 conditional knockout modeling in mice. However, the roles of RUNX1 in regulating the hypertrophic differentiation of chondrocytes, the sexual dimorphism of activities of osteoclasts, as well as bone loss in diabetes mellitus, senescence, infection, chronic inflammation, etc, are still not fully understood. This review provides a systematic summary of the research progress concerning RUNX1 in the field of bone biology, offering new ideas for using RUNX1 as a potential target for bone related diseases, especially osteoarthritis, delayed fracture healing, and osteoporosis.


Assuntos
Desenvolvimento Ósseo , Diferenciação Celular , Condrócitos , Subunidade alfa 2 de Fator de Ligação ao Core , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Humanos , Animais , Desenvolvimento Ósseo/fisiologia , Desenvolvimento Ósseo/genética , Condrócitos/metabolismo , Osteoblastos/metabolismo , Osteoblastos/citologia , Osteoclastos/metabolismo , Osteoclastos/citologia , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/citologia , Camundongos , Doenças Ósseas/genética , Doenças Ósseas/metabolismo , Osteoporose/genética , Osteoporose/metabolismo , Osteoartrite/metabolismo , Osteoartrite/genética , Osteoartrite/etiologia
3.
JCI Insight ; 9(11)2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38855864

RESUMO

The transcription factor SRY-related HMG box 9 (Sox9) is essential for chondrogenesis. Mutations in and around SOX9 cause campomelic dysplasia (CD) characterized by skeletal malformations. Although the function of Sox9 in this context is well studied, the mechanisms that regulate Sox9 expression in chondrocytes remain to be elucidated. Here, we have used genome-wide profiling to identify 2 Sox9 enhancers located in a proximal breakpoint cluster responsible for CD. Enhancer activity of E308 (located 308 kb 5' upstream) and E160 (located 160 kb 5' upstream) correlated with Sox9 expression levels, and both enhancers showed a synergistic effect in vitro. While single deletions in mice had no apparent effect, simultaneous deletion of both E308 and E160 caused a dwarf phenotype, concomitant with a reduction of Sox9 expression in chondrocytes. Moreover, bone morphogenetic protein 2-dependent chondrocyte differentiation of limb bud mesenchymal cells was severely attenuated in E308/E160 deletion mice. Finally, we found that an open chromatin region upstream of the Sox9 gene was reorganized in the E308/E160 deletion mice to partially compensate for the loss of E308 and E160. In conclusion, our findings reveal a mechanism of Sox9 gene regulation in chondrocytes that might aid in our understanding of the pathophysiology of skeletal disorders.


Assuntos
Displasia Campomélica , Diferenciação Celular , Condrócitos , Condrogênese , Fatores de Transcrição SOX9 , Fatores de Transcrição SOX9/metabolismo , Fatores de Transcrição SOX9/genética , Animais , Condrócitos/metabolismo , Camundongos , Displasia Campomélica/genética , Displasia Campomélica/patologia , Displasia Campomélica/metabolismo , Condrogênese/genética , Diferenciação Celular/genética , Elementos Facilitadores Genéticos/genética , Cromatina/metabolismo , Cromatina/genética , Regulação da Expressão Gênica no Desenvolvimento , Camundongos Knockout , Proteína Morfogenética Óssea 2/metabolismo , Proteína Morfogenética Óssea 2/genética , Humanos , Desenvolvimento Ósseo/genética
4.
JCI Insight ; 9(6)2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38358826

RESUMO

Neuroblastoma is an aggressive pediatric cancer with a high rate of metastasis to the BM. Despite intensive treatments including high-dose chemotherapy, the overall survival rate for children with metastatic neuroblastoma remains dismal. Understanding the cellular and molecular mechanisms of the metastatic tumor microenvironment is crucial for developing new therapies and improving clinical outcomes. Here, we used single-cell RNA-Seq to characterize immune and tumor cell alterations in neuroblastoma BM metastases by comparative analysis with patients without metastases. Our results reveal remodeling of the immune cell populations and reprogramming of gene expression profiles in the metastatic niche. In particular, within the BM metastatic niche, we observed the enrichment of immune cells, including tumor-associated neutrophils, macrophages, and exhausted T cells, as well as an increased number of Tregs and a decreased number of B cells. Furthermore, we highlighted cell communication between tumor cells and immune cell populations, and we identified prognostic markers in malignant cells that are associated with worse clinical outcomes in 3 independent neuroblastoma cohorts. Our results provide insight into the cellular, compositional, and transcriptional shifts underlying neuroblastoma BM metastases that contribute to the development of new therapeutic strategies.


Assuntos
Medula Óssea , Neuroblastoma , Humanos , Criança , Medula Óssea/patologia , Neuroblastoma/genética , Análise de Célula Única , Microambiente Tumoral
5.
J Clin Invest ; 134(6)2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38488012

RESUMO

As the leading cause of disability worldwide, low back pain (LBP) is recognized as a pivotal socioeconomic challenge to the aging population and is largely attributed to intervertebral disc degeneration (IVDD). Elastic nucleus pulposus (NP) tissue is essential for the maintenance of IVD structural and functional integrity. The accumulation of senescent NP cells with an inflammatory hypersecretory phenotype due to aging and other damaging factors is a distinctive hallmark of IVDD initiation and progression. In this study, we reveal a mechanism of IVDD progression in which aberrant genomic DNA damage promoted NP cell inflammatory senescence via activation of the cyclic GMP-AMP synthase/stimulator of IFN genes (cGAS/STING) axis but not of absent in melanoma 2 (AIM2) inflammasome assembly. Ataxia-telangiectasia-mutated and Rad3-related protein (ATR) deficiency destroyed genomic integrity and led to cytosolic mislocalization of genomic DNA, which acted as a powerful driver of cGAS/STING axis-dependent inflammatory phenotype acquisition during NP cell senescence. Mechanistically, disassembly of the ATR-tripartite motif-containing 56 (ATR-TRIM56) complex with the enzymatic liberation of ubiquitin-specific peptidase 5 (USP5) and TRIM25 drove changes in ATR ubiquitination, with ATR switching from K63- to K48-linked modification, c thereby promoting ubiquitin-proteasome-dependent dynamic instability of ATR protein during NP cell senescence progression. Importantly, an engineered extracellular vesicle-based strategy for delivering ATR-overexpressing plasmid cargo efficiently diminished DNA damage-associated NP cell senescence and substantially mitigated IVDD progression, indicating promising targets and effective approaches to ameliorate the chronic pain and disabling effects of IVDD.


Assuntos
Degeneração do Disco Intervertebral , Disco Intervertebral , Núcleo Pulposo , Humanos , Idoso , Degeneração do Disco Intervertebral/genética , Degeneração do Disco Intervertebral/metabolismo , Núcleo Pulposo/metabolismo , Envelhecimento , Senescência Celular , Nucleotidiltransferases/genética , Nucleotidiltransferases/metabolismo , Disco Intervertebral/metabolismo , Proteínas com Motivo Tripartido/metabolismo , Proteínas com Motivo Tripartido/farmacologia , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo
6.
JCI Insight ; 9(12)2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38781018

RESUMO

We present a transcriptomic analysis that provides a better understanding of regulatory mechanisms within the healthy and injured periosteum. The focus of this work is on characterizing early events controlling bone healing during formation of periosteal callus on day 3 after fracture. Building on our previous findings showing that induced Notch1 signaling in osteoprogenitors leads to better healing, we compared samples in which the Notch 1 intracellular domain is overexpressed by periosteal stem/progenitor cells, with control intact and fractured periosteum. Molecular mechanisms and changes in skeletal stem/progenitor cells (SSPCs) and other cell populations within the callus, including hematopoietic lineages, were determined. Notably, Notch ligands were differentially expressed in endothelial and mesenchymal populations, with Dll4 restricted to endothelial cells, whereas Jag1 was expressed by mesenchymal populations. Targeted deletion of Dll4 in endothelial cells using Cdh5CreER resulted in negative effects on early fracture healing, while deletion in SSPCs using α-smooth muscle actin-CreER did not impact bone healing. Translating these observations into a clinically relevant model of bone healing revealed the beneficial effects of delivering Notch ligands alongside the osteogenic inducer, BMP2. These findings provide insights into the regulatory mechanisms within the healthy and injured periosteum, paving the way for novel translational approaches to bone healing.


Assuntos
Células Endoteliais , Consolidação da Fratura , Proteína Jagged-1 , Periósteo , Transdução de Sinais , Animais , Camundongos , Proteína Jagged-1/metabolismo , Proteína Jagged-1/genética , Células Endoteliais/metabolismo , Periósteo/metabolismo , Periósteo/citologia , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas de Ligação ao Cálcio/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Células-Tronco Mesenquimais/metabolismo , Proteína Morfogenética Óssea 2/metabolismo , Proteína Morfogenética Óssea 2/genética , Osteogênese/genética , Receptor Notch1/metabolismo , Receptor Notch1/genética , Masculino , Feminino , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética
7.
JCI Insight ; 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38990647

RESUMO

Clarifying multifactorial musculoskeletal disorder etiologies supports risk analysis and development of targeted prevention and treatment modalities. Deep learning enables comprehensive risk factor identification through systematic analysis of disease datasets but does not provide sufficient context for mechanistic understanding, limiting clinical applicability for etiological investigations. Conversely, multiscale biomechanical modeling can evaluate mechanistic etiology within the relevant biomechanical and physiological context. We propose a hybrid approach combining 3D explainable deep learning and multiscale biomechanical modeling; we applied this approach to investigate temporomandibular joint (TMJ) disorder etiology by systematically identifying risk factors and elucidating mechanistic relationships between risk factors and TMJ biomechanics and mechanobiology. Our 3D convolutional neural network recognized TMJ disorder patients through subject-specific morphological features in condylar, ramus, and chin. Driven by deep learning model outputs, biomechanical modeling revealed that small mandibular size and flat condylar shape were associated with increased TMJ disorder risk through increased joint force, decreased tissue nutrient availability and cell ATP production, and increased TMJ disc strain energy density. Combining explainable deep learning and multiscale biomechanical modeling addresses the "mechanism unknown" limitation undermining translational confidence in clinical applications of deep learning and increases methodological accessibility for smaller clinical datasets by providing the crucial biomechanical context.

8.
JCI Insight ; 9(9)2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38512420

RESUMO

Spinal metastases can result in severe neurologic compromise and decreased overall survival. Despite treatment advances, local disease progression is frequent, highlighting the need for novel therapies. Tumor treating fields (TTFields) impair tumor cell replication and are influenced by properties of surrounding tissue. We hypothesized that bone's dielectric properties will enhance TTFields-mediated suppression of tumor growth in spinal metastasis models. Computational modeling of TTFields intensity was performed following surgical resection of a spinal metastasis and demonstrated enhanced TTFields intensity within the resected vertebral body. Additionally, luciferase-tagged human KRIB osteosarcoma and A549 lung adenocarcinoma cell lines were cultured in demineralized bone grafts and exposed to TTFields. Following TTFields exposure, the bioluminescence imaging (BLI) signal decreased to 10%-80% of baseline, while control cultures displayed a 4.48- to 9.36-fold increase in signal. Lastly, TTFields were applied in an orthotopic murine model of spinal metastasis. After 21 days of treatment, control mice demonstrated a 5-fold increase in BLI signal compared with TTFields-treated mice. TTFields similarly prevented tumor invasion into the spinal canal and development of neurologic symptoms. Our data suggest that TTFields can be leveraged as a local therapy within minimally conductive bone of spinal metastases. This provides the groundwork for future studies investigating TTFields for patients with treatment-refractory spinal metastases.


Assuntos
Neoplasias da Coluna Vertebral , Animais , Humanos , Camundongos , Neoplasias da Coluna Vertebral/secundário , Neoplasias da Coluna Vertebral/terapia , Linhagem Celular Tumoral , Neoplasias Pulmonares/secundário , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/terapia , Proliferação de Células , Modelos Animais de Doenças , Osteossarcoma/patologia , Osteossarcoma/terapia , Feminino , Células A549 , Ensaios Antitumorais Modelo de Xenoenxerto
9.
JCI Insight ; 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39088272

RESUMO

Energy metabolism, through pathways such as oxidative phosphorylation (OxPhos) and glycolysis, plays a pivotal role in cellular differentiation and function. Our study investigates the impact of OxPhos disruption in cortical bone development by deleting Mitochondrial Transcription Factor A (TFAM). TFAM controls OxPhos by regulating the transcription of mitochondrial genes. The cortical bone, constituting the long bones' rigid shell, is sheathed by the periosteum, a connective tissue layer populated with skeletal progenitors that spawn osteoblasts, the bone-forming cells. TFAM-deficient mice presented with thinner cortical bone, spontaneous midshaft fractures, and compromised periosteal cell bioenergetics, characterized by reduced ATP levels. Additionally, they exhibited an enlarged periosteal progenitor cell pool with impaired osteoblast differentiation. Increasing Hypoxia-Inducible Factor 1a (HIF1) activity within periosteal cells significantly mitigated the detrimental effects induced by TFAM deletion. HIF1 is known to promote glycolysis in all cell types. Our findings underscore the indispensability of OxPhos for the proper accrual of cortical bone mass and indicate a compensatory mechanism between OxPhos and glycolysis in periosteal cells. The study opens new avenues for understanding the relationship between energy metabolism and skeletal health and suggests that modulating bioenergetic pathways may provide a therapeutic avenue for conditions characterized by bone fragility.

10.
JCI Insight ; 9(5)2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38456506

RESUMO

Dysostosis multiplex is a major cause of morbidity in Hurler syndrome (mucopolysaccharidosis type IH [MPS IH], OMIM #607014) because currently available therapies have limited success in its prevention and reversion. Unfortunately, the elucidation of skeletal pathogenesis in MPS IH is limited by difficulties in obtaining bone specimens from pediatric patients and poor reproducibility in animal models. Thus, the application of experimental systems that can be used to dissect cellular and molecular mechanisms underlying the skeletal phenotype of MPS IH patients and to identify effective therapies is highly needed. Here, we adopted in vitro/in vivo systems based on patient-derived bone marrow stromal cells to generate cartilaginous pellets and bone rudiments. Interestingly, we observed that heparan sulphate accumulation compromised the remodeling of MPS IH cartilage into other skeletal tissues and other critical aspects of the endochondral ossification process. We also noticed that MPS IH hypertrophic cartilage was characterized by dysregulation of signaling pathways controlling cartilage hypertrophy and fate, extracellular matrix organization, and glycosaminoglycan metabolism. Our study demonstrates that the cartilaginous pellet-based system is a valuable tool to study MPS IH dysostosis and to develop new therapeutic approaches for this hard-to-treat aspect of the disease. Finally, our approach may be applied for modeling other genetic skeletal disorders.


Assuntos
Disostoses , Mucopolissacaridose I , Animais , Humanos , Criança , Mucopolissacaridose I/genética , Mucopolissacaridose I/patologia , Mucopolissacaridose I/terapia , Iduronidase/genética , Iduronidase/metabolismo , Medula Óssea/patologia , Reprodutibilidade dos Testes
11.
JCI Insight ; 9(6)2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38516888

RESUMO

Recently, skeletal stem cells were shown to be present in the epiphyseal growth plate (epiphyseal skeletal stem cells, epSSCs), but their function in connection with linear bone growth remains unknown. Here, we explore the possibility that modulating the number of epSSCs can correct differences in leg length. First, we examined regulation of the number and activity of epSSCs by Hedgehog (Hh) signaling. Both systemic activation of Hh pathway with Smoothened agonist (SAG) and genetic activation of Hh pathway by Patched1 (Ptch1) ablation in Pthrp-creER Ptch1fl/fl tdTomato mice promoted proliferation of epSSCs and clonal enlargement. Transient intra-articular administration of SAG also elevated the number of epSSCs. When SAG-containing beads were implanted into the femoral secondary ossification center of 1 leg of rats, this leg was significantly longer 1 month later than the contralateral leg implanted with vehicle-containing beads, an effect that was even more pronounced 2 and 6 months after implantation. We conclude that Hh signaling activates growth plate epSSCs, which effectively leads to increased longitudinal growth of bones. This opens therapeutic possibilities for the treatment of differences in leg length.


Assuntos
Lâmina de Crescimento , Proteínas Hedgehog , Proteína Vermelha Fluorescente , Camundongos , Ratos , Animais , Proteínas Hedgehog/metabolismo , Desenvolvimento Ósseo , Células-Tronco/metabolismo
12.
Res Sq ; 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38826270

RESUMO

Background: Periodontal health in men with HIV remains understudied, despite suggestions of associations between HIV infection and gingival pocketing, periodontal attachment loss, and gingival inflammation. As antiretroviral therapy (ART) has improved the quality of life for people living with HIV (PLWH), aging-related risk factors and comorbidities, including periodontitis, have emerged. This study aims to assess alveolar bone height, gingival crevicular fluid (GCF) cytokines, and periodontal disease activity in men with and without HIV. Methods: Ninety-three men (50 HIV+, 43 HIV‒) aged 35-70 years were recruited from Columbia University Irving Medical Center clinics. Periodontal examination, GCF collection, and intraoral radiographs were conducted. Results: While no significant differences were observed in bleeding on probing, clinical attachment loss and pocket depths, men with HIV exhibited significantly greater alveolar crestal height on radiographs compared to men without HIV (HIV + 3.41+/-1.35 mm, HIV- 2.64+/-1.01 mm; p = 0.004), reflecting greater alveolar bone loss. GCF IL6 levels showed a trend towards elevation in men with HIV (HIV + 0.349+/-0.407 pg/ml, HIV- 0.220+/-0.228 pg/ml; p = 0.059). Conclusions: Men with HIV demonstrate increased alveolar bone loss compared to those without HIV, possibly mediated by elevated IL6 levels. These results underscore the importance of comprehensive oral health management in PLWH and highlight the need for further research understanding the mechanisms linking HIV infection, cytokine dysregulation, and periodontal health.

13.
JCI Insight ; 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38990653

RESUMO

The Neurofibromatosis Type 1 (NF1) RASopathy is associated with persistent fibrotic nonunions (pseudarthrosis) in human and mouse skeletal tissue. Here, we first performed spatial transcriptomics to define the molecular signatures across normal endochondral healing following fracture in mice. Within the control fracture callus, we observed spatially restricted activation of morphogenetic pathways, such as TGF-ß, WNT, and BMP. To investigate the molecular mechanisms contributing to Nf1-deficient delayed fracture healing, we performed spatial transcriptomic analysis on a Postn-cre;Nf1flox/- (Nf1Postn) fracture callus. Transcriptional analyses, subsequently confirmed through p-SMAD1/5/8 immunohistochemistry, demonstrated a lack of BMP pathway induction in Nf1Postn mice. To further inform the human disease, we performed spatial transcriptomic analysis of fracture pseudarthrosis tissue from a NF1 patient. Analyses detected increased MAPK signaling at the fibrocartilaginous-osseus junction. Similar to the Nf1Postn fracture, BMP pathway activation was absent within the pseudarthrosis tissue. Our results demonstrate the feasibility to delineate the molecular and tissue-specific heterogeneity inherent in complex regenerative processes, such as fracture healing, and to reconstruct phase transitions representing endochondral bone formation in vivo. Furthermore, our results provide in situ molecular evidence of impaired BMP signaling underlying NF1 pseudarthrosis, potentially informing the clinical relevance of off-label BMP2 as a therapeutic intervention.

14.
J Clin Invest ; 134(12)2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38753433

RESUMO

Cells expressing features of senescence, including upregulation of p21 and p16, appear transiently following tissue injury, yet the properties of these cells or how they contrast with age-induced senescent cells remains unclear. Here, we used skeletal injury as a model and identified the rapid appearance following fracture of p21+ cells expressing senescence markers, mainly as osteochondroprogenitors (OCHs) and neutrophils. Targeted genetic clearance of p21+ cells suppressed senescence-associated signatures within the fracture callus and accelerated fracture healing. By contrast, p21+ cell clearance did not alter bone loss due to aging; conversely, p16+ cell clearance, known to alleviate skeletal aging, did not affect fracture healing. Following fracture, p21+ neutrophils were enriched in signaling pathways known to induce paracrine stromal senescence, while p21+ OCHs were highly enriched in senescence-associated secretory phenotype factors known to impair bone formation. Further analysis revealed an injury-specific stem cell-like OCH subset that was p21+ and highly inflammatory, with a similar inflammatory mesenchymal population (fibro-adipogenic progenitors) evident following muscle injury. Thus, intercommunicating senescent-like neutrophils and mesenchymal progenitor cells were key regulators of tissue repair in bone and potentially across tissues. Moreover, our findings established contextual roles of p21+ versus p16+ senescent/senescent-like cells that may be leveraged for therapeutic opportunities.


Assuntos
Senescência Celular , Inibidor de Quinase Dependente de Ciclina p21 , Consolidação da Fratura , Neutrófilos , Animais , Masculino , Camundongos , Biomarcadores/metabolismo , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Inibidor p16 de Quinase Dependente de Ciclina/genética , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/genética , Células-Tronco Mesenquimais/metabolismo , Neutrófilos/metabolismo , Neutrófilos/patologia , Feminino
15.
J Clin Invest ; 134(10)2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38512413

RESUMO

Elevated bone resorption and diminished bone formation have been recognized as the primary features of glucocorticoid-associated skeletal disorders. However, the direct effects of excess glucocorticoids on bone turnover remain unclear. Here, we explored the outcomes of exogenous glucocorticoid treatment on bone loss and delayed fracture healing in mice and found that reduced bone turnover was a dominant feature, resulting in a net loss of bone mass. The primary effect of glucocorticoids on osteogenic differentiation was not inhibitory; instead, they cooperated with macrophages to facilitate osteogenesis. Impaired local nutrient status - notably, obstructed fatty acid transportation - was a key factor contributing to glucocorticoid-induced impairment of bone turnover in vivo. Furthermore, fatty acid oxidation in macrophages fueled the ability of glucocorticoid-liganded receptors to enter the nucleus and then promoted the expression of BMP2, a key cytokine that facilitates osteogenesis. Metabolic reprogramming by localized fatty acid delivery partly rescued glucocorticoid-induced pathology by restoring a healthier immune-metabolic milieu. These data provide insights into the multifactorial metabolic mechanisms by which glucocorticoids generate skeletal disorders, thus suggesting possible therapeutic avenues.


Assuntos
Remodelação Óssea , Glucocorticoides , Osteogênese , Animais , Camundongos , Glucocorticoides/farmacologia , Osteogênese/efeitos dos fármacos , Remodelação Óssea/efeitos dos fármacos , Macrófagos/metabolismo , Macrófagos/imunologia , Macrófagos/efeitos dos fármacos , Proteína Morfogenética Óssea 2/metabolismo , Proteína Morfogenética Óssea 2/genética , Ácidos Graxos/metabolismo , Osso e Ossos/metabolismo , Osso e Ossos/efeitos dos fármacos , Osso e Ossos/imunologia , Microambiente Celular/efeitos dos fármacos
16.
J Clin Invest ; 134(10)2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38530358

RESUMO

Gender-affirming hormone therapy (GAHT) is often prescribed to transgender (TG) adolescents to alleviate gender dysphoria, but the effect of GAHT on the growing skeleton is unclear. We found GAHT to improve trabecular bone structure via increased bone formation in young male mice and not to affect trabecular structure in female mice. GAHT modified gut microbiome composition in both male and female mice. However, fecal microbiota transfers (FMTs) revealed that GAHT-shaped gut microbiome was a communicable regulator of bone structure and turnover in male, but not in female mice. Mediation analysis identified 2 species of Bacteroides as significant contributors to the skeletal effects of GAHT in male mice, with Bacteroides supplementation phenocopying the effects of GAHT on bone. Bacteroides have the capacity to expand Treg populations in the gut. Accordingly, GAHT expanded intestinal Tregs and stimulated their migration to the bone marrow (BM) in male but not in female mice. Attesting to the functional relevance of Tregs, pharmacological blockade of Treg expansion prevented GAHT-induced bone anabolism. In summary, in male mice GAHT stimulated bone formation and improved trabecular structure by promoting Treg expansion via a microbiome-mediated effect, while in female mice, GAHT neither improved nor impaired trabecular structure.


Assuntos
Microbioma Gastrointestinal , Linfócitos T Reguladores , Animais , Microbioma Gastrointestinal/efeitos dos fármacos , Camundongos , Feminino , Masculino , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/efeitos dos fármacos , Desenvolvimento Ósseo/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Bacteroides , Transplante de Microbiota Fecal , Humanos
17.
JCI Insight ; 9(4)2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38175722

RESUMO

Patients with diabetes have a high risk of developing skeletal diseases accompanied by diabetic peripheral neuropathy (DPN). In this study, we isolated the role of DPN in skeletal disease with global and conditional knockout models of sterile-α and TIR-motif-containing protein-1 (Sarm1). SARM1, an NADase highly expressed in the nervous system, regulates axon degeneration upon a range of insults, including DPN. Global knockout of Sarm1 prevented DPN, but not skeletal disease, in male mice with type 1 diabetes (T1D). Female wild-type mice also developed diabetic bone disease but without DPN. Unexpectedly, global Sarm1 knockout completely protected female mice from T1D-associated bone suppression and skeletal fragility despite comparable muscle atrophy and hyperglycemia. Global Sarm1 knockout rescued bone health through sustained osteoblast function with abrogation of local oxidative stress responses. This was independent of the neural actions of SARM1, as beneficial effects on bone were lost with neural conditional Sarm1 knockout. This study demonstrates that the onset of skeletal disease occurs rapidly in both male and female mice with T1D completely independently of DPN. In addition, this reveals that clinical SARM1 inhibitors, currently being developed for treatment of neuropathy, may also have benefits for diabetic bone through actions outside of the nervous system.


Assuntos
Doenças Ósseas , Diabetes Mellitus Tipo 1 , Doenças do Sistema Nervoso Periférico , Humanos , Masculino , Feminino , Camundongos , Animais , Axônios , Diabetes Mellitus Tipo 1/complicações , Diabetes Mellitus Tipo 1/genética , Camundongos Knockout , Proteínas do Citoesqueleto/genética , Proteínas do Domínio Armadillo/genética
18.
JCI Insight ; 9(10)2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38713511

RESUMO

While sclerostin-neutralizing antibodies (Scl-Abs) transiently stimulate bone formation by activating Wnt signaling in osteoblast lineage cells, they exert sustained inhibition of bone resorption, suggesting an alternate signaling pathway by which Scl-Abs control osteoclast activity. Since sclerostin can activate platelet-derived growth factor receptors (PDGFRs) in osteoblast lineage cells in vitro and PDGFR signaling in these cells induces bone resorption through M-CSF secretion, we hypothesized that the prolonged anticatabolic effect of Scl-Abs could result from PDGFR inhibition. We show here that inhibition of PDGFR signaling in osteoblast lineage cells is sufficient and necessary to mediate prolonged Scl-Ab effects on M-CSF secretion and osteoclast activity in mice. Indeed, sclerostin coactivates PDGFRs independently of Wnt/ß-catenin signaling inhibition, by forming a ternary complex with LRP6 and PDGFRs in preosteoblasts. In turn, Scl-Ab prevents sclerostin-mediated coactivation of PDGFR signaling and consequent M-CSF upregulation in preosteoblast cultures, thereby inhibiting osteoclast activity in preosteoblast/osteoclast coculture assays. These results provide a potential mechanism explaining the dissociation between anabolic and antiresorptive effects of long-term Scl-Ab.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Reabsorção Óssea , Osteoblastos , Osteoclastos , Receptores do Fator de Crescimento Derivado de Plaquetas , Transdução de Sinais , Animais , Osteoblastos/metabolismo , Camundongos , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Reabsorção Óssea/metabolismo , Osteoclastos/metabolismo , Receptores do Fator de Crescimento Derivado de Plaquetas/metabolismo , Receptores do Fator de Crescimento Derivado de Plaquetas/antagonistas & inibidores , Via de Sinalização Wnt/efeitos dos fármacos , Anticorpos Neutralizantes/farmacologia , Proteína-6 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Fator Estimulador de Colônias de Macrófagos/metabolismo , Linhagem da Célula , Osteogênese/efeitos dos fármacos , Diferenciação Celular
19.
J Biomech ; 174: 112271, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39159585

RESUMO

Bone and cartilage tissues are physiologically dynamic organs that are systematically regulated by mechanical inputs. At cellular level, mechanical stimulation engages an intricate network where mechano-sensors and transmitters cooperate to manipulate downstream signaling. Despite accumulating evidence, there is a notable underutilization of available information, due to limited integration and analysis. In this context, we conceived an interactive web tool named MechanoBone to introduce a new avenue of literature-based discovery. Initially, we compiled a literature database by sourcing content from Pubmed and processing it through the Natural Language Toolkit project, Pubtator, and a custom library. We identified direct co-occurrence among entities based on existing evidence, archiving in a relational database via SQLite. Latent connections were then quantified by leveraging the Link Prediction algorithm. Secondly, mechanobiological pathway maps were generated, and an entity-pathway correlation scoring system was established through weighted algorithm based on our database, String, and KEGG, predicting potential functions of specific entities. Additionally, we established a mechanical circumstance-based exploration to sort genes by their relevance based on big data, revealing the potential mechanically sensitive factors in bone research and future clinical applications. In conclusion, MechanoBone enables: 1) interpreting mechanobiological processes; 2) identifying correlations and crosstalk among molecules and pathways under specific mechanical conditions; 3) connecting clinical applications with mechanobiological processes in bone research. It offers a literature mining tool with visualization and interactivity, facilitating targeted molecule navigation and prediction within the mechanobiological framework of bone-related cells, thereby enhancing knowledge sharing and big data analysis in the biomedical realm.

20.
J Clin Invest ; 134(15)2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38885336

RESUMO

Osteogenesis imperfecta (OI) type V is the second most common form of OI, distinguished by hyperplastic callus formation and calcification of the interosseous membranes, in addition to the bone fragility. It is caused by a recurrent, dominant pathogenic variant (c.-14C>T) in interferon-induced transmembrane protein 5 (IFITM5). Here, we generated a conditional Rosa26-knockin mouse model to study the mechanistic consequences of the recurrent mutation. Expression of the mutant Ifitm5 in osteo-chondroprogenitor or chondrogenic cells resulted in low bone mass and growth retardation. Mutant limbs showed impaired endochondral ossification, cartilage overgrowth, and abnormal growth plate architecture. The cartilage phenotype correlates with the pathology reported in patients with OI type V. Surprisingly, expression of mutant Ifitm5 in mature osteoblasts caused no obvious skeletal abnormalities. In contrast, earlier expression in osteo-chondroprogenitors was associated with an increase in the skeletal progenitor cell population within the periosteum. Lineage tracing showed that chondrogenic cells expressing the mutant Ifitm5 had decreased differentiation into osteoblastic cells in diaphyseal bone. Moreover, mutant IFITM5 disrupted early skeletal homeostasis in part by activating ERK signaling and downstream SOX9 protein, and inhibition of these pathways partially rescued the phenotype in mutant animals. These data identify the contribution of a signaling defect altering osteo-chondroprogenitor differentiation as a driver in the pathogenesis of OI type V.


Assuntos
Diferenciação Celular , Sistema de Sinalização das MAP Quinases , Osteoblastos , Osteogênese Imperfeita , Fatores de Transcrição SOX9 , Animais , Feminino , Masculino , Camundongos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos Transgênicos , Mutação , Osteoblastos/metabolismo , Osteoblastos/patologia , Osteogênese/genética , Osteogênese Imperfeita/genética , Osteogênese Imperfeita/patologia , Osteogênese Imperfeita/metabolismo , Fatores de Transcrição SOX9/genética , Fatores de Transcrição SOX9/metabolismo , Células-Tronco/metabolismo , Células-Tronco/patologia , MAP Quinases Reguladas por Sinal Extracelular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA