Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Orthop Res ; 2024 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-39282769

RESUMO

This study aimed to investigate the biocompatibility and osseointegration of novel titanium (Ti) implants with a perforated part with high surface roughness (Ra >4 µm) and a smooth solid part (test group), as compared to smooth solid Ti implants (control group; Ra < 0.8 µm). Test and control implants were implanted in rabbit femurs. After 4 and 15 weeks, host tissue reaction and quality of tissue formed were evaluated with histopathology, while micro-CT scans were used to quantitatively assess bone-implant contact (BIC), surrounding bone formation, and bone ingrowth. After 4 and 15 weeks, minimal host reaction was found in the test group. Histopathological analysis showed new bone formation around the implants in both the test and control groups after 4 weeks. Furthermore, additional bone growth was often observed within the holes of the test implants. After 15 weeks, the test implants showed high bone ingrowth and the presence of mature bone in direct contact with the implant surface, whereas, bone ingrowth was poorer for the control group with 30% of the control implants, showing larger gaps at the bone-implant interface. Quantitative micro-CT analysis revealed comparable BIC and bone formation in both groups at 4 weeks, but higher BIC and more bone formation in the test group than in the control group after 15 weeks. No significant differences were observed in any of the analyses. In conclusion, partially perforated, high-roughness Ti implants showed excellent osseointegration and minimal host reaction, indicating their potential for orthopedic applications in bone repair and regeneration.

2.
Adv Healthc Mater ; 13(5): e2302664, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37902817

RESUMO

Inorganic nanoparticulate biomaterials, such as calcium phosphate and bioglass particles, with chemical compositions similar to that of the inorganic component of natural bone, and hence having excellent biocompatibility and bioactivity, are widely used for the fabrication of synthetic bone graft substitutes. Growing evidence suggests that structurally anisotropic, or 1D inorganic micro-/nanobiomaterials are superior to inorganic nanoparticulate biomaterials in the context of mechanical reinforcement and construction of self-supporting 3D network structures. Therefore, in the past decades, efforts have been devoted to developing advanced synthetic scaffolds for bone regeneration using 1D micro-/nanobiomaterials as building blocks. These scaffolds feature extraordinary physical and biological properties, such as enhanced mechanical properties, super elasticity, multiscale hierarchical architecture, extracellular matrix-like fibrous microstructure, and desirable biocompatibility and bioactivity, etc. In this review, an overview of recent progress in the development of advanced scaffolds for bone regeneration is provided based on 1D inorganic micro-/nanobiomaterials with a focus on their structural design, mechanical properties, and bioactivity. The promising perspectives for future research directions are also highlighted.


Assuntos
Substitutos Ósseos , Nanoestruturas , Alicerces Teciduais/química , Materiais Biocompatíveis/farmacologia , Materiais Biocompatíveis/química , Regeneração Óssea , Substitutos Ósseos/farmacologia , Substitutos Ósseos/química
3.
J Ethnopharmacol ; 329: 118141, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38570149

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: The active ingredients of traditional Chinese medicine (TCM), such as naringin (NG), Eucommiol, isopsoralen, icariin, Astragalus polysaccharides, and chondroitin sulfate, contained in Drynariae Rhizoma, Eucommiae Cortex, Psoralea corylifolia, Herba Epimedii, Astragalus radix and deer antler, are considered promising candidates for enhancing the healing of osteoporotic defects due to their outstanding bone homeostasis regulating properties. They are commonly used to activate bone repair scaffolds. AIM OF THE REVIEW: Bone repair scaffolds are inadequate to meet the demands of osteoporotic defect healing due to the lack of regulation of bone homeostasis. Therefore, selecting bone scaffolds activated with TCM to improve the therapeutic effect of repairing osteoporotic bone defects. MATERIALS AND METHODS: To gather information on bone scaffold activated by traditional Chinese medicine, we conducted a thorough search of several scientific databases, including Google Scholar, Web of Science, Scifinder, Baidu Scholar, PubMed, and China National Knowledge Infrastructure (CNKI). RESULTS: This review discusses the mechanism of TCM active ingredients in regulating bone homeostasis, including stimulating bone formation and inhibiting bone resorption process and the healing mechanism of traditional bone repair scaffolds activated by them for osteoporotic defect healing. CONCLUSION: In general, the introduction of TCM active ingredients provides a novel therapeutic approach for modulating bone homeostasis and facilitating osteoporotic defect healing, and also offers a new strategy for design of other unconventional bone defect healing materials.


Assuntos
Regeneração Óssea , Medicamentos de Ervas Chinesas , Homeostase , Medicina Tradicional Chinesa , Osteoporose , Alicerces Teciduais , Osteoporose/tratamento farmacológico , Regeneração Óssea/efeitos dos fármacos , Animais , Humanos , Medicina Tradicional Chinesa/métodos , Homeostase/efeitos dos fármacos , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Osso e Ossos/efeitos dos fármacos , Osso e Ossos/metabolismo
4.
Front Cell Dev Biol ; 10: 976736, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36111341

RESUMO

The skeleton is one of the largest organ systems in the body and is richly innervated by the network of nerves. Peripheral nerves in the skeleton include sensory and sympathetic nerves. Crosstalk between bones and nerves is a hot topic of current research, yet it is not well understood. In this review, we will explore the role of nerves in bone repair and remodeling, as well as summarize the molecular mechanisms by which neurotransmitters regulate osteogenic differentiation. Furthermore, we discuss the skeleton's role as an endocrine organ that regulates the innervation and function of nerves by secreting bone-derived factors. An understanding of the interactions between nerves and bone can help to prevent and treat bone diseases caused by abnormal innervation or nerve function, develop new strategies for clinical bone regeneration, and improve patient outcomes.

5.
Adv Sci (Weinh) ; : e2204234, 2022 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-36394157

RESUMO

Although artificial bone repair scaffolds, such as titanium alloy, bioactive glass, and hydroxyapatite (HAp), have been widely used for treatment of large-size bone defects or serious bone destruction, they normally exhibit unsatisfied bone repair efficiency because of their weak osteogenic and angiogenesis performance as well as poor cell crawling and adhesion properties. Herein, the surface functionalization of MgAlEu-layered double hydroxide (MAE-LDH) nanosheets on porous HAp scaffolds is reported as a simple and effective strategy to prepare HAp/MAE-LDH scaffolds for enhanced bone regeneration. The surface functionalization of MAE-LDHs on the porous HAp scaffold can significantly improve its surface roughness, specific surface, and hydrophilicity, thus effectively boosting the cells adhesion and osteogenic differentiation. Importantly, the MAE-LDHs grown on HAp scaffolds enable the sustained release of Mg2+ and Eu3+ ions for efficient bone repair and vascular regeneration. In vitro experiments suggest that the HAp/MAE-LDH scaffold presents much enhanced osteogenesis and angiogenesis properties in comparison with the pristine HAp scaffold. In vivo assays further reveal that the new bone mass and mineral density of HAp/MAE-LDH scaffold increased by 3.18- and 2.21-fold, respectively, than that of pristine HAp scaffold. The transcriptome sequencing analysis reveals that the HAp/MAE-LDH scaffold can activate the Wnt/ß-catenin signaling pathway to promote the osteogenic and angiogenic abilities.

6.
Front Cell Dev Biol ; 9: 833840, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35096846

RESUMO

Exosomes are extracellular vesicles formed by various donor cells that regulate gene expression and cellular function in recipient cells. Exosomes derived from mesenchymal stem cells (MSC-Exos) perform the regulatory function of stem cells by transporting proteins, nucleic acids, and lipids. Intervertebral disc degeneration (IDD) is one of the main causes of low back pain, and it is characterized by a decreased number of nucleus pulposus cells, extracellular matrix decomposition, aging of the annulus fibrosus, and cartilage endplate calcification. Besides, nutrient transport and structural repair of intervertebral discs depend on bone and cartilage and are closely related to the state of the bone. Trauma, disease and aging can all cause bone injury. However, there is a lack of effective drugs against IDD and bone injury. Recent MSC-Exos fine tuning has led to significant progress in the IDD treatment and bone repair and regeneration. In this review, we looked at the uniqueness of MSC-Exos, and the potential treatment mechanisms of MSC-Exos with respect to IDD, bone defects and injuries.

7.
Life Sci ; 202: 52-60, 2018 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-29471105

RESUMO

AIMS: Cell communication between mesenchymal stem cells and blood vessel cells are crucial for bone repair. We have previously shown that the phyto-molecule icariin significantly promoted osteogenic differentiation of rat adipose-derived stem cells (ASCs). In the present study, we aimed to investigate the relationship between icariin induced osteogenic differentiation of ASCs and angiogenesis of rat endothelial progenitor cells (EPCs). Besides, we used icariin doped 45S5 Bioglass seeded with ASCs to promote bone healing in rat calvarial bone defect models. MAIN METHODS: The conditioned medium from undifferentiated ASCs (ASCs-CM) and icariin induced ASCs (Icariin-ASCs-CM) was obtained and the vascular endothelial growth factor (VEGF) protein secretion level was measured. The angiogenic capacity and molecular mechanism of ASC-CM and Icariin-ASCs-CM on rat EPCs was analyzed. Rat calvarial bone defect models were established and treated with scaffolds implantation. Micro-CT imaging, histological and immunohistological staining were performed on the isolated specimens at 12 weeks post-surgery. KEY FINDINGS: VEGF protein expression was significantly increased after icariin treatment with the highest expression in the 10-7 M icariin group. Icariin-ASCs-CM obviously increased the angiogenesis of rat EPCs and this capacity was inhibited by a VEGF/VEGF receptor-specific binding inhibitor bevacizumab. Results of the in vivo investigations showed that all scaffolds promoted bone healing compared to the Control group. Icariin significantly improved the healing capacity of 45S5 Bioglass seeded with ASCs. SIGNIFICANCE: Implantation of Icariin/45S5 Bioglass seeded with rat ASCs could obviously promote both osteogenesis and angiogenesis and therefore represents an ideal candidate bone substitutes for bone repair and regeneration.


Assuntos
Tecido Adiposo/citologia , Regeneração Óssea/efeitos dos fármacos , Flavonoides/farmacologia , Neovascularização Fisiológica/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Células-Tronco/efeitos dos fármacos , Animais , Cerâmica , Meios de Cultivo Condicionados , Células Endoteliais/transplante , Vidro , Imuno-Histoquímica , Masculino , Ratos , Ratos Sprague-Dawley , Crânio/patologia , Alicerces Teciduais , Fator A de Crescimento do Endotélio Vascular/biossíntese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA