RESUMO
Boric acid is a vital micronutrient in animals; however, excess amounts are toxic to them. Little is known about whole-body boric acid homeostasis in animals. Seawater (SW) contains 0.4 mM boric acid, and since marine fish drink SW, their urinary system was used here as a model of the boric acid excretion system. We determined that the bladder urine of a euryhaline pufferfish (river pufferfish, Takifugu obscurus) acclimated to fresh water and SW contained 0.020 and 19 mM of boric acid, respectively (a 950-fold difference), indicating the presence of a powerful excretory renal system for boric acid. Slc4a11 is a potential animal homolog of the plant boron transporter BOR1; however, mammalian Slc4a11 mediates H+ (OH-) conductance but does not transport boric acid. We found that renal expression of the pufferfish paralog of Slc4a11, Slc4a11A, was markedly induced after transfer from fresh water to SW, and Slc4a11A was localized to the apical membrane of kidney tubules. When pufferfish Slc4a11A was expressed in Xenopus oocytes, exposure to media containing boric acid and a voltage clamp elicited whole-cell outward currents, a marked increase in pHi, and increased boron content. In addition, the activity of Slc4a11A was independent of extracellular Na+. These results indicate that pufferfish Slc4a11A is an electrogenic boric acid transporter that functions as a B(OH)4- uniporter, B(OH)3-OH- cotransporter, or B(OH)3/H+ exchanger. These observations suggest that Slc4a11A is involved in the kidney tubular secretion of boric acid in SW fish, probably induced by the negative membrane potential and low pH of urine.
Assuntos
Boro , Rim , Proteínas de Membrana Transportadoras , Animais , Boro/metabolismo , Rim/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Água do Mar , Peixes , TakifuguRESUMO
BACKGROUND: Essential micronutrient Boron (B) plays crucial roles in plant survival and reproduction but becomes toxic in higher quantities. Although plant cells have different B transport systems, B homeostasis is mainly maintained by two transporter protein families: B exporters (BOR) and nodulin-26-like intrinsic proteins (NIP). Their diversity and differential expression are responsible for varied B tolerance among plant varieties and species. Longan is a highly admired subtropical fruit with a rising market in China and beyond. In the present study, we cultured Shixia (SX) and Yiduo (YD), two differently characterized Longan cultivars, with foliar B spray. We analyzed their leaf physiology, fruit setting, B content, and boron transporter gene expression of various tissue samples. We also traced some of these genes' subcellular localization and overexpression effects. RESULTS: YD and SX foliage share similar microstructures, except the mesophyll cell wall thickness is double in YD. The B spray differently influenced their cellular constituents and growth regulators. Gene expression analysis showed reduced BOR genes expression and NIP genes differential spatiotemporal expression. Using green fluorescent protein, two high-expressing NIPs, NIP1 and NIP19, were found to translocate in the transformed tobacco leaves' cell membrane. NIPs transformation of SX pollen was confirmed using magnetic beads and quantified using a fluorescence microscope and polymerase chain reaction. An increased seed-setting rate was observed when YD was pollinated using these pollens. Between the DlNIP1 and DlNIP19 transformed SX pollen, the former germinated better with increasing B concentrations and, compared to naturally pollinated plants, had a better seed-setting rate in YDâ × SXâ. CONCLUSION: SX and YD Longan have different cell wall structures and react differently to foliar B spray, indicating distinct B tolerance and management. Two B transporter NIP genes were traced to localize in the plasma membrane. However, under high B concentrations, their differential expression resulted in differences in Jasmonic acid content, leading to differences in germination rate. Pollination of YD using these NIPs transformed SX pollen also showed NIP1 overexpression might overcome the unilateral cross incompatibility between YDâ × SXâ and can be used to increase Longan production.
Assuntos
Boro , Proteínas de Membrana Transportadoras , Boro/metabolismo , Transporte Biológico , Proteínas de Membrana Transportadoras/genética , Plantas/metabolismo , Proteínas de Transporte/metabolismo , HomeostaseRESUMO
Transcriptional regulation is a crucial component of plant adaptation to numerous different stresses; however, its role in how plants adapt to low-boron (B) stress remains unclear. In this study, we show that the C2H2-type transcription factor SENSITIVE TO PROTON RHIZOTOXICITY1 (STOP1) in Arabidopsis is essential for improving plant growth under low-B conditions. STOP1 and the boric acid-channel protein NOD26-LIKE MAJOR INTRINSIC PROTEIN5;1 (NIP5;1) were found to co-localize in root epidermal cells, and STOP1 binds to the 5´-untranslated region of NIP5;1 to activate its expression and enhance B uptake by the roots. Overexpression of STOP1 increased tolerance to low-B stress by up-regulating NIP5;1 transcript levels. Further genetic analyses revealed that STOP1 and NIP5;1 function together in the same pathway to confer low-B tolerance. These results highlight the importance of the STOP1-NIP5;1 module in improving plant growth under low-B conditions.
Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Transporte Biológico , Boro , Regulação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Raízes de Plantas/genética , Fatores de Transcrição/genéticaRESUMO
For exploring the reaction between the hydroxyl groups of lignin and boric acid under the alkaline condition, we study three proposed mechanisms for the formation of the anionic borate diester (ABDE) using the salicyl alcohol anion as the model compound by the density functional theory. ABDE has high flame retardancy and is a potentially practical application of lignin. The catalysis of sodium cation is found to enhance the deprotonation of the water cluster. The deprotonated product, hydroxide anion, is essential to the critical step, which is the cleavage of B-O bonds of the boric acid molecule, in reaction mechanisms. The energy profiles of the mechanisms show that the reaction between lignin and boric acid may start from the hydroxymethyl moieties of lignin since it requires less energy for the aforementioned critical step than from the phenol moieties of lignin. Moreover, the hydroxide anions compete with the hydroxymethyl groups in lignin for the formation of B-O bonds by forming tetrahydroxyborate anion (TBA) which requires very high activation energies to further react to the desired product ABDE. The optimal condition is to enhance the catalytic effect of sodium cations and meanwhile to control the formation of TBA.
RESUMO
INTRODUCTION: The accuracy of urine culture results can be affected by pre-analytical factors such as transport delays and storage conditions. The objectives of this study were to analyze urine collection practices and assess the impact of introducing boric acid tubes for urine collection on quantitative urinary bacterial cultures of hospitalized patients in medical wards. METHODS: A quasi-experimental pre-post study conducted in an acute care facility. In the pre-intervention phase (2020-2021), urine samples were transported without preservatives at room temperature. In 2022 (post-intervention), we transitioned to boric acid transport tubes, evaluating its effect on significant bacterial growth (≥ 105 CFU/ml). Bivariate and multivariate analyses identified predictors of culture positivity. RESULTS: Throughout the duration of the study, a total of 12,660 urine cultures were analyzed. Date and time documentation was complete for 38.3% of specimens. Culture positivity was higher with longer processing times: positivity was 21.3% (220/1034) when specimens were processed within 4 h, 28.4% (955/3364) when processed in 4-24 h, and 32.9% (137/417) when processed after 24 h (p < 0.0001). For 4-24-hour processing, positivity decreased from 30.4% (704/2317) pre-intervention to 24.0% (251/1047) post-intervention (p < 0.001), with no significant changes in < 4 or ≥ 24-hour specimens. Stratified analysis by processing time revealed that the intervention was associated with reduced positivity only in cultures processed within 4-24 h (OR 0.80, 95% CI 0.67-0.94; p = 0.008). CONCLUSION: The introduction of boric acid transport tubes predominantly influenced cultures transported within a 4-24-hour window. This presents an opportunity to improve urine tract infection diagnostic practices in healthcare settings.
Assuntos
Bactérias , Ácidos Bóricos , Infecções Urinárias , Humanos , Ácidos Bóricos/farmacologia , Bactérias/isolamento & purificação , Bactérias/efeitos dos fármacos , Bactérias/crescimento & desenvolvimento , Infecções Urinárias/microbiologia , Infecções Urinárias/diagnóstico , Manejo de Espécimes/métodos , Hospitalização , Masculino , Fatores de Tempo , Feminino , Coleta de Urina/métodos , Urina/microbiologia , Urinálise/métodosRESUMO
In recent years, perovskite quantum dots (PQDs) have successfully attracted widespread attention due to their excellent optical properties. However, the instability and toxicity problems of perovskite quantum dots are the main obstacles limiting their applications. In this work, bismuth-based perovskite quantum dots were synthesized by a ligand-assisted reprecipitation method, based on which a novel boric acid-functionalized bismuth-based non-toxic perovskite quantum dots fluorescent sensor (Cs3Bi2Br9-APBA) that can be stabilized in the ethanol phase was prepared by a boron affinity technique. Based on the covalent binding interaction of Cs3Bi2Br9-APBA with oxytetracycline (OTC), a highly selective and sensitive method for the detection of OTC was developed, which effectively solved the problems of poor stability and toxicity in the application of perovskite quantum dots. Under the optimal conditions, the fluorescence intensity of the synthesized Cs3Bi2Br9-APBA was linear with the concentration range of 0.1 â¼ 18 µM OTC, and the detection limit could reach 0.0802 µM. The fluorescence detection mechanism was explored and analyzed by spectral overlap analysis, suppression efficiency study of observed and corrected fluorescence, and fluorescence lifetime decay curve fitting, the mechanism of OTC detection by Cs3Bi2Br9-APBA was identified as the inner filter effect (IFE). In addition, the sensor successfully realized the quantitative detection of trace OTC in the environment, and our study provides a new idea for the preparation of green perovskite materials with high stability and selectivity.
RESUMO
Boric acid is a broad-spectrum antimicrobial used to treat vulvovaginal candidiasis when patients relapse on the primary azole drug fluconazole. Candida albicans is the most common cause of vulvovaginal candidiasis, colloquially referred to as a "vaginal yeast infection". Little is known about the propensity of C. albicans to develop BA resistance or tolerance (the ability of a subpopulation to grow slowly in high levels of drug). We evolved 96 replicates from eight diverse C. albicans strains to increasing BA concentrations to test the evolvability of BA resistance and tolerance. Replicate growth was individually assessed daily, with replicates passaged when they had reached an optical density consistent with exponential growth. Many replicates went extinct quickly. Although some replicates could grow in much higher levels of BA than the ancestral strains, evolved populations isolated from the highest terminal BA levels (after 11 weeks of passages) surprisingly showed only modest growth improvements and only at low levels of BA. No large increases in resistance or tolerance were observed in the evolved replicates. Overall, our findings illustrate that there may be evolutionary constraints limiting the emergence of BA resistance and tolerance, which could explain why it remains an effective treatment for recurrent yeast infections.
Assuntos
Antifúngicos , Ácidos Bóricos , Candida albicans , Farmacorresistência Fúngica , Ácidos Bóricos/farmacologia , Candida albicans/efeitos dos fármacos , Candida albicans/genética , Candida albicans/crescimento & desenvolvimento , Farmacorresistência Fúngica/genética , Antifúngicos/farmacologia , Testes de Sensibilidade Microbiana , Humanos , Candidíase Vulvovaginal/microbiologia , Candidíase Vulvovaginal/tratamento farmacológicoRESUMO
Boric acid (BA) is an important mineral for plants, animals and humans that assists metabolic function and has both positive and negative effects on biological systems. The present study aimed to investigate the effects of different concentrations of BA added to the culture media, the quality and in vitro development potential of mouse embryos. Superovulated C57Bl6/6j female mice were sacrificed â¼18 hours after human chorionic gonadotropin (hCG) injection. Single-cell-stage embryos were collected from the oviduct, divided into experiment groups and cultured in embryo medium with supplemented BA+ in 5% CO2 at 37 °C until 96 hours at the blastocyst stage. The blastocyst development rates of 0, 1.62 × 10-1, 1.62 × 10-2, 1.62 × 10-3 and 1.62 × 10-4 µM BA were 51.52%, 73.47%, 77.36% and 81.13%, respectively. The in vitro development rates were significantly higher in the 1.62 × 10-3 (p < 0.05) and 1.62 × 10-4 µM BA groups than in the control group (p < 0.001). These results indicated that low BA doses influenced embryo development by positively affecting in vitro development rates, embryo cell numbers, biochemical parameters and development at the molecular level by pluripotent and antioxidant genes. Therefore, BA seems to play an important role on in vitro embryo development.
RESUMO
Recent evidence suggests that ferroptosis, an iron-dependent cell death process, may be involved in Alzheimer's disease (AD) pathology. The study evaluated the therapeutic potential of betaine and boric acid (BA) pretreatment administered to rats for 21 days in AD. Then, the rats were sacrificed, and morphological and biochemical analyses were performed in brain tissues. Next, an ex vivo AD model was created by applying amyloid-ß (Aß1-42) to synaptosomes isolated from the brain tissues. Synaptosomes were analyzed with micrograph images, and protein and mRNA levels of ferroptotic markers were determined. Betaine and BA pretreatments did not cause any morphological and biochemical differences in the brain tissue. However, Aß (1-42) administration in synaptosomes increased the levels of acyl-CoA synthetase long chain family member-4 (ACSL4), transferrin receptor-1 protein (TfR1), malondialdehyde (MDA), and 8-hydroxydeoxyguanosine (8-OHdG) and decreased the levels glutathione peroxidase-4 (GPx4) and glutathione (GSH). Moreover, ACSL4, GPx4, and TfR1 mRNA and protein levels were similar to the ELISA results. In contrast, betaine and BA pretreatments decreased the levels of ACSL4, TfR1, MDA, and 8-OHdG in synaptosomes incubated with Aß1-42, while promoting increased levels of GPx4 and GSH. In addition, betaine and BA pretreatments completely reversed ACSL4, GPx4, and TfR1 mRNA and protein levels. Therefore, betaine and BA pretreatments may contribute to the prevention of neurodegenerative damage by supporting antiferroptotic activities.
Assuntos
Doença de Alzheimer , Betaína , Ácidos Bóricos , Animais , Ratos , Betaína/farmacologia , Sinaptossomos , 8-Hidroxi-2'-Desoxiguanosina , Glutationa , RNA MensageiroRESUMO
Transferrin (TRF), recognized as a glycoprotein clinical biomarker and therapeutic target, has its concentration applicable for disease diagnosis and treatment monitoring. Consequently, this study developed boronic acid affinity magnetic surface molecularly imprinted polymers (B-MMIPs) with pH-responsitivity as the "capture probe" for TRF, which have high affinity similar to antibodies, with a dissociation constant of (3.82 ± 0.24) × 10-8 M, showing 7 times of reusability. The self-copolymerized imprinted layer synthesized with dopamine (DA) and 3-Aminophenylboronic acid (APBA) as double monomers avoided nonspecific binding sites and produced excellent adsorption properties. Taking the gold nanostar (AuNS) with a branch tip "hot spot" structure as the core, the silver-coated AuNS functionalized with the biorecognition element 4-mercaptophenylboronic acid (MPBA) was employed as a surface-enhanced Raman scattering (SERS) nanotag (AuNS@Ag-MPBA) to label TRF, thereby constructing a double boronic acid affinity "sandwich" SERS biosensor (B-MMIPs-TRF-SERS nanotag) for the highly sensitive detection of TRF. The SERS biosensor exhibited a detection limit for TRF of 0.004 ng/mL, and its application to spiked serum samples confirmed its reliability and feasibility, demonstrating significant potential for clinical TRF detection. Moreover, the SERS biosensor designed in this study offers advantages in stability, detection speed (40 min), and cost efficiency. The portable Raman instrument for SERS detection fulfills the requirements for point-of-care testing.
Assuntos
Técnicas Biossensoriais , Ácidos Borônicos , Ouro , Análise Espectral Raman , Ácidos Borônicos/química , Técnicas Biossensoriais/métodos , Ouro/química , Humanos , Análise Espectral Raman/métodos , Prata/química , Nanopartículas Metálicas/química , Limite de Detecção , Transferrina/análise , Transferrina/química , Impressão Molecular , Polímeros Molecularmente Impressos/química , Glicoproteínas/sangue , Glicoproteínas/química , Materiais Biomiméticos/química , Dopamina/sangue , Dopamina/análise , Compostos de SulfidrilaRESUMO
By combining boric acid-modified carbon dots (p-CDs) and alizarin red (ARS), a double emission probe p-CDs@ARS with fluorescence at 410 nm and 600 nm is designed for the detection of glyphosate. When Cu2+ is added, it binds with ARS to cause ARS release from p-CDs@ARS, which decreases the fluorescence at 600 nm. However, in the presence of glyphosate, glyphosate competes to the binding of Cu2+, releasing ARS to bind with p-CDs again. Therefore, the fluorescence of 600 nm recovers. Based on this, the fluorescence of 410 nm and 600 nm act as the reference and response signal, respectively, achieving the ratiometric fluorescence detection of glyphosate. The linear range of glyphosate detection is 0.5-50 µM with a limit of detection at 0.37 µM which is well below the maximum residue limit for glyphosate in food. When the probe is used to detect the glyphosate residue in Pearl River water and cucumber, the detection results are well consistent with those detected by HPLC. The established method based on p-CDs@ARS has the advantages that the assembly of ratiometric fluorescence probe is simple, and the detection speed is fast. Additionally, a typical INHIBIT logical system has been successfully constructed based on glyphosate, Cu2+, and the fluorescence signal of p-CDs@ARS.
Assuntos
Antraquinonas , Ácidos Bóricos , Carbono , Corantes Fluorescentes , Glicina , Glifosato , Limite de Detecção , Pontos Quânticos , Espectrometria de Fluorescência , Glicina/análogos & derivados , Glicina/análise , Glicina/química , Ácidos Bóricos/química , Corantes Fluorescentes/química , Carbono/química , Pontos Quânticos/química , Espectrometria de Fluorescência/métodos , Antraquinonas/química , Cucumis sativus/química , Poluentes Químicos da Água/análise , Herbicidas/análise , Cobre/química , Contaminação de Alimentos/análiseRESUMO
Boric acid, H3BO3, is a molecular solid made up of layers held together by weak van der Waals forces. It can be considered a pseudo "2D" material, like graphite, compared to graphene. The key distinction is that within each individual layer, the molecular units are connected not only by strong covalent bonds but also by hydrogen bonds. Therefore, classic liquid exfoliation is not suitable for this material, and a specific method needs to be developed. Preliminary results of exfoliation of boric acid particles by combination of ultrasound and the use of surfactants are presented. Ultrasound provides the system with the energy needed for the process, and the surfactant can act to keep the crystalline flakes apart. A system consisting of a saturated solution and large excess solid residue of boric acid was treated in this way for a few hours at 40 °C in the presence of various sodium stearate, proving to be very promising, and an incipient exfoliation was achieved.
RESUMO
This article applies nuclear magnetic resonance technology to the study of boron-containing traditional Chinese medicine, in order to explore the morphological evolution of boron elements in traditional Chinese medicine. Borax is a traditional Chinese medicine with anti-corrosion, anti-inflammatory, antibacterial, and anticonvulsant effects. It is made by boiling, removing stones, and drying borax minerals like borate salts. This article introduces an 11B nuclear magnetic resonance method for identifying and characterizing boron-containing compounds in TCM. We applied this technology to borax aqueous solutions in different chemical environments and found that with boron mixed in the form of SP2 hybridization in equilateral triangles and SP3 hybridization in equilateral tetrahedra, the pH changes in alkaline environments significantly affected the ratio of the two. At the same time, it was found that in addition to the raw material peak, boron signals of other boron-containing compounds were also detected in 20 commercially available boron-containing TCM preparations. These new boron-containing compounds may be true pharmaceutical active ingredients, and adding them directly to the formula can improve quality and safety. This article describes the detection of 11B NMR in boron-containing traditional Chinese medicine preparations. It is simple, non-destructive, and can provide chemical fingerprint studies for boron-containing traditional Chinese medicine.
Assuntos
Boratos , Boro , Medicina Tradicional Chinesa , Espectroscopia de Ressonância MagnéticaRESUMO
PURPOSE: To compare the effects of subgingival irrigation with 0.75% boric acid (BA) and 1% povidone-iodine (PVP-I) as an adjunct to scaling and root planing (SRP) on clinical and microbiologic parameters in the management of patients with periodontitis after a 12-month follow-up. METHODS: Sixty systemically healthy individuals diagnosed with periodontitis were included in this double-blind randomised clinical trial. The patients were randomly allocated to treatment groups: (1) SRP plus 0.75% BA and (2) SRP plus 1% PVP-I. Whole-mouth periodontals were clinically examined, and the counts of bacteria including Aggregatibacter actinomycetemcomitans (Aa), Fusobacterium nucleatum (Fn), Porphyromonas gingivalis (Pg), Treponema denticola (Td), Tannerella forsythia (Tf), Solobacterium moorei (Sm) and Streptococcus salivarius (Ss) were tested by real-time polymerase chain reaction (PCR). RESULTS: All periodontal parameters and the counts of Aa, Fn, Pg, Td, Tf, Sm and Ss in both groups showed statistically significant reductions at T3, T6 and T12 compared to T0. Whole-mouth or moderate or severe PD and CAL improvements were significantly found in the 0.75% BA group compared to the 1% PVP-I group at T3, T6 and T12. The reduction in Aa or Fn and the reduction in Ss were significantly higher in the 0.75% BA group at T6 and T12 than in the 1% PVP-I group. CONCLUSION: This study shows that subgingival irrigation with 0.75% BA may be an alternative to 1% PVP-I because it promotes greater PD reductions and CAL gain, particularly up to 12 months after treatment.
RESUMO
Developing solid luminescent materials with a unity quantum yield and tunable emission color is promising, although it is still a difficult task. A straightforward heat-treatment method has been developed to load 3,4,9,10-perylenetetracarboxylic dianhydride (PTCDA) into the matrix of boric acid (BA) to produce powders with a near-unity quantum yield and tunable emission color from yellow to green. Our results suggest that the emission of the powders originates from PTCDA, and the tunability of the emission color is caused by the hydrolysis of PTCDA in the alkaline environment. The near-unity quantum yield is attributed to the BA matrix, which confines PTCDA. In addition, the powder also shows excellent thermal stability that allows its application in light-emitting diodes. The above results are important for the development of solid-state luminescent materials for various applications, and also provide a clue for studying the emission properties of luminescent materials.
RESUMO
The highly promising formaldehyde (HCHO)-removing materials are essential for eliminating interior pollution to safeguard the public's health with increasing indoor HCHO contamination situations being recorded on a global scale. In the paper, bamboo charcoal (BC) was activated with boric acid to prepare bamboo-based activated carbon (BAC), and then impregnated with ammonium acetate solution to successfully develop porous adsorbent with ammonium acetate particles (N/BAC), which was applied to remove low concentration of HCHO at room temperature. The adsorption performance for HCHO was systematically investigated while the surface chemical properties and microstructure of the as-prepared adsorbents were described and analyzed. The specific surface area, total pore volume and microporous volume of N/BAC sample were 240.09 m2/g, 0.27 cm3/g and 0.12 cm3/g, which increased by 42.40 m2/g, 0.15 cm3/g and 0.03 cm3/g compared with BAC sample, respectively. The specific surface area and the microporous volume, as well as the content of oxygen- and nitrogen-containing functional groups of N/BAC sample were augmented by contrast with other samples, and numerous ammonium acetate particles were present on the surface. Precisely because of this, the N/BAC sample exhibited a high removal rate of 98.89%, which was 18.38% greater than that of BAC sample. A superior correlation coefficient (0.9999) from the experimental values of the kinetics and the fitted values of the pseudo-second-order kinetic model demonstrated that the adsorption process of HCHO on N/BAC sample was physical-chemical combined adsorption. The adsorption of HCHO on N/BAC sample was investigated under different humidity, and the results showed that the adsorbent yet had excellent adsorption capacity (87.93%) under RH 75%. Moreover, the N/BAC sample was renewable, and the removal rate still reached 82.81% after five cycles of regeneration. Therefore, the as-prepared adsorbent is an effective, economical and sustainable material, and could be used to remove HCHO from real contaminated indoor air.
Assuntos
Gases , Poluentes Químicos da Água , Carvão Vegetal/química , Adsorção , Cinética , Formaldeído/química , Poluentes Químicos da Água/análiseRESUMO
The degradation of phenol from wastewater is crucial for environmental protection. Biological enzymes, such as horseradish peroxidase (HRP), have shown great potential in the degradation of phenol. In this research, we prepared a hollow CuO/Cu2O octahedron adsorbent with a carambola matrix shape through the hydrothermal method. The surface of the adsorbent was modified by silane emulsion self-assembly, where 3-aminophenyl boric acid (APBA) and polyoxometalate (PW9) were combined with silanization reagents and grafted onto the surface. The adsorbent was then molecularly imprinted with dopamine to obtain boric acid modified polyoxometalate molecularly imprinted polymer (Cu@B@PW9@MIPs). This adsorbent was used to immobilize HRP, which served as a biological enzyme catalyst from horseradish. The adsorbent was characterized, and its synthetic conditions, experimental conditions, selectivity, reproducibility, and reusability were evaluated. The maximum adsorption amount of HRP under optimized conditions was 159.1 mg g-1, as determined using high-performance liquid chromatography (HPLC). At pH 7.0, the immobilized enzyme showed a high efficiency of up to 90.0% in removing phenol, after 20 min of reaction with 25 mmol L-1 H2O2 and 0.20 mg mL-1 Cu@B@PW9@HRP. Growth tests of aquatic plants confirmed that the adsorbent reduced harm. Gas chromatography-mass spectrometry (GC-MS) tests revealed that the degraded phenol solution contained about fifteen phenol derivatives intermediates. This adsorbent has the potential to become a promising biological enzyme catalyst for dephenolization.
Assuntos
Polímeros Molecularmente Impressos , Fenol , Águas Residuárias , Peroxidase do Rábano Silvestre/química , Peroxidase do Rábano Silvestre/metabolismo , Peróxido de Hidrogênio/química , Reprodutibilidade dos Testes , Fenóis/toxicidadeRESUMO
In this study, the use of boron-based materials on efficiency of environmentally friendly porous ceramics was investigated. In this context, a glaze formulation was created that uses high amounts of frit and sintered at low temperatures. Boric acid and colemanite were added to glaze formulations and different alternative formulations were created by reducing the frit percentage. These materials were added to these glaze formulations in two different ways, calcined and raw. The glaze mixtures obtained from the formulations were applied on the ceramic body and fired at 950-1000-1020-1100-1200 °C in the laboratory oven. Crystal phase structures of glaze samples containing boric acid and colemanite were analyzed by X-Ray Crystallography (XRD) method. The surface properties and characterizations of the obtained samples were examined by scanning electron microscopy (SEM). Differential Thermal Analysis and Thermogravimetric analysis (DTA/TG) were performed to determine their thermal behavior and mass loss. As a result of the analysis, it was observed that boron derivatives are a good flux agent and do not have a negative effect on the surface and other technical properties of the glaze. In the formulations of glazes with high frit content and processed at low temperatures, the percentage of frit has been reduced and costs have been improved. Also, energy costs were improved with the reduction in firing temperatures. Considering the energy and raw material costs of this study, it is predicted that high efficiency will be achieved in the process.
Assuntos
Boro , Cerâmica , Porosidade , Propriedades de SuperfícieRESUMO
This study evaluated the effects of irrigating solutions containing 5% boric acid + 1% citric acid or 1% peracetic acid + high concentration hydrogen peroxide on root cleaning and bond strength of cementation systems after 24 h and 6 months of glass fiber post cementation. One hundred and twenty roots were endodontically treated. The specimens were randomized into one of four treatments (n = 10): DW (distilled water); NaOCl2.5% + EDTA17% (2.5% sodium hypochlorite solution + 17% EDTA); PA1% + HP (1% peracetic acid solution + high concentration of hydrogen peroxide); BA5% + CA1% (5% boric acid associated with 1% citric acid). The cleaning efficacy in the cervical, middle, and apical thirds of the post-space, and the push-out bond strength at 24 h and 6 months after post cementation were evaluated by Kruskal-Wallis and two-way ANOVA tests, respectively. BA5% + CA1% showed statistically significantly superior cleaning efficacy compared to the other solutions. This irrigation protocol also resulted in higher bond strength at 24 h and 6 months, regardless of the root third considered, and this was statistically significantly higher than those seen for DW and PA1% + HP. For BA5% + CA1% irrigation protocol, type 1 adhesive failure was the most prevalent. Post-space irrigation with BA5% + CA1% provided both higher cleaning efficacy and better bond strength.
Assuntos
Colagem Dentária , Dentina , Técnica para Retentor Intrarradicular , Cavidade Pulpar , Ácido Edético , Peróxido de Hidrogênio , Teste de Materiais , Ácido Peracético , Cimentos de Resina/química , HumanosRESUMO
BACKGROUND: Bacterial vaginosis (BV) is one of the most common vaginal dysbiosis in women aged 15-44 years old. METHODS: We administered a cross-sectional, single timepoint survey to women ages 18 years or older and who have had bacterial vaginosis (BV). Women completed an anonymous online survey evaluating the impact of BV on their quality of life, how effective different types of treatments were and the amount of self-diagnosed vs. provider diagnosed BV episodes they had. RESULTS: 62 participants completed the anonymous online survey. With a self-reported median number of BV episodes in the past year was 4 (IQR 1-7). Among these women 69.8% reported BV had a negative impact on their sexual health, 67.7% on their physical health, 74.6% on their mental health. More than half of the respondents had used probiotics with oral Lactobacillus sp. (53.2%), mainly by oral route, and over a third had used vaginal boric acid (37.1%). Most women were unaware of Lactobacillus crispatus. Lactobacillus probiotics were more likely to be tried by women who were negatively impacted by BV for overall quality of life (p = 0.033), sexual health (p = 0.002), and mental health (p = 0.006) while boric acid use was more likely to be used by women who were negatively impacted by BV for their sexual health (p = 0.008). CONCLUSIONS: BV is associated with negative quality of life and the women most impacted are seeking alternative treatments such as probiotics (Lactobacillus) and boric acid. There needs to be improvements in BV treatment that include alternative therapy options that have demonstrated efficacy with standardized composition, formulation and dosage.