Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Phytother Res ; 29(12): 1887-93, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26344935

RESUMO

The leaves of Hancornia speciosa Gomes (Apocynaceae), a medicinal species found in the Brazilian cerrado biome, are traditionally used to treat wounds and inflammatory disorders. The goal of the present study was to investigate the in vitro wound healing properties of ethanolic extract of H. speciosa leaves and its isolated compounds, using the scratch assay, and to evaluate their effects on the release of the pro-inflammatory cytokine tumor necrosis factor (TNF-α) by lipopolysaccharide (LPS)-stimulated human acute monocytic (THP-1) cells. H. speciosa ethanolic extract significantly increased (42.8% ± 5.4 at 25 µg/mL) cell migration and proliferation of fibroblasts compared with control cells, as well as the isolated compounds bornesitol (80.8% ± 5.1) and quinic acid (69.1% ± 6.2), both assayed at 50 µM. TNF-α release by LPS-stimulated THP-1 cells was significantly reduced by the ethanolic extract (62.9% ± 8.2, i.e. 1791.1 ± 394.7 pg/mL) at 10 µg/mL, bornesitol (48.9% ± 0.9, i.e. 2461.6 ± 43.1 pg/mL) at 50 µM, and quinic acid (90.2% ± 3.4, i.e. 473.5 ± 164.4 pg/mL) and rutin (82.4% ± 5.6, i.e. 847.0 ± 271.8 pg/mL) at 10 µM. These results provided evidences to support the traditional use of H. speciosa leaves to treat wounds and inflammatory disorders.


Assuntos
Apocynaceae/química , Fibroblastos/efeitos dos fármacos , Extratos Vegetais/farmacologia , Cicatrização/efeitos dos fármacos , Brasil , Linhagem Celular , Ciclitóis/isolamento & purificação , Ciclitóis/farmacologia , Humanos , Lipopolissacarídeos , Folhas de Planta/química , Ácido Quínico/isolamento & purificação , Ácido Quínico/farmacologia , Rutina/isolamento & purificação , Rutina/farmacologia , Fator de Necrose Tumoral alfa/metabolismo
2.
Biomed Pharmacother ; 132: 110900, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33113433

RESUMO

Hancornia speciosa is a medicinal plant with proven antihypertensive activity. The cyclitol l-(+)-bornesitol is the main constituent of its leaves and is a potent inhibitor of the angiotensin-converting enzyme. We herein investigated the pharmacokinetic properties of bornesitol administered orally to Wistar rats, as well as bornesitol permeation in Caco-2 cells. Bornesitol was isolated and purified from an ethanol extract of H. speciosa leaves. An ultra-high performance liquid chromatography coupled with electrospray ionization mass spectrometry (UPLC-ESI-MS/MS) method was developed and validated to quantify bornesitol in rat plasma based on Multiple Reaction Monitoring, using pentaerythritol as an internal standard. Pharmacokinetics was evaluated by the administration of single doses via intravenous in bolus (3 mg/kg) and gavage (3, 15 and 25 mg/kg). Bornesitol permeation was assayed in a transwell Caco-2 cells model, tested alone, or combined with rutin, or as a constituent of H. speciosa extract, using a developed and validated UPLC-ESI-MS/MS method. All assayed validation parameters (selectivity, residual effect, matrix effect, linearity, precision, accuracy and stability of analyte in plasma and solution) for the bioanalytical method met the acceptance criteria established by regulatory guidelines. Bornestiol reached peak plasma concentration within approximately 60 min after oral administration with a half-life ranging from 72.15 min to 123.69 min. The peak concentration and area under the concentration-time curve of bornesitol did not rise proportionally with the increasing doses, suggesting a non-linear pharmacokinetics in rats and the oral bioavailability ranged from 28.5%-59.3%. Bornesitol showed low permeability in Caco-2 cells, but the permeability apparently increased when it was administered either combined with rutin or as a constituent of H. speciosa extract. In conclusion, bornesitol was rapidly absorbed after a single oral administration to rats and followed a non-linear pharmacokinetics. The obtained data will be useful to guide further pre-clinical development of bornesitol-containing herbal preparations of H. speciosa as an antihypertensive agent.


Assuntos
Anti-Hipertensivos/farmacocinética , Apocynaceae , Cromatografia Líquida de Alta Pressão , Ciclitóis/farmacocinética , Extratos Vegetais/farmacocinética , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas em Tandem , Administração Oral , Animais , Anti-Hipertensivos/administração & dosagem , Anti-Hipertensivos/sangue , Anti-Hipertensivos/isolamento & purificação , Apocynaceae/química , Disponibilidade Biológica , Células CACO-2 , Ciclitóis/administração & dosagem , Ciclitóis/sangue , Ciclitóis/isolamento & purificação , Humanos , Injeções Intravenosas , Absorção Intestinal , Mucosa Intestinal/metabolismo , Masculino , Modelos Biológicos , Dinâmica não Linear , Permeabilidade , Extratos Vegetais/administração & dosagem , Extratos Vegetais/sangue , Extratos Vegetais/isolamento & purificação , Ratos Wistar
3.
J Chromatogr B Analyt Technol Biomed Life Sci ; 1093-1094: 31-38, 2018 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-29980101

RESUMO

The antihypertensive activity of the medicinal plant Hancornia speciosa has been previously demonstrated by us, being the activity ascribed to polyphenols and cyclitols like l-(+)-bornesitol. We herein evaluated the stability of the bioactive marker bornesitol submitted to forced degradation conditions. Bornesitol employed in the study was isolated from H. speciosa leaves. An UHPLC-ESI-MS/MS method was developed to investigate bornesitol stability based on MRM (Multiple Reaction Monitoring) acquisition mode and negative ionization mode, employing both specific (m/z 193 → 161 Da) and confirmatory (m/z 193 → 175 Da) transitions. A gradient elution of 0.1% formic acid in water and acetonitrile was performed on a HILIC column. The method was validated and showed adequate linearity (r2 > 0.99), selectivity, specificity, accuracy, and precision (RSD < 2.9%). The method was robust for deliberate variations on dessolvation temperature, but not for changes in the flow rate and dessolvation gas. The results from the stability studies allowed us to classify bornesitol as labile for acidic and alkaline hydrolysis, but as very stable for oxidative and neutral hydrolysis exposure. Bornesitol was categorized as practically stable under photolysis degradation, whereas a considerable reduction on its contents was induced by metal ions and thermolysis exposure. Degraded samples from neutral hydrolysis and thermolysis were assayed in vitro for ACE inhibition and showed a substantial decrease in biological activity as compared to intact bornesitol. myo-Inositol was identified as the major degradation products in both matrices. This is the first report on bornesitol stability under different stress conditions and the obtained data are relevant for the development and quality control of standardized products from H. speciosa leaves.


Assuntos
Apocynaceae/química , Cromatografia Líquida de Alta Pressão/métodos , Ciclitóis , Espectrometria de Massas/métodos , Peptidil Dipeptidase A/efeitos dos fármacos , Inibidores da Enzima Conversora de Angiotensina/análise , Inibidores da Enzima Conversora de Angiotensina/química , Inibidores da Enzima Conversora de Angiotensina/farmacologia , Biomarcadores/análise , Biomarcadores/química , Ciclitóis/análise , Ciclitóis/química , Ciclitóis/farmacologia , Estabilidade de Medicamentos , Limite de Detecção , Modelos Lineares , Peptidil Dipeptidase A/metabolismo , Extratos Vegetais/química , Reprodutibilidade dos Testes
4.
J Ethnopharmacol ; 175: 648-67, 2015 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-26432351

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: The genus Anthocleista of the Gentianaceae family contains 14 species of trees and shrub-like plants distributed in tropical Africa, in Madagascar and on the Comoros. Traditionally, they are commonly used in the treatment of diabetes, hypertension, malaria, typhoid fever, obesity, diarrhea, dysentery, hyperprolactinemia, abdominal pain, ulcer, jaundice, asthma, hemorrhoids, hernia, cancer, wounds, chest pains, inflammations, rheumatism, STDs, infertility and skin diseases. They serve as an anthelmintic, laxative, diuretic and contraceptive. This review aims to provide for the first time a repository of ethnopharmacological information while critically evaluating the relation between the traditional medicinal uses, chemical constituents and pharmacological activities of the Anthocleista species so as to unveil opportunities for future research. MATERIALS AND METHODS: A search for relevant information on Anthocleista species was performed on scientific databases (Pubmed, Google Scholar, SciFinder, Web of Science, Scopus, PubChem and other web sources such as The Plant List, Kew Botanical Garden and PROTA) and books, PhD and MSc dissertations for un-published resources. RESULTS: Out of the 14 species of Anthocleista, 6 have been reported in literature to be widely used in traditional medicine for the treatment of various ailments. The six species include: A. djalonensis, A. vogelii, A. nobilis, A. grandiflora, A. schweinfurthii, and A. liebrechtsiana. The chemical compounds isolated from Anthocleista species fall into the class of phytochemicals such as secoiridoids, nor-secoiridoids, xanthones, phytosterols, triterpenes, alkaloids, and others of which majority of the compounds were isolated from A. djalonensis and A. vogelii. The in vitro and in vivo pharmacological studies on the crude extracts, fractions and few isolated compounds of Anthocleista species showed antidiabetic, antiplasmodial, antimicrobial, hypotensive, spasmogenic, anti-obesity, antiulcerogenic, analgesic, anti-inflammatory, antioxidant, antitrypanosomal, anthelmintic, fertility, diuretic and laxative activities which supports most of their uses in traditional medicine. However, the bulk of the studies where centered on the antidiabetic, antiplasmodial and antimicrobial activities of Anthocleista species, although the evidence of its antiplasmodial effect was not convincing enough due to the discrepancies between the in vitro and in vivo results. CONCLUSION: A. djalonensis and A. vogelii are potential antidiabetic and antibacterial agents. The antibacterial potency relates to infections or diseases caused by E. coli, S. typhi and S. aureus such as urinary tract infections, typhoid, diarrhea, skin diseases, and food poisoning. Pharmacological research on this genus is quite elementary and limited, thus, more advanced research is necessary to isolate and determine the activities of bioactive compounds in vitro and in vivo, establish their mechanisms of action and commence the process of clinical research.


Assuntos
Gentianaceae , Animais , Etnobotânica , Etnofarmacologia , Gentianaceae/química , Gentianaceae/toxicidade , Humanos , Medicina Tradicional , Compostos Fitoquímicos/análise , Fitoterapia , Preparações de Plantas/química , Preparações de Plantas/farmacologia , Preparações de Plantas/uso terapêutico , Preparações de Plantas/toxicidade , Plantas Medicinais
5.
Biosci Biotechnol Biochem ; 63(1): 189-91, 1999.
Artigo em Inglês | MEDLINE | ID: mdl-27392876

RESUMO

An unidentified carbohydrate was isolated from sweet pea (Lathyrus odoratus L. cv. Diana) petals using HPLC. The isolated compound was identified as L-1-O-methyl-myo-inositol, called L-bornesitol, using (1)H-NMR, (13)C-NMR, and CI-MS. L-Bornesitol was distributed in all organs at high concentrations. L-Bornesitol concentration of petals gradually decreased during flower bud development, but the L-bornesitol content increased by about 5 times.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA