Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Cancer Sci ; 115(8): 2774-2785, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38860412

RESUMO

Metastatic spinal tumors are increasingly prevalent due to advancements in cancer treatment, leading to prolonged survival rates. This rising prevalence highlights the need for developing more effective therapeutic approaches to address this malignancy. Boron neutron capture therapy (BNCT) offers a promising solution by delivering targeted doses to tumors while minimizing damage to normal tissue. In this study, we evaluated the efficacy and safety of BNCT as a potential therapeutic option for spine metastases in mouse models induced by A549 human lung adenocarcinoma cells. The animal models were randomly allocated into three groups: untreated (n = 10), neutron irradiation only (n = 9), and BNCT (n = 10). Each mouse was administered 4-borono-L-phenylalanine (250 mg/kg) intravenously, followed by measurement of boron concentrations 2.5 h later. Overall survival, neurological function of the hindlimb, and any adverse events were assessed post irradiation. The tumor-to-normal spinal cord and blood boron concentration ratios were 3.6 and 2.9, respectively, with no significant difference observed between the normal and compressed spinal cord tissues. The BNCT group exhibited significantly prolonged survival rates compared with the other groups (vs. untreated, p = 0.0015; vs. neutron-only, p = 0.0104, log-rank test). Furthermore, the BNCT group demonstrated preserved neurological function relative to the other groups (vs. untreated, p = 0.0004; vs. neutron-only, p = 0.0051, multivariate analysis of variance). No adverse events were observed post irradiation. These findings indicate that BNCT holds promise as a novel treatment modality for metastatic spinal tumors.


Assuntos
Terapia por Captura de Nêutron de Boro , Modelos Animais de Doenças , Neoplasias da Coluna Vertebral , Terapia por Captura de Nêutron de Boro/métodos , Animais , Camundongos , Humanos , Neoplasias da Coluna Vertebral/radioterapia , Neoplasias da Coluna Vertebral/secundário , Neoplasias Pulmonares/radioterapia , Neoplasias Pulmonares/patologia , Fenilalanina/análogos & derivados , Fenilalanina/uso terapêutico , Células A549 , Medula Espinal/efeitos da radiação , Medula Espinal/patologia , Linhagem Celular Tumoral , Boro/uso terapêutico , Feminino
2.
Bioorg Chem ; 142: 106940, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37939508

RESUMO

A [10B]boron agent and a nuclear imaging probe for pharmacokinetic estimation form the fundamental pair in successful boron neutron capture therapy (BNCT). However, 4-[10B]borono-l-phenylalanine (BPA), used in clinical BNCT, has undesirable water solubility and tumor selectivity. Therefore, we synthesized fluorinated and α-methylated 3-borono-l-phenylalanine (3BPA) derivatives to realize improved water solubility, tumor targetability, and biodistribution. All 3BPA derivatives exhibited over 10 times higher water solubility than BPA. Treatment with α-methylated 3BPA derivatives resulted in decreased cell uptake via l-type amino acid transporter (LAT) 2 while maintaining LAT1 recognition, thereby significantly improving LAT1/LAT2 selectivity. Biodistribution studies showed that fluorinated α-methyl 3BPA derivatives exhibited reduced boron accumulation in nontarget tissues, including muscle, skin, and plasma. Consequently, these derivatives demonstrated significantly improved tumor-to-normal tissue ratios compared to 3BPA and BPA. Overall, fluorinated α-methyl 3BPA derivatives with the corresponding radiofluorinated compounds hold potential as promising agents for future BNCT/PET theranostics.


Assuntos
Terapia por Captura de Nêutron de Boro , Neoplasias , Humanos , Boro/metabolismo , Terapia por Captura de Nêutron de Boro/métodos , Distribuição Tecidual , Neoplasias/radioterapia , Neoplasias/tratamento farmacológico , Fenilalanina/química , Água , Compostos de Boro/química
3.
Molecules ; 28(18)2023 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-37764328

RESUMO

Boron has gained significant attention in medical research due to its B-10 isotope's high cross section for the reaction with thermal neutrons, generating ionizing particles that can eliminate cancer cells, propelling the development of boron neutron capture therapy (BNCT) for cancer treatment. The compound 4-borono-L-phenylalanine (BPA) has exhibited potential in BNCT clinical trials. Enhancing BPA uptake in cells involves proposing L-amino acid preloading. This study introduces a novel analytical strategy utilizing ICP-MS and single cell ICP-MS (SC-ICP-MS) to assess the effectiveness of L-tyrosine and L-phenylalanine preloading on human non-small cell lung carcinoma (A549) and normal Chinese hamster lung fibroblast (V79-4) models, an unexplored context. ICP-MS outcomes indicated that L-tyrosine and L-phenylalanine pre-treatment increased BPA uptake in V79-4 cells by 2.04 ± 0.74-fold (p = 0.000066) and 1.46 ± 0.06-fold (p = 0.000016), respectively. Conversely, A549 cells manifested heightened BPA uptake solely with L-tyrosine preloading, with a factor of 1.24 ± 0.47 (p = 0.028). BPA uptake remained higher in A549 compared to V79-4 regardless of preloading. SC-ICP-MS measurements showcased noteworthy boron content heterogeneity within A549 cells, signifying diverse responses to BPA exposure, including a subset with notably high BPA uptake. This study underscores SC-ICP-MS's utility in precise cellular boron quantification, validating cellular BPA uptake's heterogeneity.


Assuntos
Terapia por Captura de Nêutron de Boro , Fenilalanina , Cricetinae , Animais , Humanos , Fenilalanina/química , Tirosina , Boro/farmacologia , Análise Espectral , Compostos de Boro/química
4.
Sensors (Basel) ; 22(19)2022 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-36236770

RESUMO

The amount and localization of boron-10 atoms delivered into tumor cells determines the therapeutic effect of boron neutron capture therapy (BNCT) and, consequently, efforts have been directed to develop fluorescence sensors to detect intracellular boronic acid compounds. Currently, these sensors are blue-emitting and hence are impracticable for co-staining with nucleus staining reagents, such as DAPI and Hoechst 33342. Here, we designed and synthesized a novel fluorescence boron sensor, BS-631, that emits fluorescence with a maximum emission wavelength of 631 nm after reaction with the clinically available boronic acid agent, 4-borono-l-phenylalanine (BPA). BS-631 quantitatively detected BPA with sufficiently high sensitivity (detection limit = 19.6 µM) for evaluating BNCT agents. Furthermore, BS-631 did not emit fluorescence after incubation with metal cations. Notably, red-emitting BS-631 could easily and clearly visualize the localization of BPA within cells with nuclei co-stained using Hoechst 33342. This study highlights the promising properties of BS-631 as a versatile boron sensor for evaluating and analyzing boronic acid agents in cancer therapy.


Assuntos
Terapia por Captura de Nêutron de Boro , Boro , Compostos de Boro , Ácidos Borônicos , Linhagem Celular Tumoral , Fluorescência , Fenilalanina
5.
J Pharmacol Sci ; 139(3): 215-222, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30833090

RESUMO

Boron neutron capture therapy (BNCT) is a radiotherapy utilizing the neutron capture and nuclear fission reaction of 10B taken up into tumor cells. The most commonly used boron agent in BNCT, p-borono-l-phenylalanine (BPA), is accumulated in tumors by amino acid transporters upregulated in tumor cells. Here, by using dipeptides of BPA and tyrosine (BPA-Tyr and Tyr-BPA), we propose a novel strategy of selective boron delivery into tumor cells via oligopeptide transporter PEPT1 upregulated in various cancers. Kinetic analyses indicated that BPA-Tyr and Tyr-BPA are transported by oligopeptide transporters, PEPT1 and PEPT2. The intrinsic oligopeptide transport activity in tumor cells clearly correlated with PEPT1 protein expression level but not with PEPT2, suggesting that PEPT1 is the predominant oligopeptide transporter at least in tumor cell lines. Furthermore, using BPA-Tyr and Tyr-BPA, boron was successfully delivered into PEPT1-expressing pancreatic cancer AsPC-1 cells via a PEPT1-mediated mechanism. Intravenous administration of BPA-Tyr into the mice bearing AsPC-1 xenograft tumors resulted in significant boron accumulation in the tumors. It is proposed that the oligopeptide transporters, especially PEPT1, are promising candidates for molecular targets of boron delivery in BNCT. The BPA-containing dipeptides would have a potential for the development of novel boron carriers targeting PEPT1.


Assuntos
Compostos de Boro/administração & dosagem , Terapia por Captura de Nêutron de Boro/métodos , Neoplasias Pancreáticas/radioterapia , Transportador 1 de Peptídeos/genética , Fenilalanina/análogos & derivados , Animais , Transporte Biológico , Compostos de Boro/química , Compostos de Boro/metabolismo , Linhagem Celular Tumoral , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Fenilalanina/administração & dosagem , Fenilalanina/química , Fenilalanina/metabolismo , Simportadores/genética , Tirosina/química , Regulação para Cima , Ensaios Antitumorais Modelo de Xenoenxerto
6.
Cancer Sci ; 109(5): 1617-1626, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29498142

RESUMO

In boron neutron capture therapy (BNCT), 10 B-4-borono-L-phenylalanine (BPA) is commonly used as a 10 B carrier. PET using 4-borono-2-18 F-fluoro-phenylalanine (18 F-FBPA PET) has been performed to estimate boron concentration and predict the therapeutic effects of BNCT; however, the association between tumor uptake of 18 F-FBPA and boron concentration in tumors remains unclear. The present study investigated the transport mechanism of 18 F-FBPA and BPA, and evaluated the utility of 18 F-FBPA PET in predicting boron concentration in tumors. The transporter assay revealed that 2-aminobicyclo-(2.2.1)-heptane-2-carboxylic acid, an inhibitor of the L-type amino acid transporter, significantly inhibited 18 F-FBPA and 14 C-4-borono-L-phenylalanine (14 C-BPA) uptake in FaDu and LN-229 human cancer cells. 18 F-FBPA uptake strongly correlated with 14 C-BPA uptake in 7 human tumor cell lines (r = .93; P < .01). PET experiments demonstrated that tumor uptake of 18 F-FBPA was independent of the administration method, and uptake of 18 F-FBPA by bolus injection correlated well with BPA uptake by continuous intravenous infusion. The results of this study revealed that evaluating tumor uptake of 18 F-FBPA by PET was useful for estimating 10 B concentration in tumors.


Assuntos
Compostos de Boro/farmacocinética , Terapia por Captura de Nêutron de Boro/métodos , Fenilalanina/análogos & derivados , Tomografia por Emissão de Pósitrons/métodos , Animais , Linhagem Celular Tumoral , Feminino , Humanos , Infusões Intravenosas , Camundongos , Camundongos Endogâmicos BALB C , Fenilalanina/farmacocinética , Distribuição Tecidual
7.
Polymers (Basel) ; 15(14)2023 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-37514538

RESUMO

The aim of this study was to create molecularly imprinted polymers (MIPs) that are specific towards 4-borono-L-phenylalanine (BPA) to serve as boron compound carriers. The honeycomb-like MIPs were characterized in the matter of adsorption properties, morphology, structure, and cytotoxicity towards A549 and V79-4 cell lines. The honeycomb-like MIP composed from methacrylic acid and ethylene glycol dimethacrylate was characterized by a binding capacity of 330.4 ± 4.6 ng g-1 and an imprinting factor of 2.04, and its ordered, porous morphology was confirmed with scanning electron microscopy. The theoretical analysis revealed that the coexistence of different anionic forms of the analyte in basic solution might lower the binding capacity of the MIP towards BPA. The release profiles from the model phosphate buffer saline showed that only 0 to 4.81% of BPA was released from the MIP within the time frame of two hours, furthermore, the obtained material was considered non-cytotoxic towards tested cell lines. The results prove that MIPs can be considered as effective BPA delivery systems for biomedical applications and should be investigated in further studies.

8.
Pharmaceutics ; 14(5)2022 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-35631692

RESUMO

Although 4-borono-l-phenylalanine (4-BPA) is currently the only marketed agent available for boron neutron capture therapy (BNCT), its low water solubility raises concerns. In this study, we synthesized 3-borono-l-phenylalanine (3-BPA), a positional isomer of 4-BPA, with improved water solubility. We further evaluated its physicochemical properties, tumor accumulation, and biodistribution. The water solubility of 3-BPA was 125 g/L, which is more than 100 times higher than that of 4-BPA. Due to the high water solubility, we prepared the administration solution of 3-BPA without a solubilizer sugar, which is inevitably added to 4-BPA preparation and has adverse effects. In in vitro and in vivo experiments, boron accumulation in cancers after administration was statistically equivalent in both sugar-complexed 3-BPA and 4-BPA. Furthermore, the biodistribution of 3-BPA was comparable with that of sugar-complexed 3-BPA. Since 3-BPA has high water solubility and tumor targetability equivalent to 4-BPA, 3-BPA can replace 4-BPA in future BNCT.

9.
SAGE Open Med Case Rep ; 10: 2050313X211067917, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35024147

RESUMO

Proximal-type epithelioid sarcoma is an aggressive malignant soft-tissue neoplasm, a "proximal" variant of epithelioid sarcoma, resistant to multimodal therapy and involved in early tumor-related death. Pertinent treatments are, therefore, continually being explored. A 24-year-old woman with nonmetastatic proximal-type epithelioid sarcoma, originating subcutaneously on the right side of the vulva, underwent surgical resection; the lesion recurred, however, leading to death 3 months after the second surgery. Here described is a case of proximal-type epithelioid sarcoma expressing L-type amino acid transporter 1 (LAT1) that transports essential amino acids and p-borono-L-phenylalanine (BPA)-the chemical compound used in boron neutron capture therapy (BNCT)-and is highly expressed in many malignant tumors. Recently, LAT1 has drawn attention, and relevant treatments have been studied-LAT1 inhibitor and BNCT. LAT1 expression in proximal-type epithelioid sarcoma may lead to cogent treatments for the disease.

10.
Cells ; 10(11)2021 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-34831449

RESUMO

Boron Neutron Capture Therapy (BNCT) is a tumor cell-selective radiotherapy based on a nuclear reaction that occurs when the isotope boron-10 (10B) is radiated by low-energy thermal neutrons or epithermal neutrons, triggering a nuclear fission response and enabling a selective administration of irradiation to cells. Hence, we need to create novel delivery agents containing 10B with high tumor selectivity, but also exhibiting low intrinsic toxicity, fast clearance from normal tissue and blood, and no pharmaceutical effects. In the past, boronated monoclonal antibodies have been proposed using large boron-containing molecules or dendrimers, but with no investigations in relation to maintaining antibody specificity and structural and functional features. This work aims at improving the potential of monoclonal antibodies applied to BNCT therapy, identifying in silico the best native residues suitable to be substituted with a boronated one, carefully evaluating the effect of boronation on the 3D structure of the monoclonal antibody and on its binding affinity. A boronated monoclonal antibody was thus generated for specific 10B delivery. In this context, we have developed a case study of Boron Delivery Antibody Identification Pipeline, which has been tested on cetuximab. Cetuximab is an epidermal growth factor receptor (EGFR) inhibitor used in the treatment of metastatic colorectal cancer, metastatic non-small cell lung cancer, and head and neck cancer.


Assuntos
Anticorpos Monoclonais/administração & dosagem , Terapia por Captura de Nêutron de Boro , Boro/administração & dosagem , Ácidos Borônicos/química , Simulação por Computador , Anticorpos Monoclonais/química , Anticorpos Monoclonais/genética , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Mutação/genética
11.
Appl Radiat Isot ; 169: 109407, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33444907

RESUMO

Synovial sarcoma is a rare tumor requiring new treatment methods. A 46-year-old woman with primary monophasic synovial sarcoma in the left thigh involving the sciatic nerve, declining surgery because of potential dysfunction of the affected limbs, received two courses of BNCT. The tumor thus reduced was completely resected with no subsequent recurrence. The patient is now able to walk unassisted, and no local recurrence has been observed, demonstrating the applicability of BNCT as adjuvant therapy for synovial sarcoma. Further study and analysis with more experience accumulation are needed to confirm the real impact of BNCT efficacy for its application to synovial sarcoma.


Assuntos
Terapia por Captura de Nêutron de Boro , Sarcoma Sinovial/radioterapia , Terapia Combinada , Feminino , Humanos , Pessoa de Meia-Idade , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Sarcoma Sinovial/diagnóstico por imagem , Sarcoma Sinovial/cirurgia
12.
Appl Radiat Isot ; 165: 109257, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32777739

RESUMO

Bone metastasis has a major impact on the quality of life that general therapy cannot control. We established a bone metastasis model with a human breast cancer cell line and investigated the therapeutic effect of boron neutron capture therapy (BNCT). BNCT suppressed tumor growth in cases of intramedullary small tumors without damaging normal tissues, providing preliminary evidence that it is a potentially new therapeutic option for controlling tumor growth from bone metastasis. Further research is warranted for its clinical application.


Assuntos
Neoplasias Ósseas/radioterapia , Neoplasias Ósseas/secundário , Compostos de Boro/química , Terapia por Captura de Nêutron de Boro/métodos , Neoplasias da Mama/patologia , Fenilalanina/química , Animais , Linhagem Celular Tumoral , Feminino , Humanos , Ensaios Antitumorais Modelo de Xenoenxerto
13.
Appl Radiat Isot ; 166: 109324, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32861973

RESUMO

Clear cell sarcoma of tendons and aponeuroses (CCS) is a rare, malignant tumor arising in lower extremities with no effective treatment other than wide surgical resection. Here described is a case of primary CCS in the peroneal tendon of the right foot of a 54-year-old woman enrolled to undergo BNCT. The tumor mass post-BNCT disappeared totally without damage to other normal tissue, demonstrating, for the first time, the potential efficacy of BNCT in complete local control of CCS.


Assuntos
Terapia por Captura de Nêutron de Boro/métodos , Doenças do Pé/radioterapia , Sarcoma de Células Claras/radioterapia , Tendões , Biópsia por Agulha , Feminino , Doenças do Pé/diagnóstico por imagem , Doenças do Pé/patologia , Humanos , Neoplasias Pulmonares/secundário , Imageamento por Ressonância Magnética , Pessoa de Meia-Idade , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Planejamento da Radioterapia Assistida por Computador , Sarcoma de Células Claras/diagnóstico por imagem , Sarcoma de Células Claras/secundário , Tendões/diagnóstico por imagem , Tendões/patologia , Resultado do Tratamento
14.
Appl Radiat Isot ; 104: 124-7, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26159661

RESUMO

We modified a commercially available synthesis module for nucleophilic [(18)F]fluorinations (TRACERlab(TM) FXFDG, GE Healthcare) to enable the reliable synthesis of 2-[(18)F]fluoro-4-borono-L-phenylalanine ([(18)F]FBPA) via direct electrophilic substitution of 4-borono-L-phenylalanine with [(18)F]F2 gas. [(18)F]FBPA was obtained with a RCY of 8.5±2.0% and a radiochemical purity of 98±1% in a total synthesis time of 72±7 min (n=22). The modified synthesis module might also be useful for the synthesis of other [(18)F]radiopharmaceuticals via electrophilic substitution reactions while still being suitable for nucleophilic substitution reactions.


Assuntos
Compostos de Boro/síntese química , Radioisótopos de Flúor/química , Marcação por Isótopo/instrumentação , Fenilalanina/análogos & derivados , Compostos Radiofarmacêuticos/síntese química , Robótica/instrumentação , Transporte de Elétrons , Elétrons , Desenho de Equipamento , Análise de Falha de Equipamento , Teste de Materiais , Fenilalanina/síntese química
15.
Appl Radiat Isot ; 106: 195-201, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26337135

RESUMO

Clear cell sarcoma (CCS) is a rare malignant tumor with a poor prognosis. In the present study, we established a lung metastasis animal model of CCS and investigated the therapeutic effect of boron neutron capture therapy (BNCT) using p-borono-L-phenylalanine (L-BPA). Biodistribution data revealed tumor-selective accumulation of (10)B. Unlike conventional gamma-ray irradiation, BNCT significantly suppressed tumor growth without damaging normal tissues, suggesting that it may be a potential new therapeutic option to treat CCS lung metastases.


Assuntos
Terapia por Captura de Nêutron de Boro , Modelos Animais de Doenças , Neoplasias Pulmonares/secundário , Sarcoma de Células Claras/radioterapia , Animais , Feminino , Camundongos , Camundongos Endogâmicos BALB C
16.
Appl Radiat Isot ; 106: 220-5, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26278348

RESUMO

Malignant peripheral nerve sheath tumors (MPNST) are relatively rare neoplasms with poor prognosis. At present there is no effective treatment for MPNST other than surgical resection. Nonetheless, the anti-tumor effect of boron neutron capture therapy (BNCT) was recently demonstrated in two patients with MPNST. Subsequently, tumor-bearing nude mice subcutaneously transplanted with a human MPNST cell line were injected with p-borono-L-phenylalanine (L-BPA) and subjected to BNCT. Pathological studies then revealed that the MPNST cells were selectively destroyed by BNCT.


Assuntos
Terapia por Captura de Nêutron de Boro , Neurilemoma/radioterapia , Animais , Boro/farmacocinética , Linhagem Celular Tumoral , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Neurilemoma/patologia , Distribuição Tecidual
17.
Appl Radiat Isot ; 88: 59-63, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24389062

RESUMO

Clear cell sarcoma (CCS) is a rare malignant tumor with a poor prognosis. In our previous study, the tumor disappeared under boron neutron capture therapy (BNCT) on subcutaneously-transplanted CCS-bearing animals. In the present study, the tumor disappeared under this therapy on model mice intramuscularly implanted with three different human CCS cells. BNCT led to the suppression of tumor-growth in each of the different model mice, suggesting its potentiality as an alternative to, or integrative option for, the treatment of CCS.


Assuntos
Compostos de Boro/farmacocinética , Compostos de Boro/uso terapêutico , Terapia por Captura de Nêutron de Boro/métodos , Neoplasias Musculares/metabolismo , Neoplasias Musculares/radioterapia , Fenilalanina/análogos & derivados , Sarcoma de Células Claras/metabolismo , Sarcoma de Células Claras/radioterapia , Animais , Linhagem Celular Tumoral , Feminino , Humanos , Taxa de Depuração Metabólica , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Especificidade de Órgãos , Fenilalanina/farmacocinética , Fenilalanina/uso terapêutico , Distribuição Tecidual , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA