Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 797
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 170(2): 393-406.e28, 2017 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-28709004

RESUMO

Assigning behavioral functions to neural structures has long been a central goal in neuroscience and is a necessary first step toward a circuit-level understanding of how the brain generates behavior. Here, we map the neural substrates of locomotion and social behaviors for Drosophila melanogaster using automated machine-vision and machine-learning techniques. From videos of 400,000 flies, we quantified the behavioral effects of activating 2,204 genetically targeted populations of neurons. We combined a novel quantification of anatomy with our behavioral analysis to create brain-behavior correlation maps, which are shared as browsable web pages and interactive software. Based on these maps, we generated hypotheses of regions of the brain causally related to sensory processing, locomotor control, courtship, aggression, and sleep. Our maps directly specify genetic tools to target these regions, which we used to identify a small population of neurons with a role in the control of walking.


Assuntos
Mapeamento Encefálico/métodos , Drosophila melanogaster/fisiologia , Animais , Comportamento Animal , Feminino , Locomoção , Masculino , Software
2.
Proc Natl Acad Sci U S A ; 121(14): e2318528121, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38536752

RESUMO

Human working memory is a key cognitive process that engages multiple functional anatomical nodes across the brain. Despite a plethora of correlative neuroimaging evidence regarding the working memory architecture, our understanding of critical hubs causally controlling overall performance is incomplete. Causal interpretation requires cognitive testing following safe, temporal, and controllable neuromodulation of specific functional anatomical nodes. Such experiments became available in healthy humans with the advance of transcranial alternating current stimulation (tACS). Here, we synthesize findings of 28 placebo-controlled studies (in total, 1,057 participants) that applied frequency-specific noninvasive stimulation of neural oscillations and examined working memory performance in neurotypical adults. We use a computational meta-modeling method to simulate each intervention in realistic virtual brains and test reported behavioral outcomes against the stimulation-induced electric fields in different brain nodes. Our results show that stimulating anterior frontal and medial temporal theta oscillations and occipitoparietal gamma rhythms leads to significant dose-dependent improvement in working memory task performance. Conversely, prefrontal gamma modulation is detrimental to performance. Moreover, we found distinct spatial expression of theta subbands, where working memory changes followed orbitofrontal high-theta modulation and medial temporal low-theta modulation. Finally, all these results are driven by changes in working memory accuracy rather than processing time measures. These findings provide a fresh view of the working memory mechanisms, complementary to neuroimaging research, and propose hypothesis-driven targets for the clinical treatment of working memory deficits.


Assuntos
Memória de Curto Prazo , Estimulação Transcraniana por Corrente Contínua , Adulto , Humanos , Memória de Curto Prazo/fisiologia , Ritmo Gama/fisiologia , Encéfalo , Cognição/fisiologia , Transtornos da Memória , Estimulação Transcraniana por Corrente Contínua/métodos
3.
Neuroimage ; 300: 120863, 2024 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-39322094

RESUMO

Cognitive control processes enable the suppression of automatic behaviors and the initiation of appropriate responses. The Stroop color naming task serves as a benchmark paradigm for understanding the neurobiological model of verbal cognitive control. Previous research indicates a predominant engagement of the prefrontal and premotor cortex during the Stroop task compared to reading. We aim to further this understanding by creating a dynamic atlas of task-preferential modulations of functional connectivity through white matter. Patients undertook word-reading and Stroop tasks during intracranial EEG recording. We quantified task-related high-gamma amplitude modulations at 547 nonepileptic electrode sites, and a mixed model analysis identified regions and timeframes where these amplitudes differed between tasks. We then visualized white matter pathways with task-preferential functional connectivity enhancements at given moments. Word reading, compared to the Stroop task, exhibited enhanced functional connectivity in inter- and intra-hemispheric white matter pathways from the left occipital-temporal region 350-600 ms before response, including the posterior callosal fibers as well as the left vertical occipital, inferior longitudinal, inferior fronto-occipital, and arcuate fasciculi. The Stroop task showed enhanced functional connectivity in the pathways from the left middle-frontal pre-central gyri, involving the left frontal u-fibers and anterior callosal fibers. Automatic word reading largely utilizes the left occipital-temporal cortices and associated white matter tracts. Verbal cognitive control predominantly involves the left middle frontal and precentral gyri and its connected pathways. Our dynamic tractography atlases may serve as a novel resource providing insights into the unique neural dynamics and pathways of automatic reading and verbal cognitive control.

4.
Eur J Neurosci ; 60(1): 3772-3794, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38726801

RESUMO

Beside the well-documented involvement of secondary somatosensory area, the cortical network underlying late somatosensory evoked potentials (P60/N60 and P100/N100) is still unknown. Electroencephalogram and magnetoencephalogram source imaging were performed to further investigate the origin of the brain cortical areas involved in late somatosensory evoked potentials, using sensory inputs of different strengths and by testing the correlation between cortical sources. Simultaneous high-density electroencephalograms and magnetoencephalograms were performed in 19 participants, and electrical stimulation was applied to the median nerve (wrist level) at intensity between 1.5 and 9 times the perceptual threshold. Source imaging was undertaken to map the stimulus-induced brain cortical activity according to each individual brain magnetic resonance imaging, during three windows of analysis covering early and late somatosensory evoked potentials. Results for P60/N60 and P100/N100 were compared with those for P20/N20 (early response). According to literature, maximal activity during P20/N20 was found in central sulcus contralateral to stimulation site. During P60/N60 and P100/N100, activity was observed in contralateral primary sensorimotor area, secondary somatosensory area (on both hemispheres) and premotor and multisensory associative cortices. Late responses exhibited similar characteristics but different from P20/N20, and no significant correlation was found between early and late generated activities. Specific clusters of cortical activities were activated with specific input/output relationships underlying early and late somatosensory evoked potentials. Cortical networks, partly common to and distinct from early somatosensory responses, contribute to late responses, all participating in the complex somatosensory brain processing.


Assuntos
Eletroencefalografia , Potenciais Somatossensoriais Evocados , Magnetoencefalografia , Córtex Somatossensorial , Humanos , Potenciais Somatossensoriais Evocados/fisiologia , Magnetoencefalografia/métodos , Masculino , Feminino , Adulto , Eletroencefalografia/métodos , Córtex Somatossensorial/fisiologia , Córtex Somatossensorial/diagnóstico por imagem , Nervo Mediano/fisiologia , Adulto Jovem , Estimulação Elétrica/métodos , Mapeamento Encefálico/métodos , Imageamento por Ressonância Magnética/métodos
5.
Hum Brain Mapp ; 45(7): e26695, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38727010

RESUMO

Human infancy is marked by fastest postnatal brain structural changes. It also coincides with the onset of many neurodevelopmental disorders. Atlas-based automated structure labeling has been widely used for analyzing various neuroimaging data. However, the relatively large and nonlinear neuroanatomical differences between infant and adult brains can lead to significant offsets of the labeled structures in infant brains when adult brain atlas is used. Age-specific 1- and 2-year-old brain atlases covering all major gray and white matter (GM and WM) structures with diffusion tensor imaging (DTI) and structural MRI are critical for precision medicine for infant population yet have not been established. In this study, high-quality DTI and structural MRI data were obtained from 50 healthy children to build up three-dimensional age-specific 1- and 2-year-old brain templates and atlases. Age-specific templates include a single-subject template as well as two population-averaged templates from linear and nonlinear transformation, respectively. Each age-specific atlas consists of 124 comprehensively labeled major GM and WM structures, including 52 cerebral cortical, 10 deep GM, 40 WM, and 22 brainstem and cerebellar structures. When combined with appropriate registration methods, the established atlases can be used for highly accurate automatic labeling of any given infant brain MRI. We demonstrated that one can automatically and effectively delineate deep WM microstructural development from 3 to 38 months by using these age-specific atlases. These established 1- and 2-year-old infant brain DTI atlases can advance our understanding of typical brain development and serve as clinical anatomical references for brain disorders during infancy.


Assuntos
Atlas como Assunto , Encéfalo , Imagem de Tensor de Difusão , Substância Cinzenta , Substância Branca , Humanos , Lactente , Pré-Escolar , Masculino , Substância Branca/diagnóstico por imagem , Substância Branca/anatomia & histologia , Substância Branca/crescimento & desenvolvimento , Feminino , Substância Cinzenta/diagnóstico por imagem , Substância Cinzenta/crescimento & desenvolvimento , Substância Cinzenta/anatomia & histologia , Imagem de Tensor de Difusão/métodos , Encéfalo/diagnóstico por imagem , Encéfalo/crescimento & desenvolvimento , Encéfalo/anatomia & histologia , Processamento de Imagem Assistida por Computador/métodos
6.
Hum Brain Mapp ; 45(1): e26571, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38224544

RESUMO

The ability to detect and assess world-relative object-motion is a critical computation performed by the visual system. This computation, however, is greatly complicated by the observer's movements, which generate a global pattern of motion on the observer's retina. How the visual system implements this computation is poorly understood. Since we are potentially able to detect a moving object if its motion differs in velocity (or direction) from the expected optic flow generated by our own motion, here we manipulated the relative motion velocity between the observer and the object within a stationary scene as a strategy to test how the brain accomplishes object-motion detection. Specifically, we tested the neural sensitivity of brain regions that are known to respond to egomotion-compatible visual motion (i.e., egomotion areas: cingulate sulcus visual area, posterior cingulate sulcus area, posterior insular cortex [PIC], V6+, V3A, IPSmot/VIP, and MT+) to a combination of different velocities of visually induced translational self- and object-motion within a virtual scene while participants were instructed to detect object-motion. To this aim, we combined individual surface-based brain mapping, task-evoked activity by functional magnetic resonance imaging, and parametric and representational similarity analyses. We found that all the egomotion regions (except area PIC) responded to all the possible combinations of self- and object-motion and were modulated by the self-motion velocity. Interestingly, we found that, among all the egomotion areas, only MT+, V6+, and V3A were further modulated by object-motion velocities, hence reflecting their possible role in discriminating between distinct velocities of self- and object-motion. We suggest that these egomotion regions may be involved in the complex computation required for detecting scene-relative object-motion during self-motion.


Assuntos
Percepção de Movimento , Neocórtex , Humanos , Percepção de Movimento/fisiologia , Mapeamento Encefálico , Movimento (Física) , Giro do Cíngulo , Estimulação Luminosa/métodos
7.
Hum Brain Mapp ; 45(4): e26646, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38433705

RESUMO

Comprising numerous subnuclei, the thalamus intricately interconnects the cortex and subcortex, orchestrating various facets of brain functions. Extracting personalized parcellation patterns for these subnuclei is crucial, as different thalamic nuclei play varying roles in cognition and serve as therapeutic targets for neuromodulation. However, accurately delineating the thalamic nuclei boundary at the individual level is challenging due to intersubject variability. In this study, we proposed a prior-guided parcellation (PG-par) method to achieve robust individualized thalamic parcellation based on a central-boundary prior. We first constructed probabilistic atlas of thalamic nuclei using high-quality diffusion MRI datasets based on the local diffusion characteristics. Subsequently, high-probability voxels in the probabilistic atlas were utilized as prior guidance to train unique multiple classification models for each subject based on a multilayer perceptron. Finally, we employed the trained model to predict the parcellation labels for thalamic voxels and construct individualized thalamic parcellation. Through a test-retest assessment, the proposed prior-guided individualized thalamic parcellation exhibited excellent reproducibility and the capacity to detect individual variability. Compared with group atlas registration and individual clustering parcellation, the proposed PG-par demonstrated superior parcellation performance under different scanning protocols and clinic settings. Furthermore, the prior-guided individualized parcellation exhibited better correspondence with the histological staining atlas. The proposed prior-guided individualized thalamic parcellation method contributes to the personalized modeling of brain parcellation.


Assuntos
Núcleos Talâmicos , Tálamo , Humanos , Reprodutibilidade dos Testes , Tálamo/diagnóstico por imagem , Encéfalo , Córtex Cerebral
8.
J Neurosci Res ; 102(1): e25279, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38284833

RESUMO

An observer willing to cross a street must first estimate if the approaching cars offer enough time to safely complete the task. The brain areas supporting this perception, known as Time-To-Contact (TTC) perception, have been mainly studied through noninvasive correlational approaches. We carried out an experiment in which patients were tested during an awake brain surgery electrostimulation mapping to examine the causal implication of various brain areas in the street-crossing decision process. Forty patients were tested in a gap acceptance task before their surgery to establish a baseline performance. The task was individually adapted upon this baseline level and carried out during their surgery. We acquired and normalized to MNI space the coordinates of the functional areas that influenced task performance. A total of 103 stimulation sites were tested, allowing to establish a large map of the areas involved in the street-crossing decision. Multiple sites were found to impact the gap acceptance decision. A direct implication was however found mostly for sites within the right parietal lobe, while indirect implication was found for sites within the language, motor, or attentional networks. The right parietal lobe can be considered as causally influencing the gap acceptance decision. Other positive sites were all accompanied with dysfunction in other cognitive functions, and therefore should probably not be considered as the site of TTC estimation.


Assuntos
Mapeamento Encefálico , Encéfalo , Humanos , Encéfalo/cirurgia , Cognição , Idioma , Lobo Parietal
9.
J Anat ; 244(3): 527-536, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38009263

RESUMO

Corticotropin-releasing hormone (CRH) neurons are densely distributed in the medial prefrontal cortex (mPFC), which plays a crucial role in integrating and processing emotional and cognitive inputs from other brain regions. Therefore, it is important to know the neural afferent patterns of mPFCCRH neurons, which are still unclear. Here, we utilized a rabies virus-based monosynaptic retrograde tracing system to map the presynaptic afferents of the mPFCCRH neurons throughout the entire brain. The results show that the mPFCCRH neurons receive inputs from three main groups of brain regions: (1) the cortex, primarily the orbital cortex, somatomotor areas, and anterior cingulate cortex; (2) the thalamus, primarily the anteromedial nucleus, mediodorsal thalamic nucleus, and central medial thalamic nucleus; and (3) other brain regions, primarily the basolateral amygdala, hippocampus, and dorsal raphe nucleus. Taken together, our results are valuable for further investigations into the roles of the mPFCCRH neurons in normal and neurological disease states. These investigations can shed light on various aspects such as cognitive processing, emotional modulation, motivation, sociability, and pain.


Assuntos
Encéfalo , Hormônio Liberador da Corticotropina , Camundongos , Animais , Neurônios/fisiologia , Córtex Pré-Frontal/fisiologia , Mapeamento Encefálico , Vias Neurais/fisiologia
10.
NMR Biomed ; : e5228, 2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39169274

RESUMO

Quantitative maps of rotating frame relaxation (RFR) time constants are sensitive and useful magnetic resonance imaging tools with which to evaluate tissue integrity in vivo. However, to date, only moderate image resolutions of 1.6 x 1.6 x 3.6 mm3 have been used for whole-brain coverage RFR mapping in humans at 3 T. For more precise morphometrical examinations, higher spatial resolutions are desirable. Towards achieving the long-term goal of increasing the spatial resolution of RFR mapping without increasing scan times, we explore the use of the recently introduced Transform domain NOise Reduction with DIstribution Corrected principal component analysis (T-NORDIC) algorithm for thermal noise reduction. RFR acquisitions at 3 T were obtained from eight healthy participants (seven males and one female) aged 52 ± 20 years, including adiabatic T1ρ, T2ρ, and nonadiabatic Relaxation Along a Fictitious Field (RAFF) in the rotating frame of rank n = 4 (RAFF4) with both 1.6 x 1.6 x 3.6 mm3 and 1.25 x 1.25 x 2 mm3 image resolutions. We compared RFR values and their confidence intervals (CIs) obtained from fitting the denoised versus nondenoised images, at both voxel and regional levels separately for each resolution and RFR metric. The comparison of metrics obtained from denoised versus nondenoised images was performed with a two-sample paired t-test and statistical significance was set at p less than 0.05 after Bonferroni correction for multiple comparisons. The use of T-NORDIC on the RFR images prior to the fitting procedure decreases the uncertainty of parameter estimation (lower CIs) at both spatial resolutions. The effect was particularly prominent at high-spatial resolution for RAFF4. Moreover, T-NORDIC did not degrade map quality, and it had minimal impact on the RFR values. Denoising RFR images with T-NORDIC improves parameter estimation while preserving the image quality and accuracy of all RFR maps, ultimately enabling high-resolution RFR mapping in scan times that are suitable for clinical settings.

11.
Artigo em Inglês | MEDLINE | ID: mdl-38663994

RESUMO

BACKGROUND: Alzheimer's disease (AD)-related neuropathological changes can occur decades before clinical symptoms. We aimed to investigate whether neurodevelopment and/or neurodegeneration affects the risk of AD, through reducing structural brain reserve and/or increasing brain atrophy, respectively. METHODS: We used bidirectional two-sample Mendelian randomisation to estimate the effects between genetic liability to AD and global and regional cortical thickness, estimated total intracranial volume, volume of subcortical structures and total white matter in 37 680 participants aged 8-81 years across 5 independent cohorts (Adolescent Brain Cognitive Development, Generation R, IMAGEN, Avon Longitudinal Study of Parents and Children and UK Biobank). We also examined the effects of global and regional cortical thickness and subcortical volumes from the Enhancing NeuroImaging Genetics through Meta-Analysis (ENIGMA) Consortium on AD risk in up to 37 741 participants. RESULTS: Our findings show that AD risk alleles have an age-dependent effect on a range of cortical and subcortical brain measures that starts in mid-life, in non-clinical populations. Evidence for such effects across childhood and young adulthood is weak. Some of the identified structures are not typically implicated in AD, such as those in the striatum (eg, thalamus), with consistent effects from childhood to late adulthood. There was little evidence to suggest brain morphology alters AD risk. CONCLUSIONS: Genetic liability to AD is likely to affect risk of AD primarily through mechanisms affecting indicators of brain morphology in later life, rather than structural brain reserve. Future studies with repeated measures are required for a better understanding and certainty of the mechanisms at play.

12.
Epilepsia ; 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39162748

RESUMO

OBJECTIVE: We evaluated changes in cognitive domains after neurosurgical lesioning of cortical sites with significant high-gamma power modulations (HGM) during a visual naming task, although these sites were found language-negative on standard-of-care electrical stimulation mapping (ESM). METHODS: In drug-resistant epilepsy patients who underwent resection/ablation after stereo-electroencephalography (SEEG), we computed reliable change indices (RCIs) from a battery of presurgical and 1-year postsurgical neuropsychological assessments. We modeled RCIs as a function of lesioning even one HGM language site, number of HGM language sites lesioned, and the magnitude of naming-related HGM. The analyses were adjusted for 1-year seizure freedom, operated hemispheres, and the volumes of surgical lesions. RESULTS: In 37 patients with 4455 SEEG electrode contacts (1839 and 2616 contacts in right and left hemispheres, respectively), no ESM language sites were lesioned. Patients with lesioning of even one HGM language site showed significantly lower RCIs for Peabody Picture Vocabulary Test (PPVT), working memory, and verbal learning immediate (VLI) scores. RCI declines with higher number of HGM language sites lesioned were seen in PPVT (slope [ß] = -.10), working memory (ß = -.10), VLI (ß = -.14), and letter-word identification (LWI; ß = -.14). No neuropsychological domains improved after lesioning of HGM language sites. Significant effects of the HGM magnitude at lesioned sites were seen on working memory (ß = -.31), story memory immediate (ß = -.27), verbal learning recognition (ß = -.18), LWI (ß = -.16), spelling (ß = -.49), and passage comprehension (ß = -.33). Because working memory was significantly affected in all three analyses, patients with maximal working memory decline were examined post hoc, revealing that all such patients had HGM naming sites lesioned in the posterior quadrants of either hemisphere. SIGNIFICANCE: HGM language mapping should be used as an adjunct to ESM in clinical practice and may help counsel patients/families about postsurgical cognitive deficits.

13.
Exp Brain Res ; 242(7): 1609-1622, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38767666

RESUMO

Differences in organization of the primary motor cortex and altered trunk motor control (sensing, processing and motor output) have been reported in people with low back pain (LBP). Little is known to what extent these differences are related. We investigated differences in 1) organization of the primary motor cortex and 2) motor and sensory tests between people with and without LBP, and 3) investigated associations between the organization of the primary motor cortex and motor and sensory tests. We conducted a case-control study in people with (N=25) and without (N=25) LBP. The organization of the primary motor cortex (Center of Gravity (CoG) and Area of the cortical representation of trunk muscles) was assessed using neuronavigated transcranial magnetic stimulation, based on individual MRIs. Sensory tests (quantitative sensory testing, graphaesthesia, two-point discrimination threshold) and a motor test (spiral-tracking test) were assessed. Participants with LBP had a more lateral and lower location of the CoG and a higher temporal summation of pain. For all participants combined, better vibration test scores were associated with a more anterior, lateral, and lower CoG and a better two-point discrimination threshold was associated with a lower CoG. A small subset of variables showed significance. Although this aligns with the concept of altered organization of the primary motor cortex in LBP, there is no strong evidence of the association between altered organization of the primary motor cortex and motor and sensory test performance in LBP. Focusing on subgroup analyses regarding pain duration can be a topic for future research.


Assuntos
Dor Lombar , Imageamento por Ressonância Magnética , Córtex Motor , Estimulação Magnética Transcraniana , Humanos , Córtex Motor/fisiopatologia , Córtex Motor/fisiologia , Masculino , Feminino , Dor Lombar/fisiopatologia , Adulto , Pessoa de Meia-Idade , Estudos de Casos e Controles , Adulto Jovem , Potencial Evocado Motor/fisiologia
14.
Curr Oncol Rep ; 26(5): 466-476, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38573439

RESUMO

PURPOSE OF REVIEW: This review provides a concise overview of the recent literature regarding preoperative and postoperative neurocognitive functioning (NCF) in patients with glioma. Brief discussion also covers contemporary intraoperative brain mapping work, with a focus on potential influence of mapping upon NCF outcomes following awake surgery. RECENT FINDINGS: Most patients with glioma exhibit preoperative NCF impairment, with severity varying by germ line and tumoral genetics, tumor grade, and lesion location, among other characteristics. Literature regarding postoperative NCF changes is mixed, though numerous studies indicate a majority of patients exhibit immediate and short-term worsening. This is often followed by recovery over several months; however, a substantial portion of patients harbor persisting declines. Decline appears related to surgically-induced structural and functional brain alterations, both local and distal to the tumor and resection cavity. Importantly, NCF decline may be mitigated to some extent by intraoperative brain mapping, including mapping of both language-mediated and nonverbal functions. Research regarding perioperative NCF in patients with glioma has flourished over recent years. While this has increased our understanding of contributors to NCF and risk of decline associated with surgical intervention, more work is needed to better preserve NCF throughout the disease course.


Assuntos
Neoplasias Encefálicas , Glioma , Humanos , Glioma/cirurgia , Glioma/psicologia , Neoplasias Encefálicas/cirurgia , Neoplasias Encefálicas/psicologia , Mapeamento Encefálico , Procedimentos Neurocirúrgicos/efeitos adversos , Cognição/fisiologia
15.
Cereb Cortex ; 33(6): 3293-3310, 2023 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-35834935

RESUMO

Understanding computational principles in hierarchically organized sensory systems requires functional parcellation of brain structures and their precise targeting for manipulations. Although brain atlases are widely used to infer area locations in the mouse neocortex, it has been unclear whether stereotaxic coordinates based on standardized brain morphology accurately represent functional domains in individual animals. Here, we used intrinsic signal imaging to evaluate the accuracy of area delineation in the atlas by mapping functionally-identified auditory cortices onto bregma-based stereotaxic coordinates. We found that auditory cortices in the brain atlas correlated poorly with the true complexity of functional area boundaries. Inter-animal variability in functional area locations predicted surprisingly high error rates in stereotaxic targeting with atlas coordinates. This variability was not simply attributed to brain sizes or suture irregularities but instead reflected differences in cortical geography across animals. Our data thus indicate that functional mapping in individual animals is essential for dissecting cortical area-specific roles with high precision.


Assuntos
Córtex Auditivo , Neocórtex , Camundongos , Animais , Imageamento Tridimensional , Encéfalo/anatomia & histologia , Mapeamento Encefálico/métodos , Córtex Auditivo/diagnóstico por imagem , Cabeça , Técnicas Estereotáxicas , Imageamento por Ressonância Magnética/métodos
16.
Neurol Sci ; 45(8): 3723-3735, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38520640

RESUMO

Awake craniotomy (AC) allows intraoperative brain mapping (ioBM) for maximum lesion resection while monitoring and preserving neurological function. Conventionally, language, visuospatial assessment, and motor functions are mapped, while the assessment of executive functions (EF) is uncommon. Impaired EF may lead to occupational, personal, and social limitations, thus, a compromised quality of life. A comprehensive literature search was conducted through Scopus, Medline, and Cochrane Library using a pre-defined search strategy. Articles were selected after duplicate removal, initial screening, and full-text assessment. The demographic details, ioBM techniques, intraoperative tasks, and their assessments, the extent of resection (EOR), post-op EF and neurocognitive status, and feasibility and potential adverse effects of the procedure were reviewed. The correlations of tumor locations with intraoperative EF deficits were also assessed. A total of 13 studies with intraoperative EF assessment of 351 patients were reviewed. Awake-asleep-awake protocol was most commonly used. Most studies performed ioBM using bipolar stimulation, with a frequency of 60 Hz, pulse durations ranging 1-2 ms, and intensity ranging 2-6 mA. Cognitive function was monitored with the Stroop task, spatial-2-back test, line-bisection test, trail-making-task, and digit-span tests. All studies reported similar or better EOR in patients with ioBM for EF. When comparing the neuropsychological outcomes of patients with ioBM of EF to those without it, all studies reported significantly better EF preservation in ioBM groups. Most authors reported EF mapping as a feasible tool to obtain satisfactory outcomes. Adverse effects included intraoperative seizures which were easily controlled. AC with ioBM of EF is a safe, effective, and feasible technique that allows satisfactory EOR and improved neurocognitive outcomes with minimal adverse effects.


Assuntos
Mapeamento Encefálico , Craniotomia , Função Executiva , Vigília , Humanos , Função Executiva/fisiologia , Craniotomia/métodos , Craniotomia/efeitos adversos , Vigília/fisiologia , Mapeamento Encefálico/métodos , Monitorização Neurofisiológica Intraoperatória/métodos , Neoplasias Encefálicas/cirurgia
17.
Neurosurg Rev ; 47(1): 129, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38532178

RESUMO

Despite great advancements and the diffusion of awake surgery for brain tumors, the literature shows that the tests applied during the procedure are heterogeneous and non-standardized. This prospective, observational, descriptive study collected data on intraoperative brain mapping and the performance of multiple neurocognitive tests in 51 awake surgeries for diffuse low-grade glioma. Frequency of use and rate of intraoperative findings of different neurocognitive tests were analyzed. Patients mean age at the time of surgery was 35.1 (20-57) years. We performed 26 (51.0%) surgeries on the left hemisphere (LH) and 25 (49.0%) on the right hemisphere (RH). Significant differences were observed between the total number of functional findings (cortical and subcortical) identified in the LH and RH (p = 0.004). In subcortical findings alone, the differences remained significant (p = 0.0004). The RH subcortical region showed the lowest number of intraoperative findings, and this was correlated with functional outcome: Karnofsky performance scale at five days (p = 0.022), three months (p = 0.002) and one year (p = 0.002) post-surgery. On average, more tests were used to map the RH, with a lower frequency of both cortical and subcortical functional findings. Even though subcortical findings were less frequent than cortical findings, they were crucial to defining the resection margins. Based on the intraoperative findings, frequency of use, and rate of findings per use of the tests analyzed, the most relevant tests for each hemisphere for awake brain mapping were identified.


Assuntos
Neoplasias Encefálicas , Glioma , Humanos , Adulto , Pessoa de Meia-Idade , Neoplasias Encefálicas/cirurgia , Vigília , Estudos Prospectivos , Glioma/cirurgia , Mapeamento Encefálico/métodos , Testes de Estado Mental e Demência
18.
Neurosurg Focus ; 56(2): E7, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38301243

RESUMO

OBJECTIVE: Traditionally, resection of nondominant hemisphere brain tumors was performed under general anesthesia. An improved understanding of right-lateralized neural networks has led to a paradigm shift in recent decades, where the right or nondominant hemisphere is no longer perceived as "functionally silent." There is an increasing interest in awake brain mapping for nondominant hemisphere resections. The objective of this study was to perform a comprehensive review of the existing brain mapping paradigms for patients with nondominant hemisphere gliomas undergoing awake craniotomies. METHODS: In accordance with PRISMA guidelines, systematic searches of the Medline, Embase, and American Psychological Association PsycInfo databases were undertaken from database inception to July 1, 2023. Studies providing a description of the intraoperative mapping paradigm used to assess cognition during an awake craniotomy for resection of a nondominant hemisphere glioma were included. RESULTS: The search yielded 1084 potentially eligible articles. Thirty-nine unique studies reporting on 788 patients were included in the systematic review. The most frequently tested cognitive domains in patients with nondominant hemisphere tumors were spatial attention/neglect (17/39 studies, 43.6%), speech-motor/language (17/39 studies, 43.6%), and social cognition (9/39 studies, 23.1%). Within the frontal lobe, the highest number of positive mapping sites was identified for speech-motor/language, spatial attention/neglect, dual tasking assessing motor and language function, working memory, and social cognition. Within the parietal lobe, eloquence was most frequently found upon testing spatial attention/neglect, speech-motor/language, and calculation. Within the temporal lobe, the assessment of spatial attention/neglect yielded the highest number of positive mapping sites. CONCLUSIONS: Cognitive testing in the nondominant hemisphere is predominantly focused on evaluating two domains: spatial attention/neglect and the motor aspects of speech/language. Multidisciplinary teams involved in awake brain mapping should consider testing an extended range of functions to minimize the risk of postoperative deficits and provide valuable information about anatomo-functional organization of cognitive networks.


Assuntos
Neoplasias Encefálicas , Glioma , Humanos , Mapeamento Encefálico , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/cirurgia , Neoplasias Encefálicas/patologia , Craniotomia , Lobo Frontal/cirurgia , Glioma/diagnóstico por imagem , Glioma/cirurgia , Glioma/patologia , Vigília
19.
Pract Neurol ; 2024 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-39288985

RESUMO

A modular view of brain function dominates the teaching of medical students and clinical psychologists and is implicit in day-to-day clinical practice. This view glosses over a long-standing debate. The extent of one-to-one mappings between region and function remains a controversial topic. For the cortex, localisation of function versus 'cerebral equipotentiality' was debated less than 150 years ago, and traces of this debate remain active in systems neuroscience today. The advent of functional brain imaging led to an explosion of evidence on localisation of function studied in vivo, and a gold rush to map an ever-increasing range of 'functions'. Rapid growth in knowledge was accompanied, to some extent, by a flourishing neuromythology. There are currently few clinical applications of brain mapping techniques, but new areas are emerging. An understanding of the central debate on functional localisation will bring a more nuanced view of problems encountered in clinical practice.

20.
J Neurosci ; 42(25): 5021-5033, 2022 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-35606144

RESUMO

Oxytocin (Oxt) neurons regulate diverse physiological responses via direct connections with different neural circuits. However, the lack of comprehensive input-output wiring diagrams of Oxt neurons and their quantitative relationship with Oxt receptor (Oxtr) expression presents challenges to understanding circuit-specific Oxt functions. Here, we establish a whole-brain distribution and anatomic connectivity map of Oxt neurons, and their relationship with Oxtr expression using high-resolution 3D mapping methods in adult male and female mice. We use a flatmap to describe Oxt neuronal expression in four hypothalamic domains including under-characterized Oxt neurons in the tuberal nucleus (TU). Oxt neurons in the paraventricular hypothalamus (PVH) broadly project to nine functional circuits that control cognition, brain state, and somatic visceral response. In contrast, Oxt neurons in the supraoptic (SO) and accessory (AN) nuclei have limited central projection to a small subset of the nine circuits. Surprisingly, quantitative comparison between Oxt output and Oxtr expression showed no significant correlation across the whole brain, suggesting abundant indirect Oxt signaling in Oxtr-expressing areas. Unlike output, Oxt neurons in both the PVH and SO receive similar monosynaptic inputs from a subset of the nine circuits mainly in the thalamic, hypothalamic, and cerebral nuclei areas. Our results suggest that PVH-Oxt neurons serve as a central modulator to integrate external and internal information via largely reciprocal connection with the nine circuits while the SO-Oxt neurons act mainly as unidirectional Oxt hormonal output. In summary, our Oxt wiring diagram provides anatomic insights about distinct behavioral functions of Oxt signaling in the brain.SIGNIFICANCE STATEMENT Oxytocin (Oxt) neurons regulate diverse physiological functions from prosocial behavior to pain sensation via central projection in the brain. Thus, understanding detailed anatomic connectivity of Oxt neurons can provide insight on circuit-specific roles of Oxt signaling in regulating different physiological functions. Here, we use high-resolution mapping methods to describe the 3D distribution, monosynaptic input and long-range output of Oxt neurons, and their relationship with Oxt receptor (Oxtr) expression across the entire mouse brain. We found Oxt connections with nine functional circuits controlling cognition, brain state, and somatic visceral response. Furthermore, we identified a quantitatively unmatched Oxt-Oxtr relationship, suggesting broad indirect Oxt signaling. Together, our comprehensive Oxt wiring diagram advances our understanding of circuit-specific roles of Oxt neurons.


Assuntos
Ocitocina , Receptores de Ocitocina , Animais , Encéfalo/metabolismo , Feminino , Masculino , Camundongos , Neurônios/metabolismo , Ocitocina/metabolismo , Receptores de Ocitocina/metabolismo , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA