Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
EMBO J ; 42(23): e114665, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37916885

RESUMO

Substantial efforts are underway to deepen our understanding of human brain morphology, structure, and function using high-resolution imaging as well as high-content molecular profiling technologies. The current work adds to these approaches by providing a comprehensive and quantitative protein expression map of 13 anatomically distinct brain regions covering more than 11,000 proteins. This was enabled by the optimization, characterization, and implementation of a high-sensitivity and high-throughput microflow liquid chromatography timsTOF tandem mass spectrometry system (LC-MS/MS) capable of analyzing more than 2,000 consecutive samples prepared from formalin-fixed paraffin embedded (FFPE) material. Analysis of this proteomic resource highlighted brain region-enriched protein expression patterns and functional protein classes, protein localization differences between brain regions and individual markers for specific areas. To facilitate access to and ease further mining of the data by the scientific community, all data can be explored online in a purpose-built R Shiny app (https://brain-region-atlas.proteomics.ls.tum.de).


Assuntos
Proteômica , Espectrometria de Massas em Tandem , Humanos , Cromatografia Líquida/métodos , Proteômica/métodos , Inclusão em Parafina/métodos , Espectrometria de Massas em Tandem/métodos , Proteínas/metabolismo , Encéfalo/metabolismo , Proteoma/metabolismo
2.
J Proteome Res ; 23(4): 1221-1231, 2024 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-38507900

RESUMO

Proteins usually execute their biological functions through interactions with other proteins and by forming macromolecular complexes, but global profiling of protein complexes directly from human tissue samples has been limited. In this study, we utilized cofractionation mass spectrometry (CF-MS) to map protein complexes within the postmortem human brain with experimental replicates. First, we used concatenated anion and cation Ion Exchange Chromatography (IEX) to separate native protein complexes in 192 fractions and then proceeded with Data-Independent Acquisition (DIA) mass spectrometry to analyze the proteins in each fraction, quantifying a total of 4,804 proteins with 3,260 overlapping in both replicates. We improved the DIA's quantitative accuracy by implementing a constant amount of bovine serum albumin (BSA) in each fraction as an internal standard. Next, advanced computational pipelines, which integrate both a database-based complex analysis and an unbiased protein-protein interaction (PPI) search, were applied to identify protein complexes and construct protein-protein interaction networks in the human brain. Our study led to the identification of 486 protein complexes and 10054 binary protein-protein interactions, which represents the first global profiling of human brain PPIs using CF-MS. Overall, this study offers a resource and tool for a wide range of human brain research, including the identification of disease-specific protein complexes in the future.


Assuntos
Proteínas , Espectrometria de Massas em Tandem , Humanos , Espectrometria de Massas em Tandem/métodos , Proteínas/química , Cromatografia Líquida de Alta Pressão/métodos , Cromatografia por Troca Iônica/métodos , Encéfalo , Proteoma/análise
3.
FASEB J ; 37(6): e22966, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37227156

RESUMO

Several lines of evidence indicate that ancestral diet might play an important role in determining offspring's metabolic traits. However, it is not yet clear whether ancestral diet can affect offspring's food choices and feeding behavior. In the current study, taking advantage of Drosophila model system, we demonstrate that paternal Western diet (WD) increases offspring food consumption up to the fourth generation. Paternal WD also induced alterations in F1 offspring brain proteome. Using enrichment analyses of pathways for upregulated and downregulated proteins, we found that upregulated proteins had significant enrichments in terms related to translation and translation factors, whereas downregulated proteins displayed enrichments in small molecule metabolic processes, TCA cycles, and electron transport chain (ETC). Using MIENTURNET miRNA prediction tool, dme-miR-10-3p was identified as the top conserved miRNA predicted to target proteins regulated by ancestral diet. RNAi-based knockdown of miR-10 in the brain significantly increased food consumption, implicating miR-10 as a potential factor in programming feeding behavior. Together, these findings suggest that ancestral nutrition may influence offspring feeding behavior through alterations in miRNAs.


Assuntos
MicroRNAs , Proteoma , Animais , Proteoma/metabolismo , Dieta Ocidental , Drosophila/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Encéfalo/metabolismo
4.
Artigo em Inglês | MEDLINE | ID: mdl-39028452

RESUMO

COVID-19, a complex multisystem disorder affecting the central nervous system, can also have psychiatric sequelae. In addition, clinical evidence indicates that a diagnosis of a schizophrenia spectrum disorder is a risk factor for mortality in patients with COVID-19. In this study, we aimed to explore brain-specific molecular aspects of COVID-19 by using a proteomic approach. We analyzed the brain proteome of fatal COVID-19 cases and compared it with differentially regulated proteins found in postmortem schizophrenia brains. The COVID-19 proteomic dataset revealed a strong enrichment of proteins expressed by glial and neuronal cells and processes related to diseases with a psychiatric and neurodegenerative component. Specifically, the COVID-19 brain proteome enriches processes that are hallmark features of schizophrenia. Furthermore, we identified shared and distinct molecular pathways affected in both conditions. We found that brain ageing processes are likely present in both COVID-19 and schizophrenia, albeit possibly driven by distinct processes. In addition, alterations in brain cell metabolism were observed, with schizophrenia primarily impacting amino acid metabolism and COVID-19 predominantly affecting carbohydrate metabolism. The enrichment of metabolic pathways associated with astrocytic components in both conditions suggests the involvement of this cell type in the pathogenesis. Both COVID-19 and schizophrenia influenced neurotransmitter systems, but with distinct impacts. Future studies exploring the underlying mechanisms linking brain ageing and metabolic dysregulation may provide valuable insights into the complex pathophysiology of these conditions and the increased vulnerability of schizophrenia patients to severe outcomes.

5.
Mol Cell Proteomics ; 21(8): 100261, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35738554

RESUMO

Brain development and function are governed by precisely regulated protein expressions in different regions. To date, multiregional brain proteomes have been systematically analyzed only for adult human and mouse brains. To understand the underpinnings of brain development and function, we generated proteomes from six regions of the postnatal brain at three developmental stages of domestic dogs (Canis familiaris), which are special among animals in terms of their remarkable human-like social cognitive abilities. Quantitative analysis of the spatiotemporal proteomes identified region-enriched synapse types at different developmental stages and differential myelination progression in different brain regions. Through integrative analysis of inter-regional expression patterns of orthologous proteins and genome-wide cis-regulatory element frequencies, we found that proteins related with myelination and hippocampus were highly correlated between dog and human but not between mouse and human, although mouse is phylogenetically closer to human. Moreover, the global expression patterns of neurodegenerative disease and autism spectrum disorder-associated proteins in dog brain more resemble human brain than in mouse brain. The high similarity of myelination and hippocampus-related pathways in dog and human at both proteomic and genetic levels may contribute to their shared social cognitive abilities. The inter-regional expression patterns of disease-associated proteins in the brain of different species provide important information to guide mechanistic and translational study using appropriate animal models.


Assuntos
Transtorno do Espectro Autista , Doenças Neurodegenerativas , Adulto , Animais , Encéfalo , Cães , Humanos , Camundongos , Proteoma , Proteômica
6.
Int J Mol Sci ; 25(3)2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38338740

RESUMO

Some parasites are known to influence brain proteins or induce changes in the functioning of the nervous system. In this study, our objective is to demonstrate how the two-dimensional gel technique is valuable for detecting differences in protein expression and providing detailed information on changes in the brain proteome during a parasitic infection. Subsequently, we seek to understand how the parasitic infection affects the protein composition in the brain and how this may be related to changes in brain function. By analyzing de novo-expressed proteins at 2, 4, and 8 weeks post-infection compared to the brains of the control mice, we observed that proteins expressed at 2 weeks are primarily associated with neuroprotection or the initial response of the mouse brain to the infection. At 8 weeks, parasitic infection can induce oxidative stress in the brain, potentially activating signaling pathways related to the response to cellular damage. Proteins expressed at 8 weeks exhibit a pattern indicating that, as the host fails to balance the Neuro-Immuno-Endocrine network of the organism, the brain begins to undergo an apoptotic process and consequently experiences brain damage.


Assuntos
Parasitos , Doenças Parasitárias , Taenia , Animais , Camundongos , Encéfalo , Camundongos Endogâmicos BALB C
7.
J Proteome Res ; 22(4): 1043-1055, 2023 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-36317652

RESUMO

Post-translational modifications (PTMs) are one of the compulsive and predominant biological processes that regulate the diverse molecular mechanism, modulate the onset of disease, and are the reason behind the functional diversity of proteins. Despite the widespread research findings in neuroproteomics, one of the key drawbacks has been the lack of proteome-level knowledge of hemispheric lateralization. We have investigated the proteome level expression in different neuroanatomical regions under the Human Brain Proteome Project (HBPP) and developed the global interhemispheric brain proteome map (Brainprot) earlier. Furthermore, this study has extended to decipher the phosphoproteome map of human brain interhemispheric regions through high-resolution mass spectrometry. The phosphoproteomics examination of 12 unique interhemispheric neurological brain regions using Orbitrap fusion liquid chromatography with tandem mass spectrometry provided comprehensive coverage of 996 phosphoproteins, 2010 phosphopeptides, and 3567 phosphosites. Moreover, interhemispheric phosphoproteome profiling has been categorized according to synaptic ontologies and interhemispheric expression to understand the functionality. Finally, we have integrated the phosphosites data under the PhosphoMap section in the Inter-Hemispheric Brain Proteome Map Portal (https://www.brainprot.org/) for the advancement and support of the ongoing neuroproteomics research worldwide. Data is available via ProteomeXchange with the identifier PXD031188.


Assuntos
Proteoma , Espectrometria de Massas em Tandem , Humanos , Proteoma/genética , Espectrometria de Massas em Tandem/métodos , Cromatografia Líquida/métodos , Processamento de Proteína Pós-Traducional , Encéfalo/metabolismo , Fosfoproteínas/metabolismo , Fosfopeptídeos/análise
8.
J Proteome Res ; 22(9): 3068-3080, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37606934

RESUMO

Cerebrospinal fluid (CSF) is an essential matrix for the discovery of neurological disease biomarkers. However, the high dynamic range of protein concentrations in CSF hinders the detection of the least abundant protein biomarkers by untargeted mass spectrometry. It is thus beneficial to gain a deeper understanding of the secretion processes within the brain. Here, we aim to explore if and how the secretion of brain proteins to the CSF can be predicted. By combining a curated CSF proteome and the brain elevated proteome of the Human Protein Atlas, brain proteins were classified as CSF or non-CSF secreted. A machine learning model was trained on a range of sequence-based features to differentiate between CSF and non-CSF groups and effectively predict the brain origin of proteins. The classification model achieves an area under the curve of 0.89 if using high confidence CSF proteins. The most important prediction features include the subcellular localization, signal peptides, and transmembrane regions. The classifier generalized well to the larger brain detected proteome and is able to correctly predict novel CSF proteins identified by affinity proteomics. In addition to elucidating the underlying mechanisms of protein secretion, the trained classification model can support biomarker candidate selection.


Assuntos
Pesquisa Biomédica , Proteoma , Humanos , Encéfalo , Transporte Proteico , Transporte Biológico , Proteínas do Líquido Cefalorraquidiano
9.
Nutr Neurosci ; 25(3): 567-580, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34000981

RESUMO

The energy-dense western diet significantly increases the risk of obesity, type 2 diabetes, cardiovascular episodes, stroke, and cancer. Recently more attention has been paid to the contribution of an unhealthy lifestyle on the development of central nervous system disorders. Exposure to long-lasting stress is one of the key lifestyle modifications associated with the increased prevalence of obesity and metabolic diseases. The main goal of the present study was to verify the hypothesis that exposure to chronic stress modifies alterations in the brain proteome induced by the western diet. Female adult rats were fed with the prepared chow reproducing the human western diet and/or subjected to chronic stress induced by social instability for 6 weeks. A control group of lean rats were fed with a standard diet. Being fed with the western diet resulted in an obese phenotype and induced changes in the serum metabolic parameters. The combination of the western diet and chronic stress exposure induced more profound changes in the rat cerebrocortical proteome profile than each of these factors individually. The down-regulation of proteins involved in neurotransmitter secretion (Rph3a, Snap25, Syn1) as well as in learning and memory processes (Map1a, Snap25, Tnr) were identified, while increased expression was detected for 14-3-3 protein gamma (Ywhag) engaged in the modulation of the insulin-signaling cascade in the brain. An analysis of the rat brain proteome reveals important changes that indicate that a combination of the western diet and stress exposure may lead to impairments of neuronal function and signaling.


Assuntos
Diabetes Mellitus Tipo 2 , Dieta Ocidental , Animais , Dieta Hiperlipídica , Dieta Ocidental/efeitos adversos , Feminino , Insulina , Obesidade/etiologia , Obesidade/metabolismo , Proteoma/metabolismo , Ratos
10.
Mol Cell Proteomics ; 19(10): 1632-1648, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32669299

RESUMO

The neuronal basis of complex social behavior is still poorly understood. In honeybees, reproductive investment decisions are made at the colony-level. Queens develop from female-destined larvae that receive alloparental care from nurse bees in the form of ad-libitum royal jelly (RJ) secretions. Typically, the number of raised new queens is limited but genetic breeding of "royal jelly bees" (RJBs) for enhanced RJ production over decades has led to a dramatic increase of reproductive investment in queens. Here, we compare RJBs to unselected Italian bees (ITBs) to investigate how their cognitive processing of larval signals in the mushroom bodies (MBs) and antennal lobes (ALs) may contribute to their behavioral differences. A cross-fostering experiment confirms that the RJB syndrome is mainly due to a shift in nurse bee alloparental care behavior. Using olfactory conditioning of the proboscis extension reflex, we show that the RJB nurses spontaneously respond more often to larval odors compared with ITB nurses but their subsequent learning occurs at similar rates. These phenotypic findings are corroborated by our demonstration that the proteome of the brain, particularly of the ALs differs between RJBs and ITBs. Notably, in the ALs of RJB newly emerged bees and nurses compared with ITBs, processes of energy and nutrient metabolism, signal transduction are up-regulated, priming the ALs for receiving and processing the brood signals from the antennae. Moreover, highly abundant major royal jelly proteins and hexamerins in RJBs compared with ITBs during early life when the nervous system still develops suggest crucial new neurobiological roles for these well-characterized proteins. Altogether, our findings reveal that RJBs have evolved a strong olfactory response to larvae, enabled by numerous neurophysiological adaptations that increase the nurse bees' alloparental care behavior.


Assuntos
Abelhas/fisiologia , Hierarquia Social , Percepção , Proteômica , Animais , Antenas de Artrópodes/anatomia & histologia , Abelhas/anatomia & histologia , Proteínas de Insetos/metabolismo , Larva/metabolismo , Corpos Pedunculados/metabolismo , Feromônios/metabolismo , Reprodução/fisiologia
11.
J Proteome Res ; 20(12): 5280-5293, 2021 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-34714085

RESUMO

This study, which performs an extensive mass spectrometry-based analysis of 19 brain regions from both left and right hemispheres, presents the first draft of the human brain interhemispheric proteome. This high-resolution proteomics data provides comprehensive coverage of 3300 experimentally measured (nonhypothetical) proteins across multiple regions, allowing the characterization of protein-centric interhemispheric differences and synapse biology, and portrays the regional mapping of specific regions for brain disorder biomarkers. In the context of the Human Proteome Project (HPP), the interhemispheric proteome data reveal specific markers like chimerin 2 (CHN2) in the cerebellar vermis, olfactory marker protein (OMP) in the olfactory bulb, and ankyrin repeat domain 63 (ANKRD63) in basal ganglia, in line with regional brain transcriptomes mapped in the Human Protein Atlas (HPA). In addition, an in silico analysis pipeline was used to predict the structure and function of the uncharacterized uPE1 protein ANKRD63, and parallel reaction monitoring (PRM) was applied to validate its region-specific expression. Finally, we have built the Interhemispheric Brain Proteome Map (IBPM) Portal (www.brainprot.org) to stimulate the scientific community's interest in the brain molecular landscape and accelerate and support research in neuroproteomics. Data are available via ProteomeXchange with identifier PXD019936.


Assuntos
Proteoma , Proteômica , Biomarcadores , Encéfalo , Humanos , Espectrometria de Massas , Proteoma/genética
12.
Proteomics ; 19(23): e1900195, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31576663

RESUMO

Proteogenomics is based on the use of customized genome or RNA sequencing databases for interrogation of shotgun proteomics data in search for proteome-level evidence of genome variations or RNA editing. In this work, the products of adenosine-to-inosine RNA editing in human and murine brain proteomes are identified using publicly available brain proteome LC-MS/MS datasets and an RNA editome database compiled from several sources. After filtering of false-positive results, 20 and 37 sites of editing in proteins belonging to 14 and 32 genes are identified for murine and human brain proteomes, respectively. Eight sites of editing identified with high spectral counts overlapped between human and mouse brain samples. Some of these sites have been previously reported using orthogonal methods, such as α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) glutamate receptors, CYFIP2, coatomer alpha. Also, differential editing between neurons and microglia is demonstrated in this work for some of the proteins from primary murine brain cell cultures. Because many edited sites are still not characterized functionally at the protein level, the results provide a necessary background for their further analysis in normal and diseased cells and tissues using targeted proteomic approaches.


Assuntos
Adenosina/metabolismo , Encéfalo/metabolismo , Inosina/metabolismo , Edição de RNA/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Células Cultivadas , Proteína Coatomer/metabolismo , Humanos , Camundongos , Proteoma/metabolismo , Proteômica/métodos
13.
J Proteome Res ; 16(3): 1150-1166, 2017 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-28102082

RESUMO

Stroke is one of the main causes of mortality and long-term disability worldwide. The pathophysiological mechanisms underlying this disease are not well understood, particularly in the chronic phase after the initial ischemic episode. In this study, a Macaca fascicularis stroke model consisting of two sample groups, as determined by MRI-quantified infarct volumes as a measure of the stroke severity 28 days after the ischemic episode, was evaluated using qualitative and quantitative proteomics analyses. By using multiple online multidimensional liquid chromatography platforms, 8790 nonredundant proteins were identified that condensed to 5223 protein groups at 1% global false discovery rate (FDR). After the application of a conservative criterion (5% local FDR), 4906 protein groups were identified from the analysis of cerebral cortex. Of the 2068 quantified proteins, differential proteomic analyses revealed that 31 and 23 were dysregulated in the elevated- and low-infarct-volume groups, respectively. Neurogenesis, synaptogenesis, and inflammation featured prominently as the cellular processes associated with these dysregulated proteins. Protein interaction network analysis revealed that the dysregulated proteins for inflammation and neurogenesis were highly connected, suggesting potential cross-talk between these processes in modulating the cytoskeletal structure and dynamics in the chronic phase poststroke. Elucidating the long-term consequences of brain tissue injuries from a cellular prospective, as well as the molecular mechanisms that are involved, would provide a basis for the development of new potentially neurorestorative therapies.


Assuntos
Córtex Cerebral/química , Regulação da Expressão Gênica , Proteômica/métodos , Acidente Vascular Cerebral/metabolismo , Animais , Doença Crônica , Modelos Animais de Doenças , Inflamação/genética , Macaca fascicularis , Imageamento por Ressonância Magnética , Neurogênese/genética , Mapas de Interação de Proteínas
14.
Proteomics ; 16(7): 1047-50, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26872682

RESUMO

The HUPO Brain Proteome Project (HUPO BPP) held its 24th workshop in Vancouver, Canada, September 29, 2015. The focus of the autumn workshop was on new insights into the proteomic profile of Alzheimer's disease, schizophrenia, ALS and multiple sclerosis.


Assuntos
Esclerose Múltipla , Doenças Neurodegenerativas , Proteômica/educação , Proteômica/organização & administração , Esquizofrenia , Canadá , Humanos , Proteoma/análise
16.
Int Immunopharmacol ; 138: 112618, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-38996663

RESUMO

Toxoplasma gondii is a successful parasite capable of infecting a wide range of warm-blooded animals, including people, livestock, and wildlife. In individuals with intact immune function, T. gondii can invade the host brain tissue by altering the blood-brain barrier permeability, leading to chronic infection. Proteins play crucial regulatory roles in disease progression. By monitoring changes in proteins, a deeper understanding of the molecular mechanisms underlying host resistance to infection and the potential pathogenic mechanisms of pathogens can be gained. This study analyzed differential protein expression and associated signaling pathways in mouse brain tissues during acute and chronic T. gondii infection using proteomic and bioinformatics methods. The results showed that during acute and chronic T. gondii infection stages, 74 and 498 differentially expressed proteins (DEPs) were identified in mouse brain tissue, respectively. Among them, 45 and 309 were up-regulated, while 29 and 189 were down-regulated. GO and KEGG analyses revealed that some of these DEPs were implicated in host immunity, pathogen immune evasion, and T. gondii invasion of the central nervous system, particularly interleukin production and secretion, complement system activation, and alterations in tight junction pathways. Notably, the upregulation of Rab13 was identified as a potential molecular mechanism for T. gondii to regulate blood-brain barrier permeability and facilitate central nervous system invasion. Our findings provided fundamental data for understanding host control of Toxoplasmosis infection and offered new insights into parasite immune evasion and invasion mechanisms within the central nervous system. These insights are crucial for developing strategies to prevent the establishment of chronic T. gondii infection.


Assuntos
Barreira Hematoencefálica , Encéfalo , Proteômica , Toxoplasma , Animais , Toxoplasma/imunologia , Camundongos , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/parasitologia , Barreira Hematoencefálica/imunologia , Encéfalo/parasitologia , Encéfalo/metabolismo , Encéfalo/imunologia , Feminino , Toxoplasmose Animal/imunologia , Toxoplasmose Animal/parasitologia , Proteínas rab de Ligação ao GTP/metabolismo , Proteínas rab de Ligação ao GTP/genética , Transdução de Sinais
18.
Mol Neurobiol ; 60(9): 5055-5066, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37246165

RESUMO

Epilepsy is a severe neurological condition affecting 50-65 million individuals worldwide that can lead to brain damage. Nevertheless, the etiology of epilepsy remains poorly understood. Meta-analyses of genome-wide association studies involving 15,212 epilepsy cases and 29,677 controls of the ILAE Consortium cohort were used to conduct transcriptome-wide association studies (TWAS) and protein-wide association studies (PWAS). Furthermore, a protein-protein interaction (PPI) network was generated using the STRING database, and significant epilepsy-susceptible genes were verified using chip data. Chemical-related gene set enrichment analysis (CGSEA) was performed to determine novel drug targets for epilepsy. TWAS analysis identified 21,170 genes, of which 58 were significant (TWASfdr < 0.05) in ten brain regions, and 16 differentially expressed genes were verified based on mRNA expression profiles. The PWAS identified 2249 genes, of which 2 were significant (PWASfdr < 0.05). Through chemical-gene set enrichment analysis, 287 environmental chemicals associated with epilepsy were identified. We identified five significant genes (WIPF1, IQSEC1, JAM2, ICAM3, and ZNF143) that had causal relationships with epilepsy. CGSEA identified 159 chemicals that were significantly correlated with epilepsy (Pcgsea < 0.05), such as pentobarbital, ketone bodies, and polychlorinated biphenyl. In summary, we performed TWAS, PWAS (for genetic factors), and CGSEA (for environmental factors) analyses and identified several epilepsy-associated genes and chemicals. The results of this study will contribute to our understanding of genetic and environmental factors for epilepsy and may predict novel drug targets.


Assuntos
Epilepsia , Transcriptoma , Humanos , Transcriptoma/genética , Perfilação da Expressão Gênica/métodos , Estudo de Associação Genômica Ampla/métodos , Encéfalo , Epilepsia/genética , Predisposição Genética para Doença , Polimorfismo de Nucleotídeo Único , Proteínas do Citoesqueleto/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Transativadores/genética
19.
Nutrients ; 14(9)2022 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-35565902

RESUMO

The increasing consumption of highly processed foods with high amounts of saturated fatty acids and simple carbohydrates is a major contributor to the burden of overweight and obesity. Additionally, an unhealthy diet in combination with chronic stress exposure is known to be associated with the increased prevalence of central nervous system diseases. In the present study, the global brain proteome approach was applied to explore protein alterations after exposure to the Western diet and/or stress. Female adult rats were fed with the Western diet with human snacks and/or subjected to chronic stress induced by social instability for 12 weeks. The consumption of the Western diet resulted in an obese phenotype and induced changes in the serum metabolic parameters. Consuming the Western diet resulted in changes in only 5.4% of the proteins, whereas 48% of all detected proteins were affected by chronic stress, of which 86.3% were down-regulated due to this exposure to chronic stress. However, feeding with a particular diet modified stress-induced changes in the brain proteome. The down-regulation of proteins involved in axonogenesis and mediating the synaptic clustering of AMPA glutamate receptors (Nptx1), as well as proteins related to metabolic processes (Atp5i, Mrps36, Ndufb4), were identified, while increased expression was detected for proteins involved in the development and differentiation of the CNS (Basp1, Cend1), response to stress, learning and memory (Prrt2), and modulation of synaptic transmission (Ncam1, Prrt2). In summary, global proteome analysis provides information about the impact of the combination of the Western diet and stress exposure on cerebrocortical protein alterations and yields insight into the underlying mechanisms and pathways involved in functional and morphological brain alterations as well as behavioral disturbances described in the literature.


Assuntos
Dieta Ocidental , Proteoma , Animais , Proteínas de Ligação a Calmodulina/metabolismo , Proteínas do Citoesqueleto/metabolismo , Dieta Hiperlipídica , Dieta Ocidental/efeitos adversos , Fast Foods , Feminino , Proteínas do Tecido Nervoso/metabolismo , Obesidade/metabolismo , Proteoma/metabolismo , Ratos , Lobo Temporal/metabolismo
20.
Life Sci ; 310: 121088, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36257461

RESUMO

AIMS: Neuroinflammation is a prominent hallmark in several neurodegenerative diseases (NDs). Halting neuroinflammation can slow down the progression of NDs. Improving the efficacy of clinically available non-steroidal anti-inflammatory drugs (NSAIDs) is a promising approach that may lead to fast-track and effective disease-modifying therapies for NDs. Here, we aimed to utilize the L-type amino acid transporter 1 (LAT1) to improve the efficacy of salicylic acid as an example of an NSAID prodrug, for which brain uptake and intracellular localization have been reported earlier. MAIN METHODS: Firstly, we confirmed the improved LAT1 utilization of the salicylic acid prodrug (SA-AA) in freshly isolated primary mouse microglial cells. Secondly, we performed behavioural rotarod, open field, and four-limb hanging tests in mice, and a whole-brain proteome analysis. KEY FINDINGS: The SA-AA prodrug alleviated the lipopolysaccharide (LPS)-induced inflammation in the rotarod and hanging tests. The proteome analysis indicated decreased neuroinflammation at the molecular level. We identified 399 proteins linked to neuroinflammation out of 7416 proteins detected in the mouse brain. Among them, Gps2, Vamp8, Slc6a3, Slc18a2, Slc5a7, Rgs9, Lrrc1, Ppp1r1b, Gnal, and Adcy5/6 were associated with the drug's effects. The SA-AA prodrug attenuated the LPS-induced neuroinflammation through the regulation of critical pathways of neuroinflammation such as the cellular response to stress and transmission across chemical synapses. SIGNIFICANCE: The efficacy of NSAIDs can be improved via the utilization of LAT1 and repurposed for the treatment of neuroinflammation. This improved brain delivery and microglia localisation can be applied to other inflammatory modulators to achieve effective and targeted CNS therapies.


Assuntos
Anti-Inflamatórios não Esteroides , Doenças Neurodegenerativas , Doenças Neuroinflamatórias , Pró-Fármacos , Animais , Camundongos , Anti-Inflamatórios não Esteroides/farmacologia , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Lipopolissacarídeos , Camundongos Endogâmicos C57BL , Microglia/metabolismo , Doenças Neurodegenerativas/metabolismo , Doenças Neuroinflamatórias/tratamento farmacológico , Pró-Fármacos/farmacologia , Proteoma/metabolismo , Ácido Salicílico/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA