Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 208
Filtrar
1.
Cell ; 186(26): 5892-5909.e22, 2023 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-38091994

RESUMO

Different functional regions of brain are fundamental for basic neurophysiological activities. However, the regional specification remains largely unexplored during human brain development. Here, by combining spatial transcriptomics (scStereo-seq) and scRNA-seq, we built a spatiotemporal developmental atlas of multiple human brain regions from 6-23 gestational weeks (GWs). We discovered that, around GW8, radial glia (RG) cells have displayed regional heterogeneity and specific spatial distribution. Interestingly, we found that the regional heterogeneity of RG subtypes contributed to the subsequent neuronal specification. Specifically, two diencephalon-specific subtypes gave rise to glutamatergic and GABAergic neurons, whereas subtypes in ventral midbrain were associated with the dopaminergic neurons. Similar GABAergic neuronal subtypes were shared between neocortex and diencephalon. Additionally, we revealed that cell-cell interactions between oligodendrocyte precursor cells and GABAergic neurons influenced and promoted neuronal development coupled with regional specification. Altogether, this study provides comprehensive insights into the regional specification in the developing human brain.


Assuntos
Encéfalo , Transcriptoma , Humanos , Neurônios Dopaminérgicos , Neurônios GABAérgicos , Mesencéfalo , Neocórtex , Encéfalo/crescimento & desenvolvimento , Encéfalo/metabolismo
2.
EMBO J ; 42(23): e114665, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37916885

RESUMO

Substantial efforts are underway to deepen our understanding of human brain morphology, structure, and function using high-resolution imaging as well as high-content molecular profiling technologies. The current work adds to these approaches by providing a comprehensive and quantitative protein expression map of 13 anatomically distinct brain regions covering more than 11,000 proteins. This was enabled by the optimization, characterization, and implementation of a high-sensitivity and high-throughput microflow liquid chromatography timsTOF tandem mass spectrometry system (LC-MS/MS) capable of analyzing more than 2,000 consecutive samples prepared from formalin-fixed paraffin embedded (FFPE) material. Analysis of this proteomic resource highlighted brain region-enriched protein expression patterns and functional protein classes, protein localization differences between brain regions and individual markers for specific areas. To facilitate access to and ease further mining of the data by the scientific community, all data can be explored online in a purpose-built R Shiny app (https://brain-region-atlas.proteomics.ls.tum.de).


Assuntos
Proteômica , Espectrometria de Massas em Tandem , Humanos , Cromatografia Líquida/métodos , Proteômica/métodos , Inclusão em Parafina/métodos , Espectrometria de Massas em Tandem/métodos , Proteínas/metabolismo , Encéfalo/metabolismo , Proteoma/metabolismo
3.
Proc Natl Acad Sci U S A ; 119(28): e2118192119, 2022 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-35867740

RESUMO

Studies with experimental animals have revealed a mood-regulating neural pathway linking intrinsically photosensitive retinal ganglion cells (ipRGCs) and the prefrontal cortex (PFC), involved in the pathophysiology of mood disorders. Since humans also have light-intensity-encoding ipRGCs, we asked whether a similar pathway exists in humans. Here, functional MRI was used to identify PFC regions and other areas exhibiting light-intensity-dependent signals. We report 26 human brain regions having activation that either monotonically decreases or monotonically increases with light intensity. Luxotonic-related activation occurred across the cerebral cortex, in diverse subcortical structures, and in the cerebellum, encompassing regions with functions related to visual image formation, motor control, cognition, and emotion. Light suppressed PFC activation, which monotonically decreased with increasing light intensity. The sustained time course of light-evoked PFC responses and their susceptibility to prior light exposure resembled those of ipRGCs. These findings offer a functional link between light exposure and PFC-mediated cognitive and affective phenomena.


Assuntos
Afeto , Cognição , Iluminação , Córtex Pré-Frontal , Células Ganglionares da Retina , Humanos , Imageamento por Ressonância Magnética , Estimulação Luminosa
4.
Neuroimage ; 289: 120552, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38387742

RESUMO

Distractor suppression (DS) is crucial in goal-oriented behaviors, referring to the ability to suppress irrelevant information. Current evidence points to the prefrontal cortex as an origin region of DS, while subcortical, occipital, and temporal regions are also implicated. The present study aimed to examine the contribution of communications between these brain regions to visual DS. To do it, we recruited two independent cohorts of participants for the study. One cohort participated in a visual search experiment where a salient distractor triggering distractor suppression to measure their DS and the other cohort filled out a Cognitive Failure Questionnaire to assess distractibility in daily life. Both cohorts collected resting-state functional magnetic resonance imaging (rs-fMRI) data to investigate function connectivity (FC) underlying DS. First, we generated predictive models of the DS measured in visual search task using resting-state functional connectivity between large anatomical regions. It turned out that the models could successfully predict individual's DS, indicated by a significant correlation between the actual and predicted DS (r = 0.32, p < 0.01). Importantly, Prefrontal-Temporal, Insula-Limbic and Parietal-Occipital connections contributed to the prediction model. Furthermore, the model could also predict individual's daily distractibility in the other independent cohort (r = -0.34, p < 0.05). Our findings showed the efficiency of the predictive models of distractor suppression encompassing connections between large anatomical regions and highlighted the importance of the communications between attention-related and visual information processing regions in distractor suppression. Current findings may potentially provide neurobiological markers of visual distractor suppression.


Assuntos
Atenção , Encéfalo , Humanos , Encéfalo/diagnóstico por imagem , Percepção Visual , Mapeamento Encefálico , Córtex Pré-Frontal , Imageamento por Ressonância Magnética
5.
J Neurosci Res ; 102(2): e25296, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38361411

RESUMO

Fas-Associated protein with Death Domain (FADD), a key molecule controlling cell fate by balancing apoptotic versus non-apoptotic functions, is dysregulated in post-mortem brains of subjects with psychopathologies, in animal models capturing certain aspects of these disorders, and by several pharmacological agents. Since persistent disruptions in normal functioning of daily rhythms are linked with these conditions, oscillations over time of key biomarkers, such as FADD, could play a crucial role in balancing the clinical outcome. Therefore, we characterized the 24-h regulation of FADD (and linked molecular partners: p-ERK/t-ERK ratio, Cdk-5, p35/p25, cell proliferation) in key brain regions for FADD regulation (prefrontal cortex, striatum, hippocampus). Samples were collected during Zeitgeber time (ZT) 2, ZT5, ZT8, ZT11, ZT14, ZT17, ZT20, and ZT23 (ZT0, lights-on or inactive period; ZT12, lights-off or active period). FADD showed similar daily fluctuations in all regions analyzed, with higher values during lights off, and opposite to p-ERK/t-ERK ratios regulation. Both Cdk-5 and p35 remained stable and did not change across ZT. However, p25 increased during lights off, but exclusively in striatum. Finally, no 24-h modulation was observed for hippocampal cell proliferation, although higher values were present during lights off. These results demonstrated a clear daily modulation of FADD in several key brain regions, with a more prominent regulation during the active time of rats, and suggested a key role for FADD, and molecular partners, in the normal physiological functioning of the brain's daily rhythmicity, which if disrupted might participate in the development of certain pathologies.


Assuntos
Encéfalo , Córtex Pré-Frontal , Humanos , Ratos , Masculino , Animais , Encéfalo/metabolismo , Córtex Pré-Frontal/metabolismo , Hipocampo/metabolismo , Proteína de Domínio de Morte Associada a Fas/metabolismo
6.
Artigo em Inglês | MEDLINE | ID: mdl-38305800

RESUMO

The establishment of 3'aQTLs comprehensive database provides an opportunity to help explore the functional interpretation from the genome-wide association study (GWAS) data of psychiatric disorders. In this study, we aim to search novel susceptibility genes, pathways, and related chemicals of five psychiatric disorders via GWAS and 3'aQTLs datasets. The GWAS datasets of five psychiatric disorders were collected from the open platform of Psychiatric Genomics Consortium (PGC, https://www.med.unc.edu/pgc/ ) and iPSYCH ( https://ipsych.dk/ ) (Demontis et al. in Nat Genet 51(1):63-75, 2019; Grove et al. in Nat Genet 51:431-444, 2019; Genomic Dissection of Bipolar Disorder and Schizophrenia in Cell 173: 1705-1715.e1716, 2018; Mullins et al. in Nat Genet 53: 817-829; Howard et al. in Nat Neurosci 22: 343-352, 2019). The 3'untranslated region (3'UTR) alternative polyadenylation (APA) quantitative trait loci (3'aQTLs) summary datasets of 12 brain regions were obtained from another public platform ( https://wlcb.oit.uci.edu/3aQTLatlas/ ) (Cui et al. in Nucleic Acids Res 50: D39-D45, 2022). First, we aligned the GWAS-associated SNPs of psychiatric disorders and datasets of 3'aQTLs, and then, the GWAS-associated 3'aQTLs were identified from the overlap. Second, gene ontology (GO) and pathway analysis was applied to investigate the potential biological functions of matching genes based on the methods provided by MAGMA. Finally, chemical-related gene-set analysis (GSA) was also conducted by MAGMA to explore the potential interaction of GWAS-associated 3'aQTLs and multiple chemicals in the mechanism of psychiatric disorders. A number of susceptibility genes with 3'aQTLs were found to be associated with psychiatric disorders and some of them had brain-region specificity. For schizophrenia (SCZ), HLA-A showed associated with psychiatric disorders in all 12 brain regions, such as cerebellar hemisphere (P = 1.58 × 10-36) and cortex (P = 1.58 × 10-36). GO and pathway analysis identified several associated pathways, such as Phenylpropanoid Metabolic Process (GO:0009698, P = 6.24 × 10-7 for SCZ). Chemical-related GSA detected several chemical-related gene sets associated with psychiatric disorders. For example, gene sets of Ferulic Acid (P = 6.24 × 10-7), Morin (P = 4.47 × 10-2) and Vanillic Acid (P = 6.24 × 10-7) were found to be associated with SCZ. By integrating the functional information from 3'aQTLs, we identified several susceptibility genes and associated pathways especially chemical-related gene sets for five psychiatric disorders. Our results provided new insights to understand the etiology and mechanism of psychiatric disorders.

7.
BMC Biol ; 21(1): 254, 2023 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-37953224

RESUMO

BACKGROUND: SHANKs are major scaffolding proteins at postsynaptic densities (PSDs) in the central nervous system. Mutations in all three family members have been associated with neurodevelopmental disorders such as autism spectrum disorders (ASDs). Despite the pathophysiological importance of SHANK2 and SHANK3 mutations in humans, research on the expression of these proteins is mostly based on rodent model organisms. RESULTS: In the present study, cellular and neuropil SHANK2 expression was analyzed by immunofluorescence (IF) staining of post mortem human brain tissue from four male individuals (19 brain regions). Mouse brains were analyzed in comparison to evaluate the degree of phylogenetic conservation. Furthermore, SHANK2 and SHANK3 isoform patterns were compared in human and mouse brain lysates. While isoform expression and subcellular distribution were largely conserved, differences in neuropil levels of SHANK2 were found by IF staining: Maximum expression was concordantly measured in the cerebellum; however, higher SHANK2 expression was detected in the human brainstem and thalamus when compared to mice. One of the lowest SHANK2 levels was found in the human amygdala, a moderately expressing region in mouse. Quantification of SHANK3 IF in mouse brains unveiled a distribution comparable to humans. CONCLUSIONS: In summary, these data show that the overall expression pattern of SHANK is largely conserved in defined brain regions; however, differences do exist, which need to be considered in the translation of rodent studies. The summarized expression patterns of SHANK2 and SHANK3 should serve as a reference for future studies.


Assuntos
Transtorno Autístico , Proteínas do Tecido Nervoso , Animais , Humanos , Masculino , Camundongos , Transtorno Autístico/genética , Encéfalo/metabolismo , Hipocampo/metabolismo , Filogenia , Isoformas de Proteínas/metabolismo , Proteínas do Tecido Nervoso/genética
8.
Int J Mol Sci ; 25(5)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38474132

RESUMO

The analysis of RNA-Sec data from murine bulk tissue samples taken from five brain regions associated with behavior and stress response was conducted. The focus was on the most contrasting brain region-specific genes (BRSG) sets in terms of their expression rates. These BRSGs are identified as genes with a distinct outlying (high) expression rate in a specific region compared to others used in the study. The analysis suggested that BRSG sets form non-randomly connected compact gene networks, which correspond to the major neuron-mediated functional processes or pathways in each brain region. The number of BRSGs and the connection rate were found to depend on the heterogeneity and coordinated firing rate of neuron types in each brain region. The most connected pathways, along with the highest BRSG number, were observed in the Striatum, referred to as Medium Spiny Neurons (MSNs), which make up 95% of neurons and exhibit synchronous firing upon dopamine influx. However, the Ventral Tegmental Area/Medial Raphe Nucleus (VTA/MRN) regions, although primarily composed of monoaminergic neurons, do not fire synchronously, leading to a smaller BRSG number. The Hippocampus (HPC) region, on the other hand, displays significant neuronal heterogeneity, with glutamatergic neurons being the most numerous and synchronized. Interestingly, the two monoaminergic regions involved in the study displayed a common BRSG subnetwork architecture, emphasizing their proximity in terms of axonal throughput specifics and high-energy metabolism rates. This finding suggests the concerted evolution of monoaminergic neurons, leading to unique adaptations at the genic repertoire scale. With BRSG sets, we were able to highlight the contrasting features of the three groups: control, depressive, and aggressive mice in the animal chronic stress model. Specifically, we observed a decrease in serotonergic turnover in both the depressed and aggressive groups, while dopaminergic emission was high in both groups. There was also a notable absence of dopaminoceptive receptors on the postsynaptic membranes in the striatum in the depressed group. Additionally, we confirmed that neurogenesis BRSGs are specific to HPC, with the aggressive group showing attenuated neurogenesis rates compared to the control/depressive groups. We also confirmed that immune-competent cells like microglia and astrocytes play a crucial role in depressed phenotypes, including mitophagy-related gene Prkcd. Based on this analysis, we propose the use of BRSG sets as a suitable framework for evaluating case-control group-wise assessments of specific brain region gene pathway responses.


Assuntos
Dopamina , Neurônios , Camundongos , Animais , Neurônios/metabolismo , Dopamina/metabolismo , Área Tegmentar Ventral/metabolismo , Núcleo Dorsal da Rafe/metabolismo , Neurônios Dopaminérgicos/metabolismo
9.
Artigo em Inglês | MEDLINE | ID: mdl-38294632

RESUMO

The contextualization of biological traces generated by severe head injuries can be beneficial for criminal investigations. Here we aimed to identify and validate mRNA candidates for a robust sub-differentiation of forensically and traumatologically relevant brain regions. To this purpose, massively parallel sequencing of whole transcriptomes in sample material taken from four different areas of the cerebral cortex (frontal, temporal, parietal, occipital lobe) was performed, followed by bioinformatical data analysis, classification, and biostatistical candidate selection. Candidates were evaluated by Multiplex-RT-PCR and capillary electrophoresis. Only a weak relative upregulation and solely for candidates expressed in the parietal lobe was observed. Two candidates with upregulation in the cerebellar region (PVALB and CDR2L) were chosen for further investigation; however, PVALB could not reliably and repeatedly be detected in any lobe whereas CDR2L was detectable in all lobes. Consequently, we suggest that differences in mRNA expression between four regions of the cerebral cortex are too small and less pronounced to be useful for and applicable in forensic RNA analysis. We conclude that sub-differentiation of these brain regions via RNA expression analysis is generally not feasible within a forensic scope.

10.
J Neurophysiol ; 130(6): 1414-1424, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37910522

RESUMO

Cardiovascular and metabolic complications associated with excess adiposity are linked to chronic activation of the sympathetic nervous system, resulting in a high risk of mortality among obese individuals. Obesity-related positive energy balance underlies the progression of hypertension, end-organ damage, and insulin resistance, driven by increased sympathetic tone throughout the body. It is, therefore, important to understand the central network that drives and maintains sustained activation of the sympathetic nervous system in the obese state. Experimental and clinical studies have identified structural changes and altered dynamics in both grey and white matter regions in obesity. Aberrant activation in certain brain regions has been associated with altered reward circuitry and metabolic pathways including leptin and insulin signaling along with adiposity-driven systemic and central inflammation. The impact of these pathways on the brain via overactivity of the sympathetic nervous system has gained interest in the past decade. Primarily, the brainstem, hypothalamus, amygdala, hippocampus, and cortical structures including the insular, orbitofrontal, temporal, cingulate, and prefrontal cortices have been identified in this context. Although the central network involving these structures is much more intricate, this review highlights recent evidence identifying these regions in sympathetic overactivity in obesity.


Assuntos
Hipertensão , Resistência à Insulina , Humanos , Obesidade , Leptina/metabolismo , Sistema Nervoso Simpático , Encéfalo
11.
Toxicol Appl Pharmacol ; 479: 116723, 2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37844777

RESUMO

Polybrominated diphenyl ethers (PBDEs), used as flame retardants are persistent organic pollutants exerting important health effects. PBDEs with >5 bromide substitutions were considered less harmful and therefore extensively used commercially. DE-79 was a widely used PBDE mixture of hexa-, hepta-, octa- and nona-brominated compounds that increases vasopressin (AVP) production. AVP and oxytocin (OT) are both produced in neurons of the supraoptic (SON) and paraventricular (PVN) hypothalamic nuclei projecting to the neurohypophysis and to brain regions involved in copulatory behavior. OT plays an important role in male copulation. Since DE-79 alters AVP expression in the SON and PVN, it might also modify OT content and alter male sexual behavior. We analyzed if repeated DE-79 exposure of adult male rats affected OT content and OT receptor (OTR) density in the SON, PVN, medial preoptic area (mPOA), ventral tegmental area, nucleus accumbens, and amygdala, and if male copulatory behavior was affected. We show that DE-79 exposure produces a generalized decrease in brain OT immunoreactivity, increases OTR density in all brain regions analyzed but the mPOA, and reduces the ejaculatory threshold after a first ejaculation. The documented ejaculation-induced OT release might participate in this last effect. Thus, one-week DE-79 exposure alters the OT-OTR system and modifies male rat sexual performance. Based on the literature it could be speculated that these effects are related to the putative endocrine disrupting actions of DE-79, ultimately altering brain OT levels and OTR expression that might affect copulation and other important OT-mediated brain functions.


Assuntos
Disruptores Endócrinos , Ratos , Masculino , Animais , Disruptores Endócrinos/metabolismo , Éteres Difenil Halogenados , Ocitocina/metabolismo , Ocitocina/farmacologia , Receptores de Ocitocina/metabolismo , Encéfalo , Núcleo Hipotalâmico Paraventricular
12.
Eur J Neurol ; 30(4): 920-933, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36692250

RESUMO

BACKGROUND AND PURPOSE: The pathophysiology of Parkinson's disease (PD) negatively affects brain network connectivity, and in the presence of brain white matter hyperintensities (WMHs) cognitive and motor impairments seem to be aggravated. However, the role of WMHs in predicting accelerating symptom worsening remains controversial. The objective was to investigate whether location and segmental brain WMH burden at baseline predict cognitive and motor declines in PD after 2 years. METHODS: Ninety-eight older adults followed longitudinally from Ontario Neurodegenerative Diseases Research Initiative with PD of 3-8 years in duration were included. Percentages of WMH volumes at baseline were calculated by location (deep and periventricular) and by brain region (frontal, temporal, parietal, occipital lobes and basal ganglia + thalamus). Cognitive and motor changes were assessed from baseline to 2-year follow-up. Specifically, global cognition, attention, executive function, memory, visuospatial abilities and language were assessed as were motor symptoms evaluated using the Movement Disorder Society Unified Parkinson's Disease Rating Scale Part III, spatial-temporal gait variables, Freezing of Gait Questionnaire and Activities Specific Balance Confidence Scale. RESULTS: Regression analysis adjusted for potential confounders showed that total and periventricular WMHs at baseline predicted decline in global cognition (p < 0.05). Also, total WMH burden predicted the decline of executive function (p < 0.05). Occipital WMH volumes also predicted decline in global cognition, visuomotor attention and visuospatial memory declines (p < 0.05). WMH volumes at baseline did not predict motor decline. CONCLUSION: White matter hyperintensity burden at baseline predicted cognitive but not motor decline in early to mid-stage PD. The motor decline observed after 2 years in these older adults with PD is probably related to the primary neurodegenerative process than comorbid white matter pathology.


Assuntos
Disfunção Cognitiva , Transtornos Neurológicos da Marcha , Doenças Neurodegenerativas , Doença de Parkinson , Substância Branca , Humanos , Idoso , Substância Branca/patologia , Doenças Neurodegenerativas/patologia , Ontário , Imageamento por Ressonância Magnética/métodos , Cognição/fisiologia , Disfunção Cognitiva/patologia
13.
Brain Topogr ; 36(4): 566-580, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37154884

RESUMO

In this study of early functional changes in Parkinson's disease (PD), we aimed to provide a comprehensive assessment of the development of changes in both cortical and subcortical neurophysiological brain activity, including their association with clinical measures of disease severity. Repeated resting-state MEG recordings and clinical assessments were obtained in the context of a unique longitudinal cohort study over a seven-year period using a multiple longitudinal design. We used linear mixed-models to analyze the relationship between neurophysiological (spectral power and functional connectivity) and clinical data. At baseline, early-stage (drug-naïve) PD patients demonstrated spectral slowing compared to healthy controls in both subcortical and cortical brain regions, most outspoken in the latter. Over time, spectral slowing progressed in strong association with clinical measures of disease progression (cognitive and motor). Global functional connectivity was not different between groups at baseline and hardly changed over time. Therefore, investigation of associations with clinical measures of disease progression were not deemed useful. An analysis of individual connections demonstrated differences between groups at baseline (higher frontal theta, lower parieto-occipital alpha2 band functional connectivity) and over time in PD patients (increase in frontal delta and theta band functional connectivity). Our results suggest that spectral measures are promising candidates in the search for non-invasive markers of both early-stage PD and of the ongoing disease process.


Assuntos
Doença de Parkinson , Humanos , Magnetoencefalografia/métodos , Estudos Longitudinais , Encéfalo/diagnóstico por imagem , Progressão da Doença
14.
Can J Physiol Pharmacol ; 101(10): 529-538, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37364372

RESUMO

No data in the literature have evaluated sex hormone dose escalation for treating abnormal sleep of ovariectomized rats-nor studies on the role of sex hormones in GABA synthesis of rats' sleep-related areas. The main aim of this study was to determine the maximum tolerated dose (MTD) of estradiol (ET), progesterone (PT), and the mixture of both (EPT) to restore normal sleep in a model of menopause in rats. The second purpose was to describe the in vitro activity of glutamate decarboxylase (GAD) in sleep-related brain areas in the presence or absence of sex hormones. A weekly dose-escalation design of ET, PT, or EPT was implemented in ovariectomized rats (six per group). Dose escalation continued until the dose at which 100% of the rats exhibited a state of "complete somnolence." Doses that were not toxic or did not show side effects were considered. For in vitro experiments, sleep-related brain areas were separated and incubated with radiolabeled glutamate. Estradiol (17ß-E2), progesterone (P), and pyridoxal phosphate (PLP) were added to this assay, and GAD activity was determined. Under the same conditions, a second test was carried out, but the P antagonist RU486 was added to assess the role of P in GAD activity. Ovariectomy increased periodic awakenings compared to those determined for the SHAM group. The EPT for ovariectomized rats was very effective by the fifth week in decreasing arousal and achieving a similar sleep behavior to the SHAM-control group. Rats tolerated the ET, PT, and EPT well to the maximum planned dose (0.66 mg/kg and 4.4 mg/kg, respectively). No lethal events occurred; the MTD was reached. The in vitro studies indicated that the presence of 17ß-E2 plus P in the assay triggered the activity of isotype 65 GAD in all the studied brain areas. RU486 in the incubation medium blocked such activity; however, the action of isotype 67 GAD was not blocked by RU486. A dose-escalation model was determined; the MTD coincided with the maximum dose of ET and PT used. However, the EPT combination restored normal sleep in the menopause model compared to the SHAMs without toxic effects. The in vitro model demonstrated that 17ß-E2 plus P presence in the assay increased the activity of GAD65 in the studied brain tissues.


Assuntos
Mifepristona , Progesterona , Animais , Feminino , Ratos , Encéfalo , Estradiol , Ácido gama-Aminobutírico , Ovariectomia , Sono
15.
Int J Mol Sci ; 24(3)2023 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-36769334

RESUMO

In the present study, we used a mouse model of Alzheimer's disease (AD) (3×Tg-AD mice) to longitudinally analyse the expression level of PDIA3, a protein disulfide isomerase and endoplasmic reticulum (ER) chaperone, in selected brain limbic areas strongly affected by AD-pathology (amygdala, entorhinal cortex, dorsal and ventral hippocampus). Our results suggest that, while in Non-Tg mice PDIA3 levels gradually reduce with aging in all brain regions analyzed, 3×Tg-AD mice showed an age-dependent increase in PDIA3 levels in the amygdala, entorhinal cortex, and ventral hippocampus. A significant reduction of PDIA3 was observed in 3×Tg-AD mice already at 6 months of age, as compared to age-matched Non-Tg mice. A comparative immunohistochemistry analysis performed on 3×Tg-AD mice at 6 (mild AD-like pathology) and 18 (severe AD-like pathology) months of age showed a direct correlation between the cellular level of Aß and PDIA3 proteins in all the brain regions analysed, even if with different magnitudes. Additionally, an immunohistochemistry analysis showed the presence of PDIA3 in all post-mitotic neurons and astrocytes. Overall, altered PDIA3 levels appear to be age- and/or pathology-dependent, corroborating the ER chaperone's involvement in AD pathology, and supporting the PDIA3 protein as a potential novel therapeutic target for the treatment of AD.


Assuntos
Doença de Alzheimer , Camundongos , Animais , Doença de Alzheimer/metabolismo , Camundongos Transgênicos , Isomerases de Dissulfetos de Proteínas/genética , Isomerases de Dissulfetos de Proteínas/metabolismo , Encéfalo/metabolismo , Camundongos Endogâmicos , Modelos Animais de Doenças , Peptídeos beta-Amiloides/metabolismo , Proteínas tau/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo
16.
Zhongguo Zhong Yao Za Zhi ; 48(5): 1289-1299, 2023 Mar.
Artigo em Chinês | MEDLINE | ID: mdl-37005813

RESUMO

This study compared the ameliorating effects of L-borneol, natural borneol, and synthetic borneol on the injury of different brain regions in the rat model of acute phase of cerebral ischemia/reperfusion(I/R) for the first time, which provides a reference for guiding the rational application of borneol in the early treatment of ischemic stroke and has important academic and application values. Healthy specific pathogen-free(SPF)-grade SD male rats were randomly assigned into 13 groups: a sham-operation group, a model group, a Tween model group, a positive drug(nimodipine) group, and high-, medium-, and low-dose(0.2, 0.1, and 0.05 g·kg~(-1), respectively) groups of L-borneol, natural borneol, and synthetic borneol according to body weight. After 3 days of pre-administration, the rat model of I/R was established by suture-occluded method and confirmed by laser speckle imaging. The corresponding agents in different groups were then administered for 1 day. The body temperature was monitored regularly before pre-administration, days 1, 2, and 3 of pre-administration, 2 h after model awakening, and 1 d after model establishment. Neurological function was evaluated based on Zea-Longa score and modified neurological severity score(mNSS) 2 h and next day after awakening. The rats were anesthetized 30 min after the last administration, and blood was collected from the abdominal aorta. Enzyme-linked immunoassay assay(ELISA) was employed to determine the serum levels of tumor necrosis factor-alpha(TNF-α), interleukin-6(IL-6), IL-4, and transforming growth factor-beta1(TGF-ß1). The brain tissues were stained with triphenyltetrazolium chloride(TTC) for the calculation of cerebral infarction rate, and hematoxylin-eosin(HE) staining was used for observing and semi-quantitatively evaluating the pathological damage in different brain regions. Immunohistochemistry was employed to detect the expression of ionized calcium binding adapter molecule 1(IBA1) in microglia. q-PCR was carried out to determine the mRNA levels of iNOS and arginase 1(Arg1), markers of polarization phenotype M1 and M2 in microglia. Compared with the sham-operation group, the model group and the Tween model group showed significantly elevated body temperature, Zea-Longa score, mNSS, and cerebral infarction rate, severely damaged cortex, hippocampus, and striatum, increased serum levels of IL-6 and TNF-α, and decreased serum levels of IL-4 and TGF-ß1. The three borneol products had a tendency to reduce the body temperature of rats 1 day after modeling. Synthetic borneol at the doses of 0.2 and 0.05 g·kg~(-1), as well as L-borneol of 0.1 g·kg~(-1), significantly reduced Zea-Longa score and mNSS. The three borneol products at the dose of 0.2 g·kg~(-1) significantly reduced the cerebral infarction rate. L-borneol at the doses of 0.2 and 0.1 g·kg~(-1) and natural borneol at the dose of 0.1 g·kg~(-1) significantly reduced the pathological damage of the cortex. L-borneol and natural borneol at the dose of 0.1 g·kg~(-1) attenuated the pathological damage of hippocampus, and 0.2 g·kg~(-1) L-borneol attenuated the damage of striatum. The 0.2 g·kg~(-1) L-borneol and the three doses of natural borneol and synthetic borneol significantly reduced the serum level of TNF-α, and the 0.1 g·kg~(-1) synthetic borneol reduced the level of IL-6. L-borneol and synthetic borneol at the dose of 0.2 g·kg~(-1) significantly inhibited the activation of cortical microglia, and 0.2 g·kg~(-1) L-borneol up-regulated the expression of Arg1 and down-regulated the expression level of iNOS. In conclusion, the three borneol products may alleviate inflammation to ameliorate the pathological damage of brain regions of rats in the acute phase of I/R by inhibiting the activation of microglia and promoting the polarization of microglia from M1 type to M2 type. The protective effect on brain followed a trend of L-borneol > synthetic borneol > natural borneol. We suggest L-borneol the first choice for the treatment of I/R in the acute phase.


Assuntos
Isquemia Encefálica , Traumatismo por Reperfusão , Ratos , Masculino , Animais , Fator de Crescimento Transformador beta1/metabolismo , Ratos Sprague-Dawley , Fator de Necrose Tumoral alfa/metabolismo , Interleucina-6/metabolismo , Interleucina-4/metabolismo , Polissorbatos , Encéfalo , Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/metabolismo , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/metabolismo , Infarto Cerebral , Reperfusão
17.
J Lipid Res ; 63(8): 100249, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35839864

RESUMO

Polypharmacy, or the simultaneous use of multiple drugs to treat a single patient, is a common practice in psychiatry. Unfortunately, data on the health effects of commonly used combinations of medications are very limited. In this study, we therefore investigated the effects and interactions between two commonly prescribed psychotropic medications with sterol inhibiting side effects, trazodone (TRZ), an antidepressant, and aripiprazole (ARI), an antipsychotic. In vitro cell culture experiments revealed that both medications alone disrupted neuronal and astroglial sterol biosynthesis in dose-dependent manners. Furthermore, when ARI and TRZ were combined, exposure resulted in an additive 7-dehydrocholesterol (7-DHC) increase, as well as desmosterol (DES) and cholesterol decreases in both cell types. In adult mice, at baseline, we found that the three investigated sterols showed significant differences in distribution across the eight assessed brain regions. Furthermore, experimental mice treated with ARI or TRZ, or a combination of both medications for 8 days, showed strong sterol disruption across all brain regions. We show ARI or TRZ alone elevated 7-DHC and decreased DES levels in all brain regions, but with regional differences. However, the combined utilization of these two medications for 8 days did not lead to additive changes in sterol disturbances. Based on the complex roles of 7-DHC derived oxysterols, we conclude that individual and potentially simultaneous use of medications with sterol biosynthesis-inhibiting properties might have undesired side effects on the adult brain, with as yet unknown long-term consequences on mental or physical health.


Assuntos
Antipsicóticos , Oxirredutases atuantes sobre Doadores de Grupo CH-CH , Trazodona , Animais , Antidepressivos , Aripiprazol , Encéfalo , Camundongos , Esteróis
18.
J Integr Neurosci ; 21(2): 60, 2022 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-35364648

RESUMO

Optic neuritis (ON) is a general term for inflammation of any part of the optic nerve resulting from demyelination or infection. The number of patients with MOG-lgG antibody-related optic neuritis is increasing recently. Our study uses the fractional amplitude of low-frequency fluctuation (fALFF) method to compare the activity of specific brain regions in MOG-lgG ON patients and healthy controls (HCs). We selected a total of 21 MOG-lgG ON patients and 21 HCs were included in the study. All subjects underwent resting-state functional magnetic resonance imaging (rs-fMRI). The independent-samples t-test was used to compare demographic data and average fALFF values between groups. The specificity and sensitivity of fALFF values for distinguishing between MOG-lgG ON patients and HCs were evaluated by receiver operating characteristic (ROC) curve analysis. Pearson's correlation analysis was used to analyze the relationship between fALFF values and clinical characteristics in MOG-lgG ON patients. Our results showed that fALFF values of the right cerebellum and left middle cingulum were lower whereas those of bilateral inferior temporal lobes, right gyrus rectus, and the left superior and right middle frontal lobes of MOG-lgG ON patients were higher than those of HCs (P < 0.05). The average fALFF value of the left superior frontal lobe in MOG-lgG ON patients was positively correlated with Hospital Anxiety and Depression Scale score (HADS) (r = 0.6004; P < 0.05) and duration of MOG-lgG ON (r = 6487; P < 0.05). Thus, patients with MOG-lgG ON have abnormal activity in the brain regions related to vision. Changes in fALFF value can reflect functional sequelae of MOG-lgG ON, including abnormal anxiety or depressive emotional changes.


Assuntos
Imageamento por Ressonância Magnética , Neurite Óptica , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Lobo Frontal , Humanos , Imageamento por Ressonância Magnética/métodos , Neurite Óptica/diagnóstico por imagem , Neurite Óptica/patologia , Lobo Temporal
19.
Genomics ; 113(1 Pt 1): 29-43, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33264657

RESUMO

Long non-coding RNAs (lncRNAs) are the master regulators of numerous biological processes. Hypoxia causes oxidative stress with severe and detrimental effects on brain function and acts as a critical initiating factor in the pathogenesis of Alzheimer's disease (AD). From the RNA-Seq in the forebrain (Fb), midbrain (Mb), and hindbrain (Hb) regions of hypoxic and normoxic zebrafish, we identified novel lncRNAs, whose potential cis targets showed involvement in neuronal development and differentiation pathways. Under hypoxia, several lncRNAs and mRNAs were differentially expressed. Co-expression studies indicated that the Fb and Hb regions' potential lncRNA target genes were involved in the AD pathogenesis. In contrast, those in Mb (cry1b, per1a, cipca) was responsible for regulating circadian rhythm. We identified specific lncRNAs present in the syntenic regions between zebrafish and humans, possibly functionally conserved. We thus identified several conserved lncRNAs as the probable regulators of AD genes (adrb3b, cav1, stat3, bace2, apoeb, psen1, s100b).


Assuntos
Encéfalo/metabolismo , Hipóxia/genética , RNA Longo não Codificante/genética , Animais , Hipóxia/metabolismo , Redes e Vias Metabólicas/genética , RNA Longo não Codificante/metabolismo , Peixe-Zebra , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
20.
Int J Mol Sci ; 23(15)2022 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-35955861

RESUMO

Prader−Willi syndrome (PWS) is a complex neurodevelopmental disorder caused by the deletion or inactivation of paternally expressed imprinted genes at the chromosomal region 15q11−q13. The PWS-critical region (PWScr) harbors tandemly repeated non-protein coding IPW-A exons hosting the intronic SNORD116 snoRNA gene array that is predominantly expressed in brain. Paternal deletion of PWScr is associated with key PWS symptoms in humans and growth retardation in mice (PWScr model). Dysregulation of the hypothalamic−pituitary axis (HPA) is thought to be causally involved in the PWS phenotype. Here we performed a comprehensive reverse transcription quantitative PCR (RT-qPCR) analysis across nine different brain regions of wild-type (WT) and PWScr mice to identify stably expressed reference genes. Four methods (Delta Ct, BestKeeper, Normfinder and Genorm) were applied to rank 11 selected reference gene candidates according to their expression stability. The resulting panel consists of the top three most stably expressed genes suitable for gene-expression profiling and comparative transcriptome analysis of WT and/or PWScr mouse brain regions. Using these reference genes, we revealed significant differences in the expression patterns of Igfbp7, Nlgn3 and three HPA associated genes: Pcsk1, Pcsk2 and Nhlh2 across investigated brain regions of wild-type and PWScr mice. Our results raise a reasonable doubt on the involvement of the Snord116 in posttranscriptional regulation of Nlgn3 and Nhlh2 genes. We provide a valuable tool for expression analysis of specific genes across different areas of the mouse brain and for comparative investigation of PWScr mouse models to discover and verify different regulatory pathways affecting this complex disorder.


Assuntos
Síndrome de Prader-Willi , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Encéfalo/metabolismo , Modelos Animais de Doenças , Éxons , Impressão Genômica , Humanos , Camundongos , Síndrome de Prader-Willi/genética , Síndrome de Prader-Willi/metabolismo , Pró-Proteína Convertase 1/genética , Pró-Proteína Convertase 1/metabolismo , RNA Nucleolar Pequeno/genética , RNA Nucleolar Pequeno/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA