Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
J Colloid Interface Sci ; 662: 941-952, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38382377

RESUMO

Carbon capture and desulfurization of flue gases are crucial for the achievement of carbon neutrality and sustainable development. In this work, the "one-step" adsorption technology with high-performance metal-organic frameworks (MOFs) was proposed to simultaneously capture the SO2 and CO2. Four machine learning algorithms were used to predict the performance indicators (NCO2+SO2, SCO2+SO2/N2, and TSN) of MOFs, with Multi-Layer Perceptron Regression (MLPR) showing better performance (R2 = 0.93). To address sparse data of MOF chemical descriptors, we introduced the Deep Factorization Machines (DeepFM) model, outperforming MLPR with a higher R2 of 0.95. Then, sensitivity analysis was employed to find that the adsorption heat and porosity were the key factors for SO2 and CO2 capture performance of MOF, while the influence of open alkali metal sites also stood out. Furthermore, we established a kinetic model to batch simulate the breakthrough curves of TOP 1000 MOFs to investigate their dynamic adsorption separation performance for SO2/CO2/N2. The TOP 20 MOFs screened by the dynamic performance highly overlap with those screened by the static performance, with 76 % containing open alkali metal sites. This integrated approach of computational screening, machine learning, and dynamic analysis significantly advances the development of efficient MOF adsorbents for flue gas treatment.

2.
Environ Sci Pollut Res Int ; 31(6): 8736-8750, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38180650

RESUMO

A single-step dye removal strategy from wastewater is inadequate for concentrations above 100 mg/L. In order to address this limitation, the adsorption of high dye concentrations followed by phytoremediation is a potential approach for the treatment of dye-contaminated wastewater. This combined method utilizes physical adsorption and biological processes to remove dyes from wastewater. Herein, we investigated a pilot-scale multi-step cascaded process where batch adsorption and fixed-bed column adsorption were combined with phytoremediation to remove cellulose-reactive blue dye at 200 to 500 mg/L concentrations. The batch adsorption utilized low-cost water hyacinth root powder (WHRP) bioadsorbent having 670 m2/g surface area, whereas the fixed-bed column adsorption used sand having a surface area of 75 m2/g. The phytoremediation process utilized water hyacinth plants in a series of ponds. The effluent from one unit is fed to the next until the dye is removed to more than 98% for all concentrations considered in this study. Pilot-scale experimental data fitting to adsorption isotherms and kinetics were performed to gain insight into the pilot-scale adsorption mechanism. The fixed-bed sand column adsorption was conducted at different inlet dye concentrations, flow rates, and bed heights. The breakthrough curves were fit to the Thomas, Yoon-Nelson, and Bohart-Adams models. The effluent from the fixed-bed column was transferred to phytoremediation ponds, where complete dye removal was achieved. Overall, data collectively presented in this study demonstrated that the combined adsorption and phytoremediation approach offers a potential solution for the remediation of high dye concentration in wastewater, providing an effective and sustainable treatment option.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Águas Residuárias , Celulose , Adsorção , Corantes , Biodegradação Ambiental , Areia , Purificação da Água/métodos , Poluentes Químicos da Água/análise , Cinética
3.
Heliyon ; 10(9): e30745, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38765099

RESUMO

The zeolitic imidazolate framework-67 (ZIF-67) has been explored for the dynamic adsorption of toluene vapor. We synthesized ZIF-67 through a straightforward room-temperature process and characterized it using XRD, FT-IR, DLS, and SEM techniques. The synthesized ZIF-67 possessed a Brunauer-Emmett-Teller (BET) surface area of 1578.7 m2/g and 0.76 µm particle size. Thermal activation under various conditions revealed that ZIF-67, activated in dry air at 250 °C, demonstrated optimal adsorption efficacy. Its adsorption capacity, time of breakthrough, and time of equilibration were 414.5 mg/g, 420 min, and 795 min, respectively. We investigated the impact of diverse operational parameters on adsorption through breakthrough curve analysis. An increase in the toluene concentration from 100 to 1000 ppm enhanced the adsorption capacity from 171 to 414 mg/g, while breakthrough time decreased from 1260 min to 462 min, respectively. Our findings show that increasing relative humidity from 0 to 70 % reduced 53.7 % in adsorption capacity and 46.3 % in breakthrough time. The competitive adsorption of toluene and ethylbenzene revealed that ZIF-67 had a higher selectivity for toluene adsorption. A 98 % adsorbent's regeneration efficiency at the first cycle reveals its reusability. The experimental data were successfully fitted to the Yan, Thomas, and Yoon-Nelson models to describe the adsorption process. The statistical validation of the model parameters confirms their reliability for estimating adsorption parameters, thus facilitating the design of fixed-bed adsorption columns for practical applications.

4.
Environ Pollut ; 355: 124138, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38734052

RESUMO

Clay-amended barriers are widely used to prevent hazardous leachate percolation from landfill to subsurface. The performance of these barriers is mostly evaluated through numerical simulations with limited experimental investigation through leachate flushing experiments. To bridge this gap, contaminant loading and its flushing experiments were carried out to assess the performance of clay-amended composite materials as landfill liners. River sand (Sa), loamy soil (Ns), and alternative waste materials like fly ash (Fa) and flushed silt (Si) were used to prepare the composites. Composites fulfilling the hydraulic conductivity (<10-7 cm/s) and compressive strength (200 kPa) criteria were selected for contaminant loading and its flushing experiments to understand the fate of fluoride ions. The experimentally determined hydraulic conductivity (Ks) values for all the composites were in the order of 10-8 cm/s. The experimental breakthrough curves exhibited skewed shape, long tailing, and dual peaks. Dual porosity and dual permeability with immobile water models were employed to simulate these curves, revealing that preferential flow pathways and random chemical sorption sites significantly affect solute transport in clay-amended barriers. Further, scanning electron microscopy and energy-dispersive X-ray spectroscopy were employed to trace the preferred path of fluoride ions through the barrier. The removal efficiency and temporal moments were used to determine the percentage mass retained, mean arrival time, and spreading within the barrier. The highest solute mass was retained by sand-clay barrier (SaB30) (91%), followed by loam-clay barrier (NsB30) (59%), fly ash-clay barrier (FaB30) (38%), and silt-clay barrier (SiB30) (4%) with the least mass. The lowest mean arrival time was calculated for NsB30 (269 h) and the highest for SaB30 (990 h), with FaB30 (384 h) and SiB30 (512 h) having values in between. This study concludes that validating the design hypothesis of clay-amended barriers through contaminant loading and its flushing studies leads to an effective and sustainable design.


Assuntos
Argila , Poluentes Químicos da Água , Argila/química , Porosidade , Poluentes Químicos da Água/química , Poluentes Químicos da Água/análise , Instalações de Eliminação de Resíduos , Movimentos da Água , Solo/química , Cinza de Carvão/química , Modelos Teóricos
5.
Chemosphere ; 360: 142451, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38801904

RESUMO

Nanobubbles have been increasingly used in various applications involving porous media, such as groundwater remediation and irrigation. However, the fundamental scientific knowledge regarding the interactions between nanobubbles and the media is still limited. The interactions can be repulsive, attractive, or inert, and can involve reversible or irreversible attachment as well as destructive mechanisms. Specifically, the stability and mobility of nanobubbles in porous media is expected to be dependent on the dynamic conditions and the physicochemical properties of the porous media, solutions, and nanobubbles themselves. In this study, we investigated how changes in solution chemistry (pH, ionic strength, and valence) and media characteristics (size and wettability) affect the size and concentration of nanobubbles under dynamic conditions using column experiments. Quartz crystal microbalance with dissipation monitoring provided a deeper understanding of irreversible and elastic nanobubbles' interactions with silica-coated surfaces. Our findings suggest that nanobubbles are less mobile in solutions of higher ionic strength and valence, acidic pH and smaller porous media sizes, while the wettability of porous media has a negligible influence on the retention of nanobubbles. Overall, our findings provide insights into the underlying mechanisms of nanobubble interactions and suggest potential strategies to optimize their delivery in various applications.


Assuntos
Molhabilidade , Porosidade , Concentração Osmolar , Concentração de Íons de Hidrogênio , Dióxido de Silício/química , Recuperação e Remediação Ambiental/métodos , Água Subterrânea/química , Agricultura , Técnicas de Microbalança de Cristal de Quartzo
6.
Chemosphere ; 354: 141714, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38521106

RESUMO

The widespread use of nanomaterials has raised the threat of nanoparticles (NPs) infection of soils and groundwater resources. This research aims to investigate three parameters including flow velocity, ionic strength (IS), and initial particle concentration effects on transport behavior and retention mechanism of functionalization form of graphene oxide with polyvinylpyrrolidone (GO-PVP). The transport of GO-PVP was investigated in a laboratory-scale study through saturated/unsaturated (Saturation Degree = 0.91) sand columns. Experiments were conducted on flow velocity from 1.20 to 2.04 cm min-1, initial particle concentration from 10 to 50 mg L-1, and IS of 5-20 mM. The retention of GO-PVP was best described using the one-site kinetic attachment model in HYDRUS-1D, which accounted for the time and depth-dependent retention. According to breakthrough curves (BTCs), the lower transport related to the rate of mass recovery of GO-PVP was obtained by decreasing flow velocity and initial particle concentration and increasing IS through the sand columns. Increasing IS could improve the GO-PVP retention (based on katt and Smax) in saturated/unsaturated media; katt increases from 2.81 × 10-3 to 3.54 × 10-3 s-1 and Smax increases from 0.37 to 0.42 mg g-1 in saturated/unsaturated conditions, respectively. Our findings showed that the increasing retention of GO-PVP through the sand column under unsaturated condition could be recommended for the reduction of nanoparticles danger of ecosystem exposure.


Assuntos
Grafite , Nanopartículas , Areia , Porosidade , Ecossistema , Concentração Osmolar , Dióxido de Silício
7.
Chemosphere ; 357: 142051, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38648988

RESUMO

Water purification using adsorption is a crucial process for maintaining human life and preserving the environment. Batch and dynamic adsorption modes are two types of water purification processes that are commonly used in various countries due to their simplicity and feasibility on an industrial scale. However, it is important to understand the advantages and limitations of these two adsorption modes in industrial applications. Also, the possibility of using batch mode in industrial scale was scrutinized, along with the necessity of using dynamic mode in such applications. In addition, the reasons for the necessity of performing batch adsorption studies before starting the treatment on an industrial scale were mentioned and discussed. In fact, this review article attempts to throw light on these subjects by comparing the biosorption efficiency of some metals on utilized biosorbents, using both batch and fixed-bed (column) adsorption modes. The comparison is based on the effectiveness of the two processes and the mechanisms involved in the treatment. Parameters such as biosorption capacity, percentage removal, and isotherm models for both batch and column (fixed bed) studies are compared. The article also explains thermodynamic and kinetic models for batch adsorption and discusses breakthrough evaluations in adsorptive column systems. The review highlights the benefits of using convenient batch-wise biosorption in lab-scale studies and the key advantages of column biosorption in industrial applications.


Assuntos
Metais , Poluentes Químicos da Água , Purificação da Água , Adsorção , Purificação da Água/métodos , Poluentes Químicos da Água/química , Poluentes Químicos da Água/metabolismo , Metais/química , Cinética , Termodinâmica , Íons/química
8.
J Contam Hydrol ; 265: 104391, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38936239

RESUMO

Natural river flooding events can mobilize contaminants from the vadose zone and lead to increased concentrations in groundwater. Characterizing the mass and transport mechanisms of contaminants released from the vadose zone to groundwater during these recharge events is particularly challenging. Therefore, conducting highly-controlled in-situ experiments that simulate natural flooding events can help increase the knowledge of where contaminants can be stored and how they can move between hydrological compartments. This study specifically targets uranium pollution, which is accompanied by high sulfate levels in the vadose zone and groundwater. Two novel experimental river flooding events were conducted that utilized added non-reactive halides (bromide and iodide) and 2,6-difluorobenzoate tracers. In both experiments, about 8 m3 of traced water from a nearby contaminant-poor river was flooded in a 3-m diameter basin and infiltrated through the vadose zone and into a contaminant-rich unconfined aquifer for an average of 10 days. The aquifer contained 13 temporary wells that were monitored for solute concentration for up to 40 days. The groundwater analysis was conducted for changes in contaminant mass using the Theissen polygon method and for transport mechanisms using temporal moments. The results indicated an increase in uranium (21 and 24%), and sulfate (24 and 25%) contaminant mass transport to groundwater from the vadose zone during both experiments. These findings confirmed that the vadose zone can store and release substantial amounts of contaminants to groundwater during flooding events. Additionally, contaminants were detected earlier than the added tracers, along with higher concentrations. These results suggested that contaminant-rich pore water in the vadose zone was transported ahead of the traced flood waters and into groundwater. During the first flooding event, elevated concentrations of contaminants were sustained, and that chloride behaved similarly. The findings implied that contaminant- and chloride-rich evaporites in the vadose zone were dissolved during the first flooding event. For the second flooding event, the data suggested that the contaminant-rich evaporites continued to dissolve whereas chloride-rich evaporites were previously flushed. Overall, these findings indicated that contaminant-rich pore water and evaporites in the vadose zone can play a significant role in contaminant transport during flooding events.


Assuntos
Monitoramento Ambiental , Inundações , Água Subterrânea , Rios , Poluentes Químicos da Água , Água Subterrânea/química , Água Subterrânea/análise , Poluentes Químicos da Água/análise , Rios/química , Movimentos da Água , Urânio/análise
9.
Eng. sanit. ambient ; 26(6): 989-1001, nov.-dez. 2021. tab, graf
Artigo em Português | LILACS-Express | LILACS | ID: biblio-1350719

RESUMO

Resumo Este trabalho teve como objetivo avaliar as remoções de carbono orgânico dissolvido presente em águas filtradas de estação de tratamento de água com tratamento complementar por pré-oxidação com ozônio e adsorção em carvão ativado granular. Para o estudo de adsorção foi utilizado o método de ensaio rápido em coluna de escala reduzida, com carvão ativado produzido de cascas de coco. Realizou-se a comparação entre as curvas de ruptura para os ensaios com e sem aplicação de ozônio. Os resultados mostraram reduções nas concentrações de carbono orgânico dissolvido no início dos ensaios e após a passagem da água com e sem pré-ozonização pelas colunas ensaio rápido em coluna de escala reduzida seguida de incrementos progressivos das concentrações à medida que se aumentou o volume de leitos tratados. Na fase final dos ensaios, os aumentos de volume de leitos tratados não causaram mudanças significativas nas concentrações efluentes de carbono orgânico dissolvido. O mesmo comportamento foi observado com relação à absorção em radiação ultravioleta a 254 nm. O uso de ozônio previamente à adsorção em carvão ativado granular, usando o método ensaio rápido em coluna de escala reduzida, resultou em maiores reduções na absorbância da luz ultravioleta em 254 nm do que nas concentrações de carbono orgânico dissolvido. As absorbâncias específicas à radiação ultravioleta das amostras ozonizadas foram menores do que as que não receberam ozônio.


Abstract The objective of this study was to evaluate the removal of dissolved organic carbon in filtered water followed by pre-oxidation with ozone and adsorption on granular activated carbon. The rapid small-scale column test was used for the adsorption essays with activated carbon produced from coconut shells. A comparison was made between the breakthrough curves for tests performed with and without pre-oxidation with ozone. The results showed reductions in dissolved organic carbon concentrations after initial passage of water with and without ozone through the rapid small-scale column test column, followed by progressive increases in concentrations along with the number of the bed volumes. In the final phase of the tests, increases in bed volumes did not cause significative changes in effluent dissolved organic carbon concentrations. The same behavior was also observed with respect to ultra-violet absorbance at 254 nm. The use of ozone prior to adsorption on GAC, using the ERCER method, caused greater reductions on UV254 absorbance than in concentrations of dissolved organic carbon. The specific ultraviolet absorbance values of samples that received ozone were lower than those that were not ozonized.

10.
Braz. arch. biol. technol ; 52(2): 427-436, Mar.-Apr. 2009. ilus, graf, tab
Artigo em Inglês | LILACS | ID: lil-513264

RESUMO

In the present work, the effect of bed expansion on BSA adsorption on Amberlite IRA 410 ion-exchange resin was studied. The hydrodynamic behavior of an expanded bed adsorption column on effects of the biomolecules and salt addition and temperature were studied to optimize the conditions for BSA recovery on ion-exchange resin. Residence time distribution showed that HEPT, axial dispersion and the Pecletl number increased with temperature and bed height, bed voidage and linear velocity. The binding capacity of the resin increased with bed height. The Amberlite IRA 410 ion-exchange showed an affinity for BSA with a recovery yield of 78.36 percent of total protein.


No presente trabalho foi estudado o efeito da expansão do leito sobre a adsorção de BSA na resina de troca iônica Amberlite IRA 410. O comportamento hidrodinâmico de uma coluna de adsorção em leito expandido sob efeito da adição de biomoléculas, sal e variação da temperatura também foi estudado para obter as condições ótimas de recuperação da BSA sob a resina de troca iônica. A distribuição do tempo de residência mostrou que a HEPT, a dispersão axial e o número de Pecletl aumentaram com a temperatura, altura do leito, porosidade do leito e velocidade linear. A capacidade de ligação da resina aumentou com a expansão do leito. A resina de troca iônica Amberlite IRA 410 mostrou ter afinidade pela BSA, com uma recuperação de 78,36 por cento da proteína total.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA