Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 139
Filtrar
1.
Ann Bot ; 132(5): 949-962, 2023 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-37738171

RESUMO

BACKGROUND AND AIMS: Chromosome evolution leads to hybrid dysfunction and recombination patterns and has thus been proposed as a major driver of diversification in all branches of the tree of life, including flowering plants. In this study we used the genus Linum (flax species) to evaluate the effects of chromosomal evolution on diversification rates and on traits that are important for sexual reproduction. Linum is a useful study group because it has considerable reproductive polymorphism (heterostyly) and chromosomal variation (n = 6-36) and a complex pattern of biogeographical distribution. METHODS: We tested several traditional hypotheses of chromosomal evolution. We analysed changes in chromosome number across the phylogenetic tree (ChromEvol model) in combination with diversification rates (ChromoSSE model), biogeographical distribution, heterostyly and habit (ChromePlus model). KEY RESULTS: Chromosome number evolved across the Linum phylogeny from an estimated ancestral chromosome number of n = 9. While there were few apparent incidences of cladogenesis through chromosome evolution, we inferred up to five chromosomal speciation events. Chromosome evolution was not related to heterostyly but did show significant relationships with habit and geographical range. Polyploidy was negatively correlated with perennial habit, as expected from the relative commonness of perennial woodiness and absence of perennial clonality in the genus. The colonization of new areas was linked to genome rearrangements (polyploidy and dysploidy), which could be associated with speciation events during the colonization process. CONCLUSIONS: Chromosome evolution is a key trait in some clades of the Linum phylogeny. Chromosome evolution directly impacts speciation and indirectly influences biogeographical processes and important plant traits.


Assuntos
Linho , Linaceae , Filogenia , Linho/genética , Linaceae/genética , Melhoramento Vegetal , Poliploidia , Cromossomos , Evolução Molecular
2.
Am J Bot ; 110(1): e16106, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36401558

RESUMO

PREMISE: Pollinator decline, by reducing seed production, is predicted to strengthen natural selection on floral traits. However, the effect of pollinator decline on gender dimorphic species (such as gynodioecious species, where plants produce female or hermaphrodite flowers) may differ between the sex morphs: if pollinator decline reduces the seed production of females more than hermaphrodites, then it should also have a larger effect on selection on floral traits in females than in hermaphrodites. METHODS: To simulate pollinator decline, we experimentally reduced pollinator access to female and hermaphrodite Lobelia siphilitica plants. We compared the seed production of plants in the reduced pollination treatment to plants that were exposed to ambient pollination conditions. Within each treatment, we also measured directional selection on four floral traits of females and hermaphrodites. RESULTS: Experimentally reducing pollination decreased seed production of both females and hermaphrodites by ~21%. Reducing pollination also strengthened selection on floral traits, but this effect was not larger in females than in hermaphrodites. Instead, reducing pollination intensified selection for taller inflorescences in hermaphrodites, but did not intensify selection on any floral trait in females. CONCLUSIONS: Our results suggest that pollinator decline will not have a larger effect on either seed production or selection on floral traits of female plants. As such, any effect of pollinator decline on seed production may be similar for gender dimorphic and monomorphic species. However, the potential for floral traits of females (and thus of gender dimorphic species) to evolve in response to pollinator decline may be limited.


Assuntos
Transtornos do Desenvolvimento Sexual , Lobelia , Reprodução/fisiologia , Lobelia/fisiologia , Polinização/fisiologia , Sementes , Flores/fisiologia
3.
Am J Bot ; 110(5): e16155, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36912727

RESUMO

PREMISE: Divergence of floral morphology and breeding systems are often expected to be linked to angiosperm diversification and environmental niche divergence. However, available evidence for such relationships is not generalizable due to different taxonomic, geographical and time scales. The Palearctic genus Helianthemum shows the highest diversity of the family Cistaceae in terms of breeding systems, floral traits, and environmental conditions as a result of three recent evolutionary radiations since the Late Miocene. Here, we investigated the tempo and mode of evolution of floral morphology in the genus and its link with species diversification and environmental niche divergence. METHODS: We quantified 18 floral traits from 83 taxa and applied phylogenetic comparative methods using a robust phylogenetic framework based on genotyping-by-sequencing data. RESULTS: We found three different floral morphologies, putatively related to three different breeding systems: type I, characterized by small flowers without herkogamy and low pollen to ovule ratio; type II, represented by large flowers with approach herkogamy and intermediate pollen to ovule ratio; and type III, featured by small flowers with reverse herkogamy and the highest pollen to ovule ratio. Each morphology has been highly conserved across each radiation and has evolved independently of species diversification and ecological niche divergence. CONCLUSIONS: The combined results of trait, niche, and species diversification ultimately recovered a pattern of potentially non-adaptive radiations in Helianthemum and highlight the idea that evolutionary radiations can be decoupled from floral morphology evolution even in lineages that diversified in heterogeneous environments as the Mediterranean Basin.


Assuntos
Cistaceae , Magnoliopsida , Filogenia , Melhoramento Vegetal , Magnoliopsida/genética , Geografia
4.
BMC Plant Biol ; 22(1): 273, 2022 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-35655126

RESUMO

BACKGROUND: Floral morphs are characterized differentiations in reciprocal positions of sexual organs and ancillary floral traits in heterostylous plants. However, it remains unclear how differential floral morphs ensure reproductive success between morphs using the same pollinator. RESULTS: Measurements of floral traits in white-flowered Tirpitzia sinensis with long corolla tubes indicated that it is typically distylous, long-styled (L-) morph producing more but smaller pollen grains per flower than short-styled (S-) morph. Both morphs secreted more nectar volume at night than in the day and the sugar composition was rich in sucrose, potentially adaptive to pollination by hawkmoths (Macroglossum spp.) which were active at dusk. A bumblebee species functioned as the nectar robber in both morphs and a honeybee as the pollen feeder in the S-morph. The L-morph secreted more nectar volume but relatively lower sucrose/hexose ratio than the S-morph. Floral visitation rate by hawkmoths was higher but its pollination efficiency was lower in the S-morph than the L-morph. Hand pollination treatments indicated self-incompatibility in T. sinensis and seed set of open-pollinated flowers did not differ between morphs. CONCLUSIONS: Our findings suggest that the two morphs differ with respect to traits relevant to pollination. The L-morph, with its exserted stigma, has more pollen grains per anther and a greater volume of nectar, which may prolong the foraging time and increase the pollination efficiency of hawkmoths. The S-morph has a higher sucrose/hexose ratio in its nectar which can be more attractive to hawkmoths and increase the visit rates. Ancillary polymorphic floral traits between two morphs are adaptive to hawkmoth and ensure reproductive success in distylous plant T. sinensis.


Assuntos
Linaceae , Manduca , Animais , Abelhas , Néctar de Plantas , Polinização , Sacarose
5.
Proc Biol Sci ; 289(1974): 20212540, 2022 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-35506220

RESUMO

Body size mediates life history, physiology and inter- and intra-specific interactions. Within species, sexes frequently differ in size, reflecting divergent selective pressures and/or constraints. Both sexual selection and differences in environmentally mediated reproductive constraints can drive sexual size dimorphism, but empirically testing causes of dimorphism is challenging. Manakins (Pipridae), a family of Neotropical birds comprising approximately 50 species, exhibit a broad range of size dimorphism from male- to female-biased and are distributed across gradients of precipitation and elevation. Males perform courtship displays ranging from simple hops to complex aerobatic manoeuvres. We tested associations between sexual size dimorphism and (a) agility and (b) environment, analysing morphological, behavioural and environmental data for 22 manakin species in a phylogenetic framework. Sexual dimorphism in mass was most strongly related to agility, with males being lighter than females in species performing more aerial display behaviours. However, wing and tarsus length dimorphism were more strongly associated with environmental variables, suggesting that different sources of selection act on different aspects of body size. These results highlight the strength of sexual selection in shaping morphology-even atypical patterns of dimorphism-while demonstrating the importance of constraints and ecological consequences of body size evolution.


Assuntos
Dança , Passeriformes , Animais , Tamanho Corporal , Feminino , Masculino , Filogenia , Caracteres Sexuais
6.
Ann Bot ; 129(2): 135-146, 2022 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-34473241

RESUMO

BACKGROUND AND AIMS: Pollen limitation is most prevalent among bee-pollinated plants, self-incompatible plants and tropical plants. However, we have very little understanding of the extent to which pollen limitation affects fruit set in mass-flowering trees despite tree crops accounting for at least 600 million tons of the 9200 million tons of annual global food production. METHODS: We determined the extent of pollen limitation in a bee-pollinated, partially self-incompatible, subtropical tree by hand cross-pollinating the majority of flowers on mass-flowering macadamia (Macadamia integrifolia) trees that produce about 200 000-400 000 flowers. We measured tree yield and kernel quality and estimated final fruit set. We genotyped individual kernels by MassARRAY to determine levels of outcrossing in orchards and assess paternity effects on nut quality. KEY RESULTS: Macadamia trees were pollen-limited. Supplementary cross-pollination increased nut-in-shell yield, kernel yield and fruit set by as much as 97, 109 and 92 %, respectively. The extent of pollen limitation depended upon the proximity of experimental trees to trees of another cultivar because macadamia trees were highly outcrossing. Between 84 and 100 % of fruit arose from cross-pollination, even at 200 m (25 rows) from orchard blocks of another cultivar. Large variations in nut-in-shell mass, kernel mass, kernel recovery and kernel oil concentration were related to differences in fruit paternity, including between self-pollinated and cross-pollinated fruit, thus demonstrating pollen-parent effects on fruit quality (i.e. xenia). CONCLUSIONS: This study is the first to demonstrate pollen limitation in a mass-flowering tree. Improved pollination led to increased kernel yield of 0.31-0.59 tons ha-1, which equates currently to higher farm-gate income of approximately $US3720-$US7080 ha-1. The heavy reliance of macadamia flowers on cross-pollination and the strong xenia effects on kernel mass demonstrate the high value that pollination services can provide to food production.


Assuntos
Proteaceae , Árvores , Animais , Flores , Macadamia/genética , Pólen , Polinização , Reprodução
7.
Am J Bot ; 109(5): 789-805, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35596689

RESUMO

PREMISE: To avoid inbreeding depression, plants have evolved diverse breeding systems to favor outcrossing, such as self-incompatibility. However, changes in biotic and abiotic conditions can result in selective pressures that lead to a breakdown in self-incompatibility. The shift to increased selfing is commonly associated with reduced floral features, lower attractiveness to pollinators, and increased inbreeding. We tested the hypothesis that the loss of self-incompatibility, a shift to self-fertilization (autogamy), and concomitant evolution of the selfing syndrome (reduction in floral traits associated with cross-fertilization) will lead to increased inbreeding and population differentiation in Oenothera primiveris. Across its range, this species exhibits a shift in its breeding system and floral traits from a self-incompatible population with large flowers to self-compatible populations with smaller flowers. METHODS: We conducted a breeding system assessment, evaluated floral traits in the field and under controlled conditions, and measured population genetic parameters using RADseq data. RESULTS: Our results reveal a bimodal transition to the selfing syndrome from the west to the east of the range of O. primiveris. This shift includes variation in the breeding system and the mating system, a reduction in floral traits (flower diameter, herkogamy, and scent production), a shift to greater autogamy, reduced genetic diversity, and increased inbreeding. CONCLUSIONS: The observed variation highlights the importance of range-wide studies to understand breeding system variation and the evolution of the selfing syndrome within populations and species.


Assuntos
Oenothera , Flores/genética , Variação Genética , Endogamia , Melhoramento Vegetal , Polinização , Reprodução/genética , Autofertilização
8.
Am J Primatol ; 84(7): e23394, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35612520

RESUMO

Adult males living in a one-male multi-female social group are expected to try to monopolize copulations with resident females to increase reproductive fitness. Gibbons have traditionally been described as living in monogamous groups, with the sole resident adult male assumed to sire all of the group's offspring. Here, we used microsatellite analyses and behavioral observations to examine rates of extra-group paternity (EGP) over 16 years in a population of crested gibbons (Nomascus concolor) that form stable and long-term one-male two-female social units. Forty percent of offspring (N = 14) were sired by extra-group males. To understand this high level of EGP, we tested whether inbreeding avoidance was related to EGP. Females who engaged in EGP did not show larger pairwise relatedness with their resident male compared to females who did not engage in EGP. Nevertheless, the standardized heterozygosity of EGP offspring was significantly higher than for offspring sired by the group's resident male. These results provide partial support for the inbreeding avoidance hypothesis. It appears that resident male crested gibbons are unable to monopolize resident females' matings. Our results indicate that long-term social partners are often distinct from sexual partners in this population. Clearly, the breeding system of crested gibbons is more flexible than previously thought, indicating a need for integrating long-term behavioral data and genetic research to re-evaluate gibbon social and sexual relationships derived from concepts of monogamy and pair-bonding.


Assuntos
Hylobates , Comportamento Sexual Animal , Animais , Feminino , Humanos , Endogamia , Masculino , Reprodução , Parceiros Sexuais
9.
Persoonia ; 48: 54-90, 2022 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38234693

RESUMO

During an oomycete survey in December 2015, 10 previously unknown Halophytophthora taxa were isolated from marine and brackish water of tidal ponds and channels in saltmarshes, lagoon ecosystems and river estuaries at seven sites along the Algarve coast in the South of Portugal. Phylogenetic analyses of LSU and ITS datasets, comprising all described Halophytophthora species, the 10 new Halophytophthora taxa and all relevant and distinctive sequences available from GenBank, provided an updated phylogeny of the genus Halophytophthora s.str. showing for the first time a structure of 10 clades designated as Clades 1-10. Nine of the 10 new Halophytophthora taxa resided in Clade 6 together with H. polymorphica and H. vesicula. Based on differences in morphology and temperature-growth relations and a multigene (LSU, ITS, Btub, hsp90, rpl10, tigA, cox1, nadh1, rps10) phylo-geny, eight new Halophytophthora taxa from Portugal are described here as H. brevisporangia, H. cele-ris, H. frigida, H. lateralis, H. lusitanica, H. macrosporangia, H. sinuata and H. thermoambigua. Three species, H. frigida, H. macrosporangia and H. sinuata, have a homothallic breeding system while the remaining five species are sterile. Pathogenicity and litter decomposition tests are underway to clarify their pathological and ecological role in the marine and brackish-water ecosystems. More oomycete surveys in yet undersurveyed regions of the world and population genetic or phylogenomic analyses of global populations are needed to clarify the origin of the new Halophytophthora species. Citation: Maia C, Horta Jung M, Carella G, et al. 2022. Eight new Halophytophthora species from marine and brackish-water ecosystems in Portugal and an updated phylogeny for the genus. Persoonia 48: 54 - 90. https://doi.org/10.3767/persoonia.2022.48.02..

10.
Am J Bot ; 108(1): 51-62, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33316089

RESUMO

PREMISE: The importance of hybridization to invasion has been frequently discussed, with most studies focusing on the comparison of fitness-related traits between F1 hybrids and their parents and the consequences of such fitness differences. However, relatively little attention has been given to late-generation hybrids. Different fitness landscapes could emerge in later generations after hybrids cross with each other or backcross with their parents, which may play an important role in plant invasion and subsequent speciation. METHODS: In this study, artificial crosses were conducted to generate multiple generations, including F1, F2, and backcrosses between two invasive species: Cakile edentula (self-compatible) and C. maritima (self-incompatible). Putative hybrids were also collected in the sympatric zone and compared with their co-occurring parents for phenotypic and genetic differences. RESULTS: Genetic data provided evidence of hybridization happening in the wild, and phenotypic comparisons showed that natural hybrids had intermediate traits between the two species but showed more similarity to C. maritima than to C. edentula. The asymmetry was further identified in artificial generations for several phenotypic characters. Furthermore, backcrosses exhibited different patterns of variation, with backcrosses to C. maritima having higher reproductive output than their counterparts. CONCLUSIONS: Our results suggest that hybridization and introgression (backcrossing) in Cakile species is asymmetric and most likely to favor the proliferation of C. maritima genes in the mixed population and thus help its establishment, a finding that could not be predicted by characterizing F1 hybrids.


Assuntos
Brassicaceae , Espécies Introduzidas , Características da Família , Hibridização Genética , Fenótipo
11.
Am J Bot ; 108(9): 1808-1815, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34590302

RESUMO

PREMISE: Plant domestication can be detected when transport, use, and manipulation of propagules impact reproductive functionality, especially in species with self-incompatible breeding systems. METHODS: Evidence for human-caused founder effect in the Four Corners potato (Solanum jamesii Torr.) was examined by conducting 526 controlled matings between archaeological and non-archaeological populations from field-collected tubers grown in a greenhouse. Specimens from 24 major herbaria and collection records from >160 populations were examined to determine which produced fruits. RESULTS: Archaeological populations did not produce any fruits when self-crossed or outcrossed between individuals from the same source. A weak ability to self- or outcross within populations was observed in non-archaeological populations. Outcrossing between archaeological and non-archaeological populations, however, produced fully formed, seed-containing fruits, especially with a non-archaeological pollen source. Fruit formation was observed in 51 of 162 occurrences, with minimal evidence of constraint by monsoonal drought, lack of pollinators, or spatial separation of suitable partners. Some archaeological populations (especially those along ancient trade routes) had records of fruit production (Chaco Canyon), while others (those in northern Arizona, western Colorado, and southern Utah) did not. CONCLUSIONS: The present study suggests that archaeological populations could have different origins at different times-some descending directly from large gene pools to the south and others derived from gardens already established around occupations. The latter experienced a chain of founder events, which presumably would further reduce genetic diversity and mating capability. Consequently, some archaeological populations lack the genetic ability to sexually reproduce, likely as the result of human-caused founder effect.


Assuntos
Solanum , Efeito Fundador , Geografia , Humanos , Melhoramento Vegetal , Polinização , Reprodução , Solanum/genética
12.
Proc Biol Sci ; 287(1939): 20202323, 2020 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-33234079

RESUMO

Transitions from outcrossing to selfing have been a frequent evolutionary shift in plants and clearly play a role in species divergence. However, many questions remain about the initial mechanistic basis of reproductive isolation during the evolution of selfing. For instance, how important are pre-zygotic pre-pollination mechanisms (e.g. changes in phenology and pollinator visitation) in maintaining reproductive isolation between newly arisen selfing populations and their outcrossing ancestors? To test whether changes in phenology and pollinator visitation isolate selfing populations of Arabidopsis lyrata from outcrossing populations, we conducted a common garden experiment with plants from selfing and outcrossing populations as well as their between-population hybrids. Specifically, we asked whether there was isolation between outcrossing and selfing plants and their between-population hybrids through differences in (1) the timing or intensity of flowering; and/or (2) pollinator visitation. We found that phenology largely overlapped between plants from outcrossing and selfing populations. There were also no differences in pollinator preference related to mating system. Additionally, pollinators preferred to visit flowers on the same plant rather than exploring nearby plants, creating a large opportunity for self-fertilization. Overall, this suggests that pre-zygotic pre-pollination mechanisms do not strongly reproductively isolate plants from selfing and outcrossing populations of Arabidopsis lyrata.


Assuntos
Arabidopsis , Polinização , Flores , Reprodução , Sementes , Autofertilização
13.
Ann Bot ; 125(4): 639-650, 2020 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-31802117

RESUMO

BACKGROUND AND AIMS: Hybridization is commonly assumed to aid invasions through adaptive introgression. In contrast, a recent theoretical model predicted that there can be non-adaptive demographic advantages from hybridization and that the population consequences will depend on the breeding systems of the species and the extent to which subsequent generations are able to interbreed and reproduce. We examined cross-fertilization success and inheritance of breeding systems of two species in order to better assess the plausibility of the theoretical predictions. METHODS: Reciprocal artificial crosses were made to produce F1, F2 and backcrosses between Cakile maritima (self-incompatible, SI) and Cakile edentula (self-compatible, SC) (Brassicaceae). Flowers were emasculated prior to anther dehiscence and pollen was introduced from donor plants to the recipient's stigma. Breeding system, pollen viability, pollen germination, pollen tube growth and reproductive output were then determined. The results were used to replace the assumptions made in the original population model and new simulations were made. KEY RESULTS: The success rate with the SI species as the pollen recipient was lower than when it was the pollen donor, in quantitative agreement with the 'SI × SC rule' of unilateral incompatibility. Similar outcomes were found in subsequent generations where fertile hybrids were produced but lower success rates were observed in crosses of SI pollen donors with SC pollen recipients. Much lower proportions of SC hybrids were produced than expected from a single Mendelian allele. When incorporated into a population model, these results predicted an even faster rate of replacement of the SC species by the SI species than previously reported. CONCLUSIONS: Our study of these two species provides even clearer support for the feasibility of the non-adaptive hybridization hypothesis, whereby the colonization of an SI species can be assisted by transient hybridization with a congener. It also provides novel insight into reproductive biology beyond the F1 generation.


Assuntos
Brassicaceae , Cruzamento , Flores , Hibridização Genética , Polinização
14.
Ann Bot ; 126(7): 1155-1164, 2020 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-32674148

RESUMO

BACKGROUND AND AIMS: The temporal dimensions of floral adaptation to pollinators are not yet well understood, partly because we lack accurate information on the diel rhythms of flower visitation for many pollinators. We investigated whether diel patterns of pollinator visitation to flowers of the African woodland orchid Bonatea polypodantha are synchronized with rhythms of floral anthesis, scent emission and nectar availability. METHODS: Direct observations and motion-activated cameras were used to identify pollinators of B. polypodantha and to document their activity periods. The timing of pollinaria removal from flowers, emission of scent and availability of nectar was also measured. RESULTS: We found that B. polypodantha is pollinated exclusively by short-tongued hawkmoths. Pollinaria of the orchid are affixed between the labial palps of the moths and brush over the protruding stigmatic arms. The flowers also receive visits by long-tongued hawkmoths, but these act as nectar thieves. Tracking of pollinaria removal from flowers confirmed that pollination occurs only at night. Camera footage revealed a striking crepuscular pattern of foraging by short-tongued hawkmoths with peaks of activity during the twilight periods at dusk and at dawn. In contrast, long-tongued hawkmoths were found to visit flowers throughout the night. Flowers of B. polypodantha exhibit unimodal peaks of anthesis, scent emission (dominated by nitrogenous aromatics) and nectar availability before or around dusk. CONCLUSIONS: Flowers of B. polypodantha are pollinated exclusively by short-tongued hawkmoths, which show crepuscular foraging activity at dusk and dawn. Floral phenophases of the orchid are closely synchronized with the peak of pollinator activity at dusk.


Assuntos
Mariposas , Orchidaceae , Animais , Flores , Odorantes , Néctar de Plantas , Polinização
15.
Am J Bot ; 107(4): 689-699, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32170723

RESUMO

PREMISE: Water-pollination (hydrophily) is a rare but important pollination mechanism that has allowed angiosperms to colonize marine and aquatic habitats. Hydrophilous plants face unique reproductive challenges, and many have evolved characteristic pollen traits and pollination strategies that may have downstream consequences for pollen performance. However, little is known about reproductive development in the life history stage between pollination and fertilization (the progamic phase) in hydrophilous plants. The purpose of this study was to characterize reproductive ecology and postpollination development in water-pollinated Ruppia maritima L. METHODS: Naturally pollinated inflorescences of R. maritima were collected from the field. Experimental pollinations using both putatively outcross and self pollen were conducted in the greenhouse and inflorescences were collected at appropriate intervals after pollination. Pollen reception, pollen germination, pollen tube growth, and carpel morphology were characterized. RESULTS: Ruppia maritima exhibits incomplete protogyny, allowing for delayed selfing. Pollen germinated within 15 min after pollination. The average shortest possible pollen tube pathway was 425 µm and pollen tubes first reached the ovule at 45 min after pollination. The mean adjusted pollen tube growth rate was 551 µm/h. CONCLUSIONS: Ruppia pollen is adapted for rapid pollen germination, which is likely advantageous in an aquatic habitat. Small effective pollen loads suggest that pollen competition intensity is low. Selection for traits such as a long period of stigma receptivity, fast pollen germination, and carpel morphology likely played a larger role in shaping postpollination reproductive development in Ruppia than evolution in pollen tube growth rates.


Assuntos
Alismatales , Magnoliopsida , Pólen , Polinização , Reprodução
16.
Am J Bot ; 107(10): 1355-1365, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33098337

RESUMO

PREMISE: Species of Apocynaceae are pollinated by a diverse assemblage of animals. Here we report the first record of specialized cockroach pollination in the family, involving an endangered climbing vine species, Vincetoxicum hainanense in China. Experiments were designed to provide direct proof of cockroach pollination and compare the effectiveness of other flower visitors. METHODS: We investigated the reproductive biology, pollination ecology, pollinaria removal, pollinia insertion, and fruit set following single visits by the most common insects. In addition, we reviewed reports of cockroaches as pollinators of other plants and analyzed the known pollination systems in Vincetoxicum in a phylogenetic context. RESULTS: The small, pale green flowers of V. hainanense opened during the night. The flowers were not autogamous, but were self-compatible. Flower visitors included beetles, flies, ants and bush crickets, but the most effective pollinator was the cockroach Blattella bisignata, the only visitor that carried pollen between plants. Less frequent and effective pollinators are ants and Carabidae. Plants in this genus are predominantly pollinated by flies, moths and wasps. CONCLUSIONS: Globally, only 11 plant species are known to be cockroach-pollinated. Because their range of floral features encompass similarities and differences, defining a "cockroach pollination syndrome" is difficult. One commonality is that flowers are often visited by insects other than cockroaches, such as beetles, that vary in their significance as pollinators. Cockroach pollination is undoubtedly more widespread than previously thought and requires further attention.


Assuntos
Polinização , Vincetoxicum , Animais , China , Baratas , Flores , Filogenia
17.
Oecologia ; 192(1): 261-272, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31760481

RESUMO

Climate change can negatively impact plant-pollinator interactions, and reduce outcross pollination. For reproductive assurance, an increased capacity for autonomous selfing should benefit the persistence of plants under new temperature conditions. Plastic responses of the autonomous selfing capacity to climate change may occur indirectly due to changes in floral traits associated with this capacity. We tested whether the mixed mating plant Mimulus guttatus is capable of plastic changes in floral traits favoring autonomous selfing in response to temperature changes. In seven growth chambers, we grew M. guttatus originating from a large range of latitudes (from 37.89° N to 49.95° N) and thus home temperatures in North America, and experimentally assessed the (autonomous) selfing and outcrossing capacities of the plants. With an increase in the difference between the overall mean daytime and nighttime experimental test temperature and home temperature, flower length and width decreased. The plastic response in flower size suggests that plants may be more successful at autonomous selfing. However, we did not find direct evidence that M. guttatus responded to increased temperature by an increased autonomous selfing capacity. With an increase in temperature difference, the odds of seed production, number of seeds, and individual seed mass decreased. Our results indicate that global warming and the associated increase in extreme temperature events may be detrimental to the reproduction and thus persistence of some plants.


Assuntos
Mimulus , Flores , América do Norte , Polinização , Reprodução , Temperatura
18.
J Plant Res ; 133(6): 873-881, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32997284

RESUMO

Some evolutionary radiations produce a number of closely-related species that continue to coexist. In such plant systems, when pre-pollination barriers are weak, relatively strong post-pollination reproductive barriers are required to maintain species boundaries. Even when post-pollination barriers are in place, however, reproductive interference and pollinator dependence may strengthen selection for pre-pollination barriers. We assessed whether coexistence of species from the unusually speciose Erica genus in the fynbos biome, South Africa, is enabled through pre-pollination or post-pollination barriers. We also tested for reproductive interference and pollinator dependence. We investigated this in natural populations of three bird-pollinated Erica species (Erica plukenetii, E. curviflora and E. coccinea), which form part of a large guild of congeneric species that co-flower and share a single pollinator species (Orange-breasted Sunbird Anthobaphes violacea). At least two of the three pre-pollination barriers assessed (distribution ranges, flowering phenology and flower morphology) were weak in each species pair. Hand-pollination experiments revealed that seed set from heterospecific pollination (average 8%) was significantly lower than seed set from outcross pollination (average 50%), supporting the hypothesis that species boundaries are maintained through post-pollination barriers. Reproductive interference, assessed in one population by applying outcross pollen three hours after applying heterospecific pollen, significantly reduced seed set compared to outcross pollen alone. This may drive selection for traits that enhance pre-pollination barriers, particularly given that two of the three species were self-sterile, and therefore pollinator dependent. This study suggests that post-pollination reproductive barriers could facilitate the coexistence of congeneric species, in a recent radiation with weak pre-pollination reproductive barriers.


Assuntos
Ericaceae/fisiologia , Flores/fisiologia , Polinização , Animais , Aves , Pólen , Reprodução , Especificidade da Espécie
19.
Exp Appl Acarol ; 81(4): 599-607, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32676999

RESUMO

Babesia bovis and Babesia bigemina are tick-transmitted piroplasms that cause severe damage to the livestock industry in tropical regions of the world. Recent studies demonstrated differences in infection levels of these haemoparasites among bovine breeds and variation between individual cows regarding resistance to these diseases. This study aimed to estimate the repeatability and correlations between B. bovis and B. bigemina using two cattle breeding systems, an individual system (IS) and a collective paddock system (CPS). All animals were Holstein breed, and the levels of B. bovis and B. bigemina in blood samples were estimated by quantitative polymerase chain reaction (qPCR). The estimated correlations for the B. bigemina and B. bovis DNA copy number for IS and CPS were moderate and high, respectively, whereas repeatability estimates for both systems and both Babesia species were moderate. Although we cannot infer that the type of rearing system directly influenced the correlation and repeatability coefficients, it appears that the bovine parasitemia burden may be dependent on (or determine) the parasitemia burden on ticks because the bovines remained in the same place for a longer time in both systems. Thus, the babesiosis infection levels of the ticks may have been uniform, a phenomenon that also ensures greater uniformity in cattle infection. This factor may have favored the occurrence of infected ticks leading to higher repeatability estimates and correlations. Our study confirms high variability in resistance/susceptibility between breeds, and the high correlations found may be linked to this characteristic and the most intensive breeding type of dairy cattle. Besides, under the present study conditions, the estimated correlations suggest that measuring an infection level of one Babesia species can predict the level of infection of the other.


Assuntos
Babesia bovis , Babesia , Babesiose/epidemiologia , Doenças dos Bovinos , Bovinos/parasitologia , Animais , Babesia/isolamento & purificação , Babesia bovis/isolamento & purificação , Cruzamento , Doenças dos Bovinos/epidemiologia , Doenças dos Bovinos/parasitologia , DNA de Protozoário/isolamento & purificação , Indústria de Laticínios , Parasitemia
20.
Am J Bot ; 106(10): 1285-1299, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31539168

RESUMO

PREMISE: Distyly, a plant breeding system characterized by two floral morphs that have reciprocal positioning of anthers and stigmas, is known from at least 27 angiosperm families, making it an excellent example of convergent evolution. The various manners in which patterns of floral development produce the distinct anther and stigma heights in each morph remain largely unexplored from developmental and evolutionary perspectives. METHODS: In 15 species representing at least 12 origins of distyly, heights and lengths of floral organs in each morph throughout development were examined using light microscopy. Patterns of floral organ development were determined and compared among species. Family-level phylogenies of distylous species and relatives were reconstructed, and patterns of ancestral herkogamy were resolved. RESULTS: Differences in floral development between morphs resulted in 12 patterns leading to the anther and stigma positions characterizing distyly. Distylous species evolved from ancestors with different types of herkogamy, with approach herkogamy and lack of herkogamy resolved most frequently. CONCLUSIONS: Seven of the 12 patterns of floral development are known from only one species, with three other patterns described among pairs of close relatives. The most common pattern of floral development, described from at least seven genera, involves for anther heights, distinct intermorph growth rates and for stigma heights, growth rates that differ between morphs only during later development. This pattern is common among subclass Lamiidae, suggesting canalized development within the taxon. Among distylous species, the same type of ancestral herkogamy can give rise to different patterns of floral development.


Assuntos
Magnoliopsida , Cruzamento , Flores , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA