Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Plant Microbe Interact ; 36(7): 397-410, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36853198

RESUMO

Oomycete plant pathogens cause a wide variety of diseases, including late blight of potato, sudden oak death, and downy mildews of plants. These pathogens are major contributors to loss in numerous food crops. Oomycetes secrete effector proteins to manipulate their hosts to the advantage of the pathogen. Plants have evolved to recognize effectors, resulting in an evolutionary cycle of defense and counter-defense in plant-microbe interactions. This selective pressure results in highly diverse effector sequences that can be difficult to computationally identify using only sequence similarity. We developed a novel effector prediction tool, EffectorO, that uses two complementary approaches to predict effectors in oomycete pathogen genomes: i) a machine learning-based pipeline that predicts effector probability based on the biochemical properties of the N-terminal amino-acid sequence of a protein and ii) a pipeline based on lineage specificity to find proteins that are unique to one species or genus, a sign of evolutionary divergence due to adaptation to the host. We tested EffectorO on Bremia lactucae, which causes lettuce downy mildew, and Phytophthora infestans, which causes late blight of potato and tomato, and predicted many novel effector candidates while recovering the majority of known effector candidates. EffectorO will be useful for discovering novel families of oomycete effectors without relying on sequence similarity to known effectors. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Assuntos
Oomicetos , Peronospora , Phytophthora infestans , Oomicetos/genética , Oomicetos/metabolismo , Proteínas/metabolismo , Genoma , Evolução Biológica , Plantas/metabolismo , Phytophthora infestans/genética , Doenças das Plantas
2.
Phytopathology ; 113(3): 365-380, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36256745

RESUMO

Phytopathology is a highly complex scientific discipline. Initially, its focus was on the study of plant-pathogen interactions in agricultural and forestry production systems. Host-pathogen interactions in natural plant communities were generally overlooked until the 1970s when plant pathologists and evolutionary biologists started to take an interest in these interactions, and their dynamics in natural plant populations, communities, and ecosystems. This article introduces the general principles of plant pathosystems, provides a basic critical overview of current knowledge of host-pathogen interactions in natural plant pathosystems, and shows how this knowledge is important for future developments in plant pathology especially as it applies in cropping systems, ecology, and evolutionary biology. Plant pathosystems can be further divided according to the structure and origin of control, as autonomous (wild plant pathosystems, WPPs) or deterministic (crop plant pathosystems, CPPs). WPPs are characterized by the disease triangle and closed-loop (feedback) controls, and CPPs are characterized by the disease tetrahedron and open-loop (non-feedback) controls. Basic general, ecological, genetic, and population structural and functional differences between WPPs and CPPs are described. It is evident that we lack a focus on long-term observations and research of diseases and their dynamics in natural plant populations, metapopulations, communities, ecosystems, and biomes, as well as their direct or indirect relationships to CPPs. Differences and connections between WPPs and CPPs, and why, and how, these are important for agriculture varies. WPP and CPP may be linked by strong biological interactions, especially where the pathogen is in common. This is demonstrated through a case study of lettuce (Lactuca spp., L. serriola and L. sativa) and lettuce downy mildew (Bremia lactucae). In other cases where there is no such direct biological linkage, the study of WPPs can provide a deeper understanding of how ecology and genetics interacts to drive disease through time. These studies provide insights into ways in which farming practices may be changed to limit disease development. Research on interactions between pathosystems, the "cross-talk" of WPPs and CPPs, is still very limited and, as shown in interactions between wild and cultivated Lactuca spp.-B. lactucae associations, can be highly complex. The implications and applications of this knowledge in plant breeding, crop management, and disease control measures are considered. This review concludes with a discussion of theoretical, general and specific aspects, challenges and limits of future WPP research, and application of their results in agriculture.


Assuntos
Ecossistema , Oomicetos , Doenças das Plantas/genética , Melhoramento Vegetal , Plantas , Oomicetos/genética , Lactuca
3.
BMC Bioinformatics ; 23(1): 150, 2022 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-35468720

RESUMO

BACKGROUND: Polyploidy and heterokaryosis are common and consequential genetic phenomena that increase the number of haplotypes in an organism and complicate whole-genome sequence analysis. Allele balance has been used to infer polyploidy and heterokaryosis in diverse organisms using read sets sequenced to greater than 50× whole-genome coverage. However, sequencing to adequate depth is costly if applied to multiple individuals or large genomes. RESULTS: We developed VCFvariance.pl to utilize the variance of allele balance to infer polyploidy and/or heterokaryosis at low sequence coverage. This analysis requires as little as 10× whole-genome coverage and reduces the allele balance profile down to a single value, which can be used to determine if an individual has two or more haplotypes. This approach was validated using simulated, synthetic, and authentic read sets from the oomycete species Bremia lactucae and Phytophthora infestans, the fungal species Saccharomyces cerevisiae, and the plant species Arabidopsis arenosa. This approach was deployed to determine that nine of 21 genotyped European race-type isolates of Bremia lactucae were inconsistent with diploidy and therefore likely heterokaryotic. CONCLUSIONS: Variance of allele balance is a reliable metric to detect departures from a diploid state, including polyploidy, heterokaryosis, a mixed sample, or chromosomal copy number variation. Deploying this strategy is computationally inexpensive, can reduce the cost of sequencing by up to 80%, and used to test any organism.


Assuntos
Arabidopsis , Diploide , Alelos , Arabidopsis/genética , Variações do Número de Cópias de DNA , Haplótipos , Humanos , Poliploidia
4.
Phytopathology ; 111(3): 541-547, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33141649

RESUMO

Lettuce downy mildew, caused by Bremia lactucae Regel, is the most economically important foliar disease of lettuce (Lactuca sativa L.). The deployment of resistant cultivars carrying dominant resistance genes (Dm genes) plays a crucial role in integrated downy mildew disease management; however, high variability in pathogen populations leads to the defeat of plant resistance conferred by Dm genes. Some lettuce cultivars exhibit field resistance that is only manifested in adult plants. Two populations of recombinant inbred lines (RILs), originating from crosses between the field resistant cultivars Grand Rapids and Iceberg and susceptible cultivars Salinas and PI491224, were evaluated for downy mildew resistance under field conditions. In all, 160 RILs from the Iceberg × PI491224 and 88 RILs from the Grand Rapids × Salinas populations were genotyped using genotyping by sequencing, which generated 906 and 746 high-quality markers, respectively, that were used for quantitative trait locus (QTL) analysis. We found a QTL in chromosome 4 that is present in both Grand Rapids × Salinas and Iceberg × PI491224 populations that has a major effect on field resistance. We also found two additional significant QTLs in chromosomes 2 and 5 in the Iceberg × PI491224 RIL population. Marker-assisted gene pyramiding of multiple Dm genes in combination with QTLs for field resistance provide the opportunity to develop cultivars with more durable resistance to B. lactucae.


Assuntos
Oomicetos , Locos de Características Quantitativas , Resistência à Doença/genética , Humanos , Lactuca/genética , Oomicetos/genética , Doenças das Plantas/genética , Locos de Características Quantitativas/genética
5.
Plant J ; 99(6): 1098-1115, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31077456

RESUMO

To cause disease in lettuce, the biotrophic oomycete Bremia lactucae secretes potential RxLR effector proteins. Here we report the discovery of an effector-target hub consisting of four B. lactucae effectors and one lettuce protein target by a yeast-two-hybrid (Y2H) screening. Interaction of the lettuce tail-anchored NAC transcription factor, LsNAC069, with B. lactucae effectors does not require the N-terminal NAC domain but depends on the C-terminal region including the transmembrane domain. Furthermore, in Y2H experiments, B. lactucae effectors interact with Arabidopsis and potato tail-anchored NACs, suggesting that they are conserved effector targets. Transient expression of RxLR effector proteins BLR05 and BLR09 and their target LsNAC069 in planta revealed a predominant localization to the endoplasmic reticulum. Phytophthora capsici culture filtrate and polyethylene glycol treatment induced relocalization to the nucleus of a stabilized LsNAC069 protein, lacking the NAC-domain (LsNAC069ΔNAC ). Relocalization was significantly reduced in the presence of the Ser/Cys-protease inhibitor TPCK indicating proteolytic cleavage of LsNAC069 allows for relocalization. Co-expression of effectors with LsNAC069ΔNAC reduced its nuclear accumulation. Surprisingly, LsNAC069 silenced lettuce lines had decreased LsNAC069 transcript levels but did not show significantly altered susceptibility to B. lactucae. In contrast, LsNAC069 silencing increased resistance to Pseudomonas cichorii bacteria and reduced wilting effects under moderate drought stress, indicating a broad role of LsNAC069 in abiotic and biotic stress responses.


Assuntos
Lactuca/metabolismo , Oomicetos/metabolismo , Fatores de Transcrição/metabolismo , Núcleo Celular/metabolismo , Resistência à Doença , Retículo Endoplasmático/metabolismo , Regulação da Expressão Gênica/genética , Inativação Gênica/imunologia , Interações Hospedeiro-Patógeno/genética , Lactuca/genética , Oomicetos/patogenicidade , Filogenia , Doenças das Plantas/microbiologia , Domínios Proteicos/genética , Transporte Proteico/genética , Proteínas/metabolismo , Pseudomonas/patogenicidade , Estresse Fisiológico/genética , Fatores de Transcrição/genética
6.
Planta ; 247(5): 1203-1215, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29417270

RESUMO

MAIN CONCLUSION: Resistant Lactuca spp. genotypes can efficiently modulate levels of S-nitrosothiols as reactive nitrogen species derived from nitric oxide in their defence mechanism against invading biotrophic pathogens including lettuce downy mildew. S-Nitrosylation belongs to principal signalling pathways of nitric oxide in plant development and stress responses. Protein S-nitrosylation is regulated by S-nitrosoglutathione reductase (GSNOR) as a key catabolic enzyme of S-nitrosoglutathione (GSNO), the major intracellular S-nitrosothiol. GSNOR expression, level and activity were studied in leaves of selected genotypes of lettuce (Lactuca sativa) and wild Lactuca spp. during interactions with biotrophic mildews, Bremia lactucae (lettuce downy mildew), Golovinomyces cichoracearum (lettuce powdery mildew) and non-pathogen Pseudoidium neolycopersici (tomato powdery mildew) during 168 h post inoculation (hpi). GSNOR expression was increased in all genotypes both in the early phase at 6 hpi and later phase at 72 hpi, with a high increase observed in L. sativa UCDM2 responses to all three pathogens. GSNOR protein also showed two-phase increase, with highest changes in L. virosa-B. lactucae and L. sativa cv. UCDM2-G. cichoracearum pathosystems, whereas P. neolycopersici induced GSNOR protein at 72 hpi in all genotypes. Similarly, a general pattern of modulated GSNOR activities in response to biotrophic mildews involves a two-phase increase at 6 and 72 hpi. Lettuce downy mildew infection caused GSNOR activity slightly increased only in resistant L. saligna and L. virosa genotypes; however, all genotypes showed increased GSNOR activity both at 6 and 72 hpi by lettuce powdery mildew. We observed GSNOR-mediated decrease of S-nitrosothiols as a general feature of Lactuca spp. response to mildew infection, which was also confirmed by immunohistochemical detection of GSNOR and GSNO in infected plant tissues. Our results demonstrate that GSNOR is differentially modulated in interactions of susceptible and resistant Lactuca spp. genotypes with fungal mildews and uncover the role of S-nitrosylation in molecular mechanisms of plant responses to biotrophic pathogens.


Assuntos
Aldeído Oxirredutases/metabolismo , Resistência à Doença/fisiologia , Lactuca/fisiologia , Doenças das Plantas/microbiologia , S-Nitrosotióis/metabolismo , Western Blotting , Regulação da Expressão Gênica de Plantas , Lactuca/enzimologia , Microscopia Confocal , Oomicetos/patogenicidade , Reação em Cadeia da Polimerase
7.
Plant Biotechnol J ; 13(7): 875-83, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25487781

RESUMO

Host-induced gene silencing (HIGS) is an RNA interference-based approach in which small interfering RNAs (siRNAs) are produced in the host plant and subsequently move into the pathogen to silence pathogen genes. As a proof-of-concept, we generated stable transgenic lettuce plants expressing siRNAs targeting potentially vital genes of Bremia lactucae, a biotrophic oomycete that causes downy mildew, the most important disease of lettuce worldwide. Transgenic plants, expressing inverted repeats of fragments of either the Highly Abundant Message #34 (HAM34) or Cellulose Synthase (CES1) genes of B. lactucae, specifically suppressed expression of these genes, resulting in greatly reduced growth and inhibition of sporulation of B. lactucae. This demonstrates that HIGS can provide effective control of B. lactucae in lettuce; such control does not rely on ephemeral resistance conferred by major resistance genes and therefore offers new opportunities for durable control of diverse diseases in numerous crops.


Assuntos
Lactuca/microbiologia , Oomicetos/fisiologia , Doenças das Plantas/microbiologia , Plantas Geneticamente Modificadas/microbiologia , Inativação Gênica , Lactuca/genética , Oomicetos/genética , Doenças das Plantas/imunologia , Plantas Geneticamente Modificadas/genética , Interferência de RNA
8.
Plant Cell Environ ; 36(11): 1992-2007, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23534608

RESUMO

The fungal pathogen Botrytis cinerea establishes a necrotrophic interaction with its host plants, including lettuce (Lactuca sativa), causing it to wilt, collapse and eventually dry up and die, which results in serious economic losses. Global expression profiling using RNAseq and the newly sequenced lettuce genome identified a complex network of genes involved in the lettuce-B. cinerea interaction. The observed high number of differentially expressed genes allowed us to classify them according to the biological pathways in which they are implicated, generating a holistic picture. Most pronounced were the induction of the phenylpropanoid pathway and terpenoid biosynthesis, whereas photosynthesis was globally down-regulated at 48 h post-inoculation. Large-scale comparison with data available on the interaction of B. cinerea with the model plant Arabidopsis thaliana revealed both general and species-specific responses to infection with this pathogen. Surprisingly, expression analysis of selected genes could not detect significant systemic transcriptional alterations in lettuce leaves distant from the inoculation site. Additionally, we assessed the response of these lettuce genes to a biotrophic pathogen, Bremia lactucae, revealing that similar pathways are induced during compatible interactions of lettuce with necrotrophic and biotrophic pathogens.


Assuntos
Botrytis/fisiologia , Perfilação da Expressão Gênica , Lactuca/genética , Lactuca/microbiologia , Análise de Sequência de RNA , Arabidopsis/genética , Arabidopsis/microbiologia , Regulação para Baixo/genética , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Folhas de Planta/genética , Folhas de Planta/metabolismo , Folhas de Planta/microbiologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Regulação para Cima/genética
9.
Front Plant Sci ; 11: 594681, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33250915

RESUMO

Biotrophic disease is one of the largest causes of decreased yield in agriculture. While exposure to ultraviolet B (UV-B) light (280-320 nm) has been previously observed to reduce plant susceptibility to disease, there is still a paucity of information regarding underlying biological mechanisms. In addition, recent advances in UV-LED technology raise the prospect of UV light treatments in agriculture which are practical and efficient. Here, we characterized the capability of UV-B LED pre-treatments to reduce susceptibility of a range of lettuce (Lactuca sativa) cultivars to downy mildew disease caused by the obligate biotroph Bremia lactucae. Innate cultivar susceptibility level did not seem to influence the benefit of a UV-B induced disease reduction with similar reductions as a percentage of the control observed (54-62% decrease in conidia count) across all susceptible cultivars. UV-B-induced reductions to conidia counts were sufficient to significantly reduce the infectivity of the diseased plant. Secondary infections caused by UV-B pre-treated plants exhibited yet further (67%) reduced disease severity. UV-B-induced flavonoids may in part mediate this reduced disease severity phenotype, as B. lactucae conidia counts of lettuce plants negatively correlated with flavonoid levels in a UV-B-dependent manner (r = -0.81). Liquid chromatography-mass spectrometry (LC-MS) was used to identify metabolic features which contribute to this correlation and, of these, quercetin 3-O-(6"-O-malonyl)-b-D-glucoside had the strongest negative correlation with B. lactucae conidia count (r = -0.68). When quercetin 3-O-(6"-O-malonyl)-b-D-glucoside was directly infiltrated into lettuce leaves, with those leaves subsequently infected, the B. lactucae conidia count was reduced (25-39%) in two susceptible lettuce cultivars. We conclude that UV-B induced phenolics, in particular quercetin flavonoids, may act as phytoanticipins to limit the establishment of biotrophic pathogens thus delaying or reducing their sporulation as measured by conidia count. These findings highlight the opportunity for UV-B morphogenesis to be exploited through the application of UV-LED technology, as part of the development of next-generation, sustainable disease control tools.

10.
Mol Plant Pathol ; 20(2): 240-253, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30251420

RESUMO

Plant-pathogenic oomycetes secrete effector proteins to suppress host immune responses. Resistance proteins may recognize effectors and activate immunity, which is often associated with a hypersensitive response (HR). Transient expression of effectors in plant germplasm and screening for HR has proven to be a powerful tool in the identification of new resistance genes. In this study, 14 effectors from the lettuce downy mildew Bremia lactucae race Bl:24 were screened for HR induction in over 150 lettuce accessions. Three effectors-BLN06, BLR38 and BLR40-were recognized in specific lettuce lines. The recognition of effector BLR38 in Lactuca serriola LS102 did not co-segregate with resistance against race Bl:24, but was linked to resistance against multiple other B. lactucae races. Two unlinked loci are both required for effector recognition and are located near known major resistance clusters. Gene dosage affects the intensity of the BLR38-triggered HR, but is of minor importance for disease resistance.


Assuntos
Lactuca/genética , Lactuca/microbiologia , Oomicetos/patogenicidade , Dosagem de Genes/genética , Oomicetos/genética , Oomicetos/metabolismo , Doenças das Plantas/microbiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
11.
Front Plant Sci ; 9: 1491, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30405654

RESUMO

The interest of farmers in growing lettuce landraces is increasing, as landrace varieties prove particularly appealing to consumers striving to purchase natural, local, and high-quality produce. Although high genetic diversity exists in the landrace gene pool, this has scarcely been studied, thus hindering landrace utilization in agriculture. In this study, we analyzed the genetic diversity and the agronomic and quality traits of lettuce landraces in organic agrosystems, by characterizing 16 landraces and 16 modern varieties. We compared 29 morphological descriptors, and several traits relating to agronomic behavior (total and commercial weight, resistance to Bremia lactucae) and quality (color, chlorophyll, dry matter, and total sugars). Trials were conducted in two localities and managed following organic farming practices. Moreover, farmers and consumers participated in the phenotyping of accessions by scoring yield, resistance to B. lactucae, appearance, and taste acceptance. Results show that cultivar group, rather than the genetic origin (modern vs. landrace), is the major source of variation for all agronomic and quality traits. Batavia and Butterhead were highly homogeneous cultivar groups, while Cos accessions showed a much higher intra-varietal diversity. There was also a clear separation between modern and landrace varieties of Oak leaf. Fifteen out of the 16 evaluated landraces presented a high susceptibility to the particular B. lactucae race isolated from the experimental field - a new race not reported before. Breeding programs intended to introgress genetic resistance to this pathogen are a major priority to recover the cultivation of lettuce landraces. Principal component analysis (PCA), conducted on all quantitative data, showed a clear differentiation between modern varieties and landraces, mostly related to their commercial weight and susceptibility to B. lactucae. These seem the most important traits influencing farmer and consumer evaluations. Farmers showed a high capacity for characterizing the samples and agreed with consumers when scoring for the external appearance. It is proposed that farmers and consumers should be included in the phenotyping platforms in future research projects aiming for recovery of landraces.

12.
G3 (Bethesda) ; 5(12): 2655-69, 2015 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-26449254

RESUMO

Genome-wide motif searches identified 1134 genes in the lettuce reference genome of cv. Salinas that are potentially involved in pathogen recognition, of which 385 were predicted to encode nucleotide binding-leucine rich repeat receptor (NLR) proteins. Using a maximum-likelihood approach, we grouped the NLRs into 25 multigene families and 17 singletons. Forty-one percent of these NLR-encoding genes belong to three families, the largest being RGC16 with 62 genes in cv. Salinas. The majority of NLR-encoding genes are located in five major resistance clusters (MRCs) on chromosomes 1, 2, 3, 4, and 8 and cosegregate with multiple disease resistance phenotypes. Most MRCs contain primarily members of a single NLR gene family but a few are more complex. MRC2 spans 73 Mb and contains 61 NLRs of six different gene families that cosegregate with nine disease resistance phenotypes. MRC3, which is 25 Mb, contains 22 RGC21 genes and colocates with Dm13. A library of 33 transgenic RNA interference tester stocks was generated for functional analysis of NLR-encoding genes that cosegregated with disease resistance phenotypes in each of the MRCs. Members of four NLR-encoding families, RGC1, RGC2, RGC21, and RGC12 were shown to be required for 16 disease resistance phenotypes in lettuce. The general composition of MRCs is conserved across different genotypes; however, the specific repertoire of NLR-encoding genes varied particularly of the rapidly evolving Type I genes. These tester stocks are valuable resources for future analyses of additional resistance phenotypes.


Assuntos
Resistência à Doença/genética , Genes de Plantas , Genoma de Planta , Estudo de Associação Genômica Ampla , Lactuca/genética , Doenças das Plantas/genética , Mapeamento Cromossômico , Cromossomos de Plantas , Inativação Gênica , Loci Gênicos , Genômica , Genótipo , Interações Hospedeiro-Patógeno/genética , Lactuca/classificação , Família Multigênica , Fenótipo , Filogenia , Interferência de RNA , RNA Interferente Pequeno/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA