Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Arch Pharm (Weinheim) ; 357(3): e2300491, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38158335

RESUMO

Recently, the azepino[4,3-b]indole-1-one derivative 1 showed in vitro nanomolar inhibition against butyrylcholinesterase (BChE), the ChE isoform that plays a role in the progression and pathophysiology of Alzheimer's disease (AD), and protects against N-methyl- d-aspartate-induced neuronal toxicity. Three 9-R-substituted (R = F, Br, OMe) congeners were investigated. The 9-F derivative (2a) was found more potent as BChE inhibitors (half-maximal inhibitory concentration value = 21 nM) than 2b (9-Br) and 2c (9-OMe), achieving a residence time (38 s), assessed by surface plasmon resonance, threefold higher than that of 1. To progress in featuring the in vivo pharmacological characterization of 2a, herein the 18 F-labeled congener 2a was synthesized, by applying the aromatic 18 F-fluorination method, and its whole-body distribution in healthy mice, including brain penetration, was evaluated through positron emission tomography imaging. [18 F]2a exhibited a rapid and high brain uptake (3.35 ± 0.26% ID g-1 at 0.95 ± 0.15 min after injection), followed by a rapid clearance (t1/2 = 6.50 ± 0.93 min), showing good blood-brain barrier crossing. After a transient liver accumulation of [18 F]2a, the intestinal and urinary excretion was quantified. Finally, ex vivo pharmacological experiments in mice showed that the unlabeled 2a affects the transmitters' neurochemistry, which might be favorable to reverse cognition impairment in mild-to-moderate AD-related dementias.


Assuntos
Doença de Alzheimer , Animais , Camundongos , Doença de Alzheimer/tratamento farmacológico , Butirilcolinesterase , Relação Estrutura-Atividade , Transporte Biológico , Indóis
2.
Molecules ; 29(2)2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38257228

RESUMO

The phytochemical investigation of Cortex Mori Radicis led to the isolation and identification of a new prenylated benzofuranone (1) and four ring-opening derivatives (2-5) named albaphenol A-E, as well as nigranol A (6), together with ten 2-arylbenzofuran derivatives (7-16). The characterization of the structures of the new compounds and the structural revision of nigranol A (6) were conducted using the comprehensive analysis of spectroscopic data (1D/2D NMR, HRESIMS, CD, and XRD). Compounds 1-16 were tested for their inhibitory effects on acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). Compounds 1 and 4 showed weak BChE-inhibitory activity (IC50 45.5 and 61.0 µM); six 2-arylbenzofuran derivatives showed more-potent BChE-inhibitory activity (IC50 2.5-32.8 µM) than the positive control galantamine (IC50 35.3 µM), while being inactive or weakly inhibitory toward AChE. Cathafuran C (14) exhibited the most potent and selective inhibitory activity against BChE in a competitive manner, with a Ki value of 1.7 µM. The structure-activity relationships of the benzofuran-type stilbenes were discussed. Furthermore, molecular docking and dynamic simulations were performed to clarify the interactions of the inhibitor-enzyme complex.


Assuntos
Acetilcolinesterase , Benzofuranos , Butirilcolinesterase , Simulação de Acoplamento Molecular , Benzofuranos/farmacologia , Córtex Cerebral
3.
Bioorg Chem ; 127: 105993, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35834980

RESUMO

In this work, based on the potential anti-AD molecule previously studied by our group, we continue to introduce different substituents at different positions to improve both drug-like properties and on target activities. 33 N-salicyloyl tryptamine-carbamate hybrids were designed, synthesized and evaluated as cholinesterase inhibitors. H327 was the most potent BChE inhibitor (eqBChE IC50 = 0.057 ± 0.005 µM), and showed threefold improved inhibitory potency than the positive drug rivastigmine (eqBChE IC50 = 0.19 ± 0.001 µM). In addition, H327 as a pseudo-irreversible BChE inhibitor was endowed with neuroprotective, antioxidative and anti-neuroinflammatory properties. Cytotoxicity and acute toxicity tests confirmed the safety of compound H327. The pharmacokinetics study showed that compound H327 had a longer T1/2 time and higher bioavailability than the lead compound 1 g. Compound H327 was able to cross the blood-brain barrier (BBB) in vivo. Moreover, the behavioral tests showed that compound H327 could significantly improve scopolamine-induced cognitive impairment in vivo. Overall, these results demonstrated that compound H327 is a promising multi-target agent for the treatment of AD.


Assuntos
Doença de Alzheimer , Fármacos Neuroprotetores , Acetilcolinesterase/metabolismo , Doença de Alzheimer/tratamento farmacológico , Peptídeos beta-Amiloides , Carbamatos/farmacologia , Carbamatos/uso terapêutico , Inibidores da Colinesterase/farmacologia , Inibidores da Colinesterase/uso terapêutico , Humanos , Estrutura Molecular , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Relação Estrutura-Atividade , Triptaminas/farmacologia , Triptaminas/uso terapêutico
4.
Mol Divers ; 24(4): 997-1013, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31845210

RESUMO

A new series of compounds based on benzodiazepine-1,2,3-triazole were synthesized and evaluated as cholinesterase inhibitors by Ellman's method. The compounds proved to be selective inhibitors of butyrylcholinesterase (BuChE) over acetylcholinesterase. The most potent compound was 3,3-dimethyl-11-(3-((1-(4-nitrobenzyl)-1H-1,2,3-triazol-4-yl)methoxy)phenyl)-2,3,4,5,10,11-hexahydro-1H-dibenzo[b,e][1,4]diazepin-1-one, identified as a submicromolar inhibitor of BuChE with IC50 value of 0.2 µM. In addition, the amyloid-ß self-aggregation evaluation studies for selected compounds showed potent inhibitory effects compared to donepezil. The docking and cell viability studies supported the potential of compound 9b-6 as significant BuChE inhibitor.


Assuntos
Benzodiazepinas/química , Butirilcolinesterase/metabolismo , Inibidores da Colinesterase/química , Inibidores da Colinesterase/síntese química , Triazóis/química , Acetilcolinesterase/metabolismo , Desenho de Fármacos , Simulação de Acoplamento Molecular , Relação Estrutura-Atividade
5.
Molecules ; 25(3)2020 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-31979317

RESUMO

A series of novel compounds 6a-h, 8i-1, 10s-v, and 16a-d were synthesized and evaluated, together with the known analogs 11a-f, for their inhibitory activities towards acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). The inhibitory activities of AChE and BChE were evaluated in vitro by Ellman method. The results show that some compounds have good inhibitory activity against AChE and BChE. Among them, compound 8i showed the strongest inhibitory effect on both AChE (eeAChE IC50 = 0.39 µM) and BChE (eqBChE IC50 = 0.28 µM). Enzyme inhibition kinetics and molecular modeling studies have shown that compound 8i bind simultaneously to the peripheral anionic site (PAS) and the catalytic sites (CAS) of AChE and BChE. In addition, the cytotoxicity of compound 8i is lower than that of Tacrine, indicating its potential safety as anti-Alzheimer's disease (anti-AD) agents. In summary, these data suggest that compound 8i is a promising multipotent agent for the treatment of AD.


Assuntos
Acetilcolinesterase/química , Doença de Alzheimer/enzimologia , Butirilcolinesterase/química , Inibidores da Colinesterase/química , Inibidores da Colinesterase/farmacologia , Fármacos Neuroprotetores/farmacologia , Acetilcolinesterase/metabolismo , Doença de Alzheimer/tratamento farmacológico , Animais , Sítios de Ligação , Butirilcolinesterase/metabolismo , Domínio Catalítico , Sobrevivência Celular/efeitos dos fármacos , Inibidores da Colinesterase/síntese química , Donepezila/farmacologia , Cinética , Simulação de Acoplamento Molecular , Células PC12 , Ratos , Relação Estrutura-Atividade , Tacrina/farmacologia
6.
Bioorg Med Chem ; 27(14): 3156-3166, 2019 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-31176571

RESUMO

In an attempt to construct potential anti-Alzheimer's agents Naphthalene-triazolopyrimidine hybrids were synthesized and screened in vitro against the two cholinesterases (ChE)s, amyloid ß aggregation and for antioxidation activity. Single-crystal X-ray crystallography was utilized for crystal structure determination of one of the compounds. In vitro study of compounds revealed that most of the compounds are capable of inhibiting acetylcholinesterase and Butyrylcholinesterase activity. Particularly, the compounds 4e and 4d exhibited IC50 values ranging from 8.6 to 14 nM against AChE lower than the standard drug Donepezil (IC50 49 nM). Best result was found for compound 4e with IC50 of 8.6 nM (for AChE) and 150 nM (for BuChE). Selectivity upto that of Donepezil and even more was observed for 4a, 4c and 4h. Investigation by electron microscopy, transmission electron microscopy and ThT fluorescence assay unveils the fact that synthesized hybrids exhibit amyloid ß self-aggregation inhibition. The compounds 4i and 4j revealed highest inhibitory potential, 85.46% and 72.77% at 50 µM respectively; above the standard Aß disaggregating agent, Curcumin. Their antioxidation profile was also analyzed. Studies from DPPH free radical scavenging assay and ORAC assay depicts molecules to possess low antioxidation profile. Results suggest that triazolopyrimidines are potential candidate for Acetylcholinesterase (AChE), Butyrylcholinesterase (BuChE), and amyloid ß aggregation inhibition. In silico ADMET profiling indicates drug-like properties with a very low toxic influence. Such synthesized compounds provide a strong vision for further development of potential anti-Alzheimer's agents.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Ansiolíticos/uso terapêutico , Naftalenos/uso terapêutico , Ansiolíticos/farmacologia , Desenho de Fármacos , Humanos , Naftalenos/farmacologia
7.
Bioorg Chem ; 88: 102949, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31054435

RESUMO

This current study described the design and synthesis of a series of derivatives based on a natural pyranoisaflavone, which was obtained from the seeds of Millettia pachycarpa and displayed attractive BChE inhibition and high selectivity in our previous study. The inhibitory potential of all derivatives against two cholinesterases was evaluated. Only a few compounds demonstrated AChE inhibitory activity at the tested concentrations, while 26 compounds showed significant inhibition on BChE (the IC50 values varied from 9.34 µM to 0.093 µM), most of them presented promising selectivity to ward BChE. Prediction of ADME properties for 7 most active compounds was performed. Among them, 9g (IC50 = 222 nM) and 9h (IC50 = 93 nM) were found to be the most potent BChE inhibitors with excellent selectivity over AChE (SI ratio = 1339 and 836, respectively). The kinetic analysis demonstrated both of them acted as mixed-type BChE inhibitors, while the molecular docking results indicated that they interacted with both residues in the catalytic active site. A cytotoxicity test on PC12 cells showed that both 9g and 9h had a therapeutic safety range similar to tacrine. Overall, the results indicate that 9h could be a good candidate of BChE inhibitors.


Assuntos
Produtos Biológicos/farmacologia , Butirilcolinesterase/metabolismo , Carbamatos/antagonistas & inibidores , Inibidores da Colinesterase/farmacologia , Isoflavonas/farmacologia , Pironas/farmacologia , Animais , Produtos Biológicos/química , Produtos Biológicos/isolamento & purificação , Carbamatos/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Inibidores da Colinesterase/química , Inibidores da Colinesterase/isolamento & purificação , Relação Dose-Resposta a Droga , Humanos , Isoflavonas/química , Isoflavonas/isolamento & purificação , Estrutura Molecular , Células PC12 , Pironas/química , Pironas/isolamento & purificação , Ratos , Relação Estrutura-Atividade
8.
Bioorg Chem ; 93: 103312, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31586715

RESUMO

Novel series of pyrrolizine based compounds (4-6 and 9-11) were designed, synthesized and evaluated as potential anti-Alzheimer agents. Most of the tested compounds showed selectivity to hAChE over hBChE and effectively inhibited self-induced amyloid beta aggregation in vitro. Among these derivatives, compound 10 displayed high selectivity towards hAChE (Ki = 1.47 ±â€¯0.63 µM for hAChE and Ki = 40.15 ±â€¯3.31 µM for hBChE). However, compound 11 displayed dual inhibitory effect against hAChE and hBChE at submicromolar range (Ki = 0.40 ±â€¯0.03 and 0.129 ±â€¯0.009 µM, respectively). Kinetic studies of the new ligands showed competitive type inhibition for both hAChE and hBChE. Moreover, compounds 10 and 11 showed lower or comparable cytotoxicity to donepezil against human neuroblastoma (SH-SY5Y) and normal human hepatic (THLE2) cell lines. In vivo studies confirmed that both compounds were able to improve cognitive dysfunction of scopolamine-induced AD mice. Finally, molecular docking simulation of compounds 10 and 11 in hAChE active site showed good agreement with the obtained pharmaco-biological results.


Assuntos
Inibidores da Colinesterase/síntese química , Desenho de Fármacos , Acetilcolinesterase/química , Acetilcolinesterase/metabolismo , Doença de Alzheimer/induzido quimicamente , Doença de Alzheimer/tratamento farmacológico , Peptídeos beta-Amiloides/metabolismo , Animais , Sítios de Ligação , Butirilcolinesterase/química , Butirilcolinesterase/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Inibidores da Colinesterase/metabolismo , Inibidores da Colinesterase/farmacologia , Inibidores da Colinesterase/uso terapêutico , Donepezila/farmacologia , Humanos , Cinética , Ligantes , Camundongos , Simulação de Acoplamento Molecular , Agregados Proteicos/efeitos dos fármacos , Estrutura Terciária de Proteína , Escopolamina/toxicidade , Relação Estrutura-Atividade
9.
J Asian Nat Prod Res ; 21(11): 1090-1103, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29991292

RESUMO

A series of new coumarin/1,2,4-oxadiazole hybrids were synthesized and evaluated for cholinesterase inhibitory and neuroprotective activities. Among them, enantiomers 5u and 5v showed potent hBChE inhibitory activity with IC50 values of 8.17 and 9.56 µM, respectively, and also exhibited good selectivity for hBChE over hAChE by 9.49- and 7.58-fold, respectively. In addition, both compounds could protect SH-SY5Y cells against Aß25-35-induced neurotoxicity. The preliminary bioassay results provided a new chemotype for multifunctional anti-Alzheimer's disease agents and continuing investigation into compounds 5u and 5v is warranted.


Assuntos
Doença de Alzheimer , Fármacos Neuroprotetores , Acetilcolinesterase , Inibidores da Colinesterase , Colinesterases , Cumarínicos , Humanos , Simulação de Acoplamento Molecular , Estrutura Molecular , Oxidiazóis , Relação Estrutura-Atividade
10.
Bioorg Med Chem ; 26(12): 3076-3095, 2018 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-29866481

RESUMO

A series of bezofuran appended 1,5-benzothiazepine compounds 7a-v was designed, synthesized and evaluated as cholinesterase inhibitors. The biological assay experiments showed that most of the compounds displayed a clearly selective inhibition for butyrylcholinesterase (BChE), while a weak or no effect towards acetylcholinesterase (AChE) was detected. All analogs exhibited varied BChE inhibitory activity with IC50 value ranging between 1.0 ±â€¯0.01 and 72 ±â€¯2.8 µM when compared with the standard donepezil (IC50, 2.63 ±â€¯0.28 µM). Among the synthesized derivatives, compounds 7l, 7m and 7k exhibited the highest BChE inhibition with IC50 values of 1.0, 1.0 and 1.8 µM, respectively. The results from a Lineweaver-Burk plot indicated a mixed-type inhibition for compound 7l with BChE. In addition, docking studies confirmed the results obtained through in vitro experiments and showed that most potent compounds bind to both the catalytic anionic site (CAS) and peripheral anionic site (PAS) of BChE active site. The synthesized compounds were also evaluated for their in vitro antibacterial and antifungal activities. The results indicated that the compounds possessed a broad spectrum of activity against the tested microorganisms and showed high activity against both gram positive and gram negative bacteria and fungi.


Assuntos
Anti-Infecciosos/síntese química , Benzofuranos/química , Butirilcolinesterase/metabolismo , Inibidores da Colinesterase/síntese química , Desenho de Fármacos , Tiazepinas/química , Acetilcolinesterase/química , Acetilcolinesterase/metabolismo , Anti-Infecciosos/farmacologia , Sítios de Ligação , Butirilcolinesterase/química , Domínio Catalítico , Inibidores da Colinesterase/farmacologia , Fungos/efeitos dos fármacos , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Concentração Inibidora 50 , Cinética , Simulação de Acoplamento Molecular , Relação Estrutura-Atividade , Tiazepinas/farmacologia
11.
J Enzyme Inhib Med Chem ; 32(1): 13-19, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27766908

RESUMO

A series of 4-phthalimidobenzenesulfonamide derivatives were designed, synthesized and evaluated for the inhibitory activities against acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE). Structures of the title compounds were confirmed by spectral and elemental analyses. The cholinesterase (ChE) inhibitory activity studies were carried out using Ellman's colorimetric method. The biological activity results revealed that all of the title compounds (except for compound 8) displayed high selectivity against AChE. Among the tested compounds, compound 7 was found to be the most potent against AChE (IC50= 1.35 ± 0.08 µM), while compound 3 exhibited the highest inhibition against BuChE (IC50= 13.41 ± 0.62 µM). Molecular docking studies of the most active compound 7 in AChE showed that this compound can interact with both the catalytic active site (CAS) and the peripheral anionic site (PAS) of AChE.


Assuntos
Acetilcolinesterase/efeitos dos fármacos , Butirilcolinesterase/efeitos dos fármacos , Inibidores da Colinesterase/farmacologia , Simulação de Acoplamento Molecular , Ftalimidas/química , Sulfonamidas/farmacologia , Análise Espectral/métodos , Sulfonamidas/química , Benzenossulfonamidas
12.
Mol Divers ; 20(3): 667-76, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27017352

RESUMO

The synthesis of two novel (+)-isocampholenic acid-derived amines has been realized starting from commercially available (1S)-(+)-10-camphorsulfonic acid. The novel amines as well as (+)-isocampholenic acid have been used as building blocks in the construction of a library of amides using various aliphatic, aromatic, and amino acid-derived coupling partners using BPC and CDI as activating agents. Amide derivatives have been assayed against several enzymes that hold potential for the development of new drugs to battle bacterial infections and Alzheimer's disease. Compounds 20c and 20e showed promising selective sub-micromolar inhibition of human butyrylcholinesterase [Formula: see text] ([Formula: see text] values [Formula: see text] and [Formula: see text], respectively).


Assuntos
Amidas/síntese química , Cânfora/análogos & derivados , Doença de Alzheimer/tratamento farmacológico , Amidas/química , Amidas/farmacologia , Infecções Bacterianas/tratamento farmacológico , Butirilcolinesterase/metabolismo , Cânfora/química , Técnicas de Química Sintética , Inibidores da Colinesterase/síntese química , Inibidores da Colinesterase/química , Inibidores da Colinesterase/farmacologia , Humanos , Estrutura Molecular
13.
Int J Biol Macromol ; 277(Pt 4): 134179, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39084425

RESUMO

The butyrylcholinesterase (BChE) is an attractive target for treating Alzheimer's disease. In this study, we report the discovery of five new monoterpene indole alkaloids (MIAs) along with three known analogues from Uncaria sessilifructus Roxb. as BChE inhibitors using affinity ultrafiltration based metabolomic profiling directed isolation strategy. Their structures were well identified through comprehensive spectroscopic and chiroptical analyses. Compounds 1-2 featured unique glycosidic linkages with 1,3-dioxane structure. All the compounds exhibited BChE inhibitory bioactivity without any cytotoxic effects. Enzymatic kinetic and molecular docking analyses of compounds 1 and 6 demonstrated their inhibiting mechanisms and binding patterns to BChE. These findings provide a valuable workflow for efficiently screening ligands that bind to proteins, and scientific recognition in the discovery of BChE inhibitors for treating neurodegenerative disorders.


Assuntos
Butirilcolinesterase , Inibidores da Colinesterase , Uncaria , Humanos , Butirilcolinesterase/metabolismo , Butirilcolinesterase/química , Inibidores da Colinesterase/farmacologia , Inibidores da Colinesterase/química , Cinética , Metabolômica/métodos , Simulação de Acoplamento Molecular , Ultrafiltração , Uncaria/química
14.
Eur J Med Chem ; 268: 116289, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38452730

RESUMO

Most recently, worldwide interest in butyrylcholinesterase (BChE) as a potential target for treating Alzheimer's disease (AD) has increased. In this study, the previously obtained selective BChE inhibitors with benzimidazole-oxadiazole scaffold were further structurally modified to increase their aqueous solubility and pharmacokinetic (PK) characteristics. S16-1029 showed improved solubility (3280 µM, upgraded by 14 times) and PK parameters, including plasma exposure (AUC0-inf = 1729.95 ng/mL*h, upgraded by 2.6 times) and oral bioavailability (Fpo = 48.18%, upgraded by 2 times). S16-1029 also displayed weak or no inhibition against Cytochrome P450 (CYP450) and human ether a-go-go related gene (hERG) potassium channel. In vivo experiments on tissue distribution revealed that S16-1029 could cross the blood-brain barrier (BBB) and reach the central nervous system (CNS). In vivo cognitive improvement efficacy and good in vitro target inhibitory activity (eqBChE IC50 = 11.35 ± 4.84 nM, hBChE IC50 = 48.1 ± 11.4 nM) were also assured. The neuroprotective effects against several AD pathology characteristics allowed S16-1029 to successfully protect the CNS of progressed AD patients. According to the findings of this study, altering molecular planarity might be a viable strategy for improving the drug-like property of CNS-treating drugs.


Assuntos
Doença de Alzheimer , Butirilcolinesterase , Humanos , Butirilcolinesterase/metabolismo , Solubilidade , Inibidores da Colinesterase/uso terapêutico , Doença de Alzheimer/tratamento farmacológico , Cognição , Acetilcolinesterase/metabolismo , Simulação de Acoplamento Molecular , Relação Estrutura-Atividade , Estrutura Molecular
15.
ACS Chem Neurosci ; 15(6): 1206-1218, 2024 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-38440987

RESUMO

This study examines the properties of a novel series of 4-oxypiperidines designed and synthesized as histamine H3R antagonists/inverse agonists based on the structural modification of two lead compounds, viz., ADS003 and ADS009. The products are intended to maintain a high affinity for H3R while simultaneously inhibiting AChE or/and BuChE enzymes. Selected compounds were subjected to hH3R radioligand displacement and gpH3R functional assays. Some of the compounds showed nanomolar affinity. The most promising compound in the naphthalene series was ADS031, which contained a benzyl moiety at position 1 of the piperidine ring and displayed 12.5 nM affinity at the hH3R and the highest inhibitory activity against AChE (IC50 = 1.537 µM). Eight compounds showed over 60% eqBuChE inhibition and hence were qualified for the determination of the IC50 value at eqBuChE; their values ranged from 0.559 to 2.655 µM. Therapy based on a multitarget-directed ligand combining H3R antagonism with additional AChE/BuChE inhibitory properties might improve cognitive functions in multifactorial Alzheimer's disease.


Assuntos
Colinesterases , Receptores Histamínicos H3 , Estrutura Molecular , Ligantes , Histamina , Inibidores da Colinesterase/farmacologia , Inibidores da Colinesterase/química , Éteres , Agonismo Inverso de Drogas , Receptores Histamínicos H3/química , Receptores Histamínicos , Relação Estrutura-Atividade
16.
Bioorg Med Chem ; 21(17): 4928-37, 2013 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-23891231

RESUMO

A series of N-{2-[4-(1H-benzimidazole-2-yl)phenoxy]ethyl}substituted amine derivatives were designed to assess cholinesterase inhibitor activities. Acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) inhibitor activities were evaluated in vitro by using Ellman's method. It was discovered that most of the compounds displayed AChE and/or BuChE inhibitor activity and few compounds were selective against AChE/BuChE. Compound 3c and 3e were the most active compounds in the series against eeAChE and hAChE, respectively. Molecular docking studies and molecular dynamics simulations were also carried out.


Assuntos
Acetilcolinesterase/química , Benzimidazóis/química , Inibidores da Colinesterase/síntese química , Acetilcolinesterase/metabolismo , Animais , Benzimidazóis/síntese química , Benzimidazóis/metabolismo , Sítios de Ligação , Butirilcolinesterase/química , Butirilcolinesterase/metabolismo , Domínio Catalítico , Inibidores da Colinesterase/química , Inibidores da Colinesterase/metabolismo , Humanos , Simulação de Acoplamento Molecular , Ligação Proteica , Torpedo/metabolismo
17.
Future Med Chem ; 14(14): 1049-1070, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35707942

RESUMO

Aim: This study reports the designing of BChE inhibitors through machine learning (ML), followed by in silico and in vitro evaluations. Methodology: ML technique was used to predict the virtual hit, and its derivatives were synthesized and characterized. The compounds were evaluated by using various in vitro tests and in silico methods. Results: The gradient boosting classifier predicted N-phenyl-4-(phenylsulfonamido) benzamide as an active BChE inhibitor. The derivatives of the inhibitor, i.e., compounds 34, 37 and 54 were potent BChE inhibitors and displayed blood-brain barrier permeability with no significant AChE inhibition. Conclusion: The ML prediction was effective, and the synthesized compounds showed the BChE inhibitory activity, which was also supported by the in silico studies.


Assuntos
Butirilcolinesterase , Inibidores da Colinesterase , Inibidores da Colinesterase/farmacologia , Aprendizado de Máquina , Sulfonamidas/farmacologia
18.
Eur J Med Chem ; 239: 114510, 2022 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-35728508

RESUMO

Butyrylcholinesterase (BChE) has been more and more attractive for treating neurodegenerative diseases, especially Alzheimer's disease (AD). In this study, we conducted activity and druggability optimization based on the structures that were previously reported. Most compounds exhibited pronounced BChE inhibitory capacity with nanomolar IC50 values. Based on the results of inhibiting activity and cyto-safety evaluations, two compounds (7, eqBChE IC50 = 2.94 nM, hBChE IC50 = 34.6 nM, and 20, eqBChE IC50 = 0.15 nM, hBChE IC50 = 45.2 nM) have been selected as candidates. High stability of compound 20 contributed to significantly improved blood concentration and tissue exposure, resulting in a reduced administration and effective dose in pharmacodynamic experiments. Two candidates exhibited remarkable neuroprotective properties and cognition improving activity, by benefiting cholinergic system, reducing the total Aß amount and increasing the ghrelin content. Simultaneous modulation in the center and periphery greatly improves the efficiency of BChE inhibitors. Considering the regulation on ghrelin level, BChE inhibition could improve not only symptoms but also nutritional status of AD patients.


Assuntos
Doença de Alzheimer , Butirilcolinesterase , Acetilcolinesterase/metabolismo , Doença de Alzheimer/tratamento farmacológico , Butirilcolinesterase/metabolismo , Inibidores da Colinesterase/química , Cognição , Grelina , Humanos , Estrutura Molecular , Neuroproteção
19.
Front Chem ; 10: 1063284, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36618870

RESUMO

Two undescribed butenolide derivatives, asperteretal J (1) and K (2), together with 13 known ones (3-15) were isolated from an endophytic fungus Aspergillus terreus SGP-1, the fermentation product of which exhibited selective inhibitory activity toward butyrylcholinesterase. The structures of the new compounds were elucidated based on HRMS and NMR data, and the absolute configurations were determined by specific optical rotation comparison. All compounds were evaluated for cholinesterase inhibitory effects with galantamine as a positive control. Compounds 4-8 selectively inhibited butyrylcholinesterase with IC50 values of 18.4-45.8 µM in a competitive manner, with Ki values of 12.3-38.2 µM. The structure-activity relationship was discussed. Molecular docking and dynamic simulation of the inhibitor-enzyme complex were performed to better understand the interactions.

20.
Eur J Med Chem ; 227: 113947, 2022 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-34731766

RESUMO

Triterpenoic acids (oleanolic, ursolic, betulinic, platanic and glycyrrhetinic acid) were acetylated and coupled with 1,3- or 1,4-diazabicyclo[3.2.2]nonanes to yield amides. Reaction of these amides with methyl iodide at the distal nitrogen of the bicyclic system gave the corresponding quaternary ammonium salts. These compounds were shown to act as excellent inhibitors of the enzyme butyrylcholinesterase (BChE) while being only weak inhibitors for acetylcholinesterase (AChE). Evaluation of the enzyme kinetics revealed these compounds to act as hyperbolic inhibitors for BChE while the results from molecular modeling gave an explanation for their selectivity between AChE and BChE.


Assuntos
Compostos Aza/farmacologia , Compostos Bicíclicos Heterocíclicos com Pontes/química , Butirilcolinesterase/metabolismo , Inibidores da Colinesterase/farmacologia , Triterpenos/farmacologia , Acetilcolinesterase/metabolismo , Animais , Compostos Aza/química , Inibidores da Colinesterase/síntese química , Inibidores da Colinesterase/química , Relação Dose-Resposta a Droga , Electrophorus , Humanos , Metilação , Estrutura Molecular , Relação Estrutura-Atividade , Torpedo , Triterpenos/síntese química , Triterpenos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA