Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
J Med Virol ; 96(2): e29449, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38314919

RESUMO

Enterovirus C99 (EV-C99) is a newly identified EV serotype within the species Enterovirus C. Few studies on EV-C99 have been conducted globally. More information and research on EV-C99 are needed to assess its genetic characteristics, phylogenetic relationships, and associations with enteroviral diseases. Here, the phylogenetic characteristics of 11 Chinese EV-C99 strains have been reported. The full-length genomic sequences of these 11 strains show 79.4-80.5% nucleotide identity and 91.7-94.3% amino acid (aa) identity with the prototype EV-C99. A maximum likelihood phylogenetic tree constructed based on the entire VP1 coding region identified 13 genotypes (A-M), revealing a high degree of variation among the EV-C99 strains. Phylogeographic analysis showed that the Xinjiang Uygur Autonomous Region is an important source of EV-C99 epidemics in various regions of China. Recombination analysis revealed inter-serotype recombination events of 16 Chinese EV-C99 strains in 5' untranslated regions and 3D regions, resulting in the formation of a single recombination form. Additionally, the Chinese strain of genotype J showed rich aa diversity in the P1 region, indicating that the genotype J of EV-C99 is still going through variable dynamic changes. This study contributes to the global understanding of the EV-C99 genome sequence and holds substantial implications for the surveillance of EV-C99.


Assuntos
Infecções por Enterovirus , Enterovirus , Humanos , Enterovirus/genética , Filogenia , Infecções por Enterovirus/epidemiologia , China/epidemiologia , Genótipo , Genoma Viral
2.
Int J Mol Sci ; 25(13)2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38999927

RESUMO

Docosahexaenoic acid (DHA, C22:6 ω3) may be involved in various neuroprotective mechanisms that could prevent Alzheimer's disease (AD). Its influence has still been little explored regarding the dysfunction of the endolysosomal pathway, known as an early key event in the physiopathological continuum triggering AD. This dysfunction could result from the accumulation of degradation products of the precursor protein of AD, in particular the C99 fragment, capable of interacting with endosomal proteins and thus contributing to altering this pathway from the early stages of AD. This study aims to evaluate whether neuroprotection mediated by DHA can also preserve the endolysosomal function. AD-typical endolysosomal abnormalities were recorded in differentiated human SH-SY5Y neuroblastoma cells expressing the Swedish form of human amyloid precursor protein. This altered phenotype included endosome enlargement, the reduced secretion of exosomes, and a higher level of apoptosis, which confirmed the relevance of the cellular model chosen for studying the associated deleterious mechanisms. Second, neuroprotection mediated by DHA was associated with a reduced interaction of C99 with the Rab5 GTPase, lower endosome size, restored exosome production, and reduced neuronal apoptosis. Our data reveal that DHA may influence protein localization and interactions in the neuronal membrane environment, thereby correcting the dysfunction of endocytosis and vesicular trafficking associated with AD.


Assuntos
Doença de Alzheimer , Ácidos Docosa-Hexaenoicos , Endossomos , Lisossomos , Neurônios , Proteínas rab5 de Ligação ao GTP , Humanos , Ácidos Docosa-Hexaenoicos/farmacologia , Ácidos Docosa-Hexaenoicos/metabolismo , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Proteínas rab5 de Ligação ao GTP/metabolismo , Endossomos/metabolismo , Neurônios/metabolismo , Neurônios/patologia , Neurônios/efeitos dos fármacos , Lisossomos/metabolismo , Linhagem Celular Tumoral , Precursor de Proteína beta-Amiloide/metabolismo , Apoptose , Fármacos Neuroprotetores/farmacologia , Sobrevivência Celular/efeitos dos fármacos
3.
Ann Henri Poincare ; 24(3): 717-750, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36950223

RESUMO

Following up on the recent work on lower Ricci curvature bounds for quantum systems, we introduce two noncommutative versions of curvature-dimension bounds for symmetric quantum Markov semigroups over matrix algebras. Under suitable such curvature-dimension conditions, we prove a family of dimension-dependent functional inequalities, a version of the Bonnet-Myers theorem and concavity of entropy power in the noncommutative setting. We also provide examples satisfying certain curvature-dimension conditions, including Schur multipliers over matrix algebras, Herz-Schur multipliers over group algebras and generalized depolarizing semigroups.

4.
J Biol Chem ; 296: 100489, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33662398

RESUMO

Genetic, biochemical, and anatomical grounds led to the proposal of the amyloid cascade hypothesis centered on the accumulation of amyloid beta peptides (Aß) to explain Alzheimer's disease (AD) etiology. In this context, a bulk of efforts have aimed at developing therapeutic strategies seeking to reduce Aß levels, either by blocking its production (γ- and ß-secretase inhibitors) or by neutralizing it once formed (Aß-directed immunotherapies). However, so far the vast majority of, if not all, clinical trials based on these strategies have failed, since they have not been able to restore cognitive function in AD patients, and even in many cases, they have worsened the clinical picture. We here propose that AD could be more complex than a simple Aß-linked pathology and discuss the possibility that a way to reconcile undoubted genetic evidences linking processing of APP to AD and a consistent failure of Aß-based clinical trials could be to envision the pathological contribution of the direct precursor of Aß, the ß-secretase-derived C-terminal fragment of APP, ßCTF, also referred to as C99. In this review, we summarize scientific evidences pointing to C99 as an early contributor to AD and postulate that γ-secretase should be considered as not only an Aß-generating protease, but also a beneficial C99-inactivating enzyme. In that sense, we discuss the limitations of molecules targeting γ-secretase and propose alternative strategies seeking to reduce C99 levels by other means and notably by enhancing its lysosomal degradation.


Assuntos
Secretases da Proteína Precursora do Amiloide/metabolismo , Peptídeos beta-Amiloides/metabolismo , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/química , Animais , Humanos
5.
J Neuroinflammation ; 19(1): 65, 2022 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-35277173

RESUMO

BACKGROUND: Membrane-type matrix metalloproteinase 5 (MT5-MMP) deficiency in the 5xFAD mouse model of Alzheimer's disease (AD) reduces brain neuroinflammation and amyloidosis, and prevents deficits in synaptic activity and cognition in prodromal stages of the disease. In addition, MT5-MMP deficiency prevents interleukin-1 beta (IL-1ß)-mediated inflammation in the peripheral nervous system. In this context, we hypothesized that the MT5-MMP/IL-1ß tandem could regulate nascent AD pathogenic events in developing neural cells shortly after the onset of transgene activation. METHODS: To test this hypothesis, we used 11-14 day in vitro primary cortical cultures from wild type, MT5-MMP-/-, 5xFAD and 5xFAD/MT5-MMP-/- mice, and evaluated the impact of MT5-MMP deficiency and IL-1ß treatment for 24 h, by performing whole cell patch-clamp recordings, RT-qPCR, western blot, gel zymography, ELISA, immunocytochemistry and adeno-associated virus (AAV)-mediated transduction. RESULTS: 5xFAD cells showed higher levels of MT5-MMP than wild type, concomitant with higher basal levels of inflammatory mediators. Moreover, MT5-MMP-deficient cultures had strong decrease of the inflammatory response to IL-1ß, as well as decreased stability of recombinant IL-1ß. The levels of amyloid beta peptide (Aß) were similar in 5xFAD and wild-type cultures, and IL-1ß treatment did not affect Aß levels. Instead, the absence of MT5-MMP significantly reduced Aß by more than 40% while sparing APP metabolism, suggesting altogether no functional crosstalk between IL-1ß and APP/Aß, as well as independent control of their levels by MT5-MMP. The lack of MT5-MMP strongly downregulated the AAV-induced neuronal accumulation of the C-terminal APP fragment, C99, and subsequently that of Aß. Finally, MT5-MMP deficiency prevented basal hyperexcitability observed in 5xFAD neurons, but not hyperexcitability induced by IL-1ß treatment. CONCLUSIONS: Neuroinflammation and hyperexcitability precede Aß accumulation in developing neural cells with nascent expression of AD transgenes. MT5-MMP deletion is able to tune down basal neuronal inflammation and hyperexcitability, as well as APP/Aß metabolism. In addition, MT5-MMP deficiency prevents IL-1ß-mediated effects in brain cells, except hyperexcitability. Overall, this work reinforces the idea that MT5-MMP is at the crossroads of pathogenic AD pathways that are already incipiently activated in developing neural cells, and that targeting MT5-MMP opens interesting therapeutic prospects.


Assuntos
Doença de Alzheimer , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Peptídeos beta-Amiloides/toxicidade , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Astrócitos/metabolismo , Modelos Animais de Doenças , Metaloproteinases da Matriz/metabolismo , Camundongos , Camundongos Transgênicos , Doenças Neuroinflamatórias , Neurônios/metabolismo
6.
FEMS Yeast Res ; 22(1)2022 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-35150241

RESUMO

Alzheimer's disease (AD) is responsible for 60%-80% of identified cases of dementia. While the generation and accumulation of amyloid precursor protein (APP) fragments is accepted as a key step in AD pathogenesis, the precise role of these fragments remains poorly understood. To overcome this deficit, we induced the expression of the soluble C-terminal fragment of APP (C99), the rate-limiting peptide for the generation of amyloid fragments, in yeast that contain thermosensitive mutations in genes encoding proteasome subunits. Our previous work with this system demonstrated that these proteasome-deficient yeast cells, expressing C99 when proteasome activity was blunted, generated amyloid fragments similar to those observed in AD patients. We now report the phenotypic repercussions of inducing C99 expression in proteasome-deficient cells. We show increased levels of protein aggregates, cellular stress and chaperone expression, electron-dense accumulations in the nuclear envelope/ER, abnormal DNA condensation, and an induction of apoptosis. Taken together, these findings suggest that the generation of C99 and its associated fragments in yeast cells with compromised proteasomal activity results in phenotypes that may be relevant to the neuropathological processes observed in AD patients. These data also suggest that this yeast model should be useful for testing therapeutics that target AD-associated amyloid, since it allows for the assessment of the reversal of the perturbed cellular physiology observed when degradation pathways are dysfunctional.


Assuntos
Doença de Alzheimer , Complexo de Endopeptidases do Proteassoma , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Humanos , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
7.
EMBO J ; 36(22): 3356-3371, 2017 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-29018038

RESUMO

In the amyloidogenic pathway associated with Alzheimer disease (AD), the amyloid precursor protein (APP) is cleaved by ß-secretase to generate a 99-aa C-terminal fragment (C99) that is then cleaved by γ-secretase to generate the ß-amyloid (Aß) found in senile plaques. In previous reports, we and others have shown that γ-secretase activity is enriched in mitochondria-associated endoplasmic reticulum (ER) membranes (MAM) and that ER-mitochondrial connectivity and MAM function are upregulated in AD We now show that C99, in addition to its localization in endosomes, can also be found in MAM, where it is normally processed rapidly by γ-secretase. In cell models of AD, however, the concentration of unprocessed C99 increases in MAM regions, resulting in elevated sphingolipid turnover and an altered lipid composition of both MAM and mitochondrial membranes. In turn, this change in mitochondrial membrane composition interferes with the proper assembly and activity of mitochondrial respiratory supercomplexes, thereby likely contributing to the bioenergetic defects characteristic of AD.


Assuntos
Doença de Alzheimer/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Retículo Endoplasmático/metabolismo , Membranas Intracelulares/metabolismo , Mitocôndrias/metabolismo , Doença de Alzheimer/patologia , Secretases da Proteína Precursora do Amiloide/metabolismo , Animais , Linhagem Celular , Respiração Celular , Retículo Endoplasmático/ultraestrutura , Humanos , Membranas Intracelulares/ultraestrutura , Camundongos , Mitocôndrias/ultraestrutura , Mutação/genética , Consumo de Oxigênio , Presenilinas/genética , Transporte Proteico , Esfingolipídeos/metabolismo , Regulação para Cima
8.
Biochem Biophys Res Commun ; 576: 48-52, 2021 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-34481234

RESUMO

Historically, the two most prominent proteins in Alzheimer's disease (AD) research have been the amyloid precursor protein (APP) and the microtubule assembly protein tau. In the classical model for the etiology of AD, amyloid-ß (Aß)-an APP derivative and hyperphosphorylated tau form aggregates in the brain that underlie the pathogenesis of the disease. However, the connection between Aß and tau pathologies remains unclear. Several studies have provided evidence that the presence of Aß can induce or enhance neurofibrillary tangle formation by tau. Others have reported a direct interaction between tau and short fragments of the APP transmembrane domain, C99. Structural studies of C99 show that these in vitro tau-binding fragments of C99 are buried in the lipid bilayer and are likely unavailable to bind tau in vivo. Given the importance of APP and tau in AD, we sought to characterize the potential interaction of the Aß precursor, full length C99, and tau in vitro using NMR spectroscopy. We found that C99 and soluble tau interact only weakly and, most likely, non-specifically.


Assuntos
Doença de Alzheimer/patologia , Precursor de Proteína beta-Amiloide/metabolismo , Encéfalo/metabolismo , Membrana Celular/metabolismo , Fragmentos de Peptídeos/metabolismo , Proteínas Recombinantes/metabolismo , Proteínas tau/metabolismo , Doença de Alzheimer/metabolismo , Encéfalo/patologia , Membrana Celular/química , Humanos , Espectroscopia de Ressonância Magnética/métodos , Domínios Proteicos , Proteínas Recombinantes/isolamento & purificação
9.
Acta Neuropathol ; 141(1): 39-65, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33079262

RESUMO

Several lines of recent evidence indicate that the amyloid precursor protein-derived C-terminal fragments (APP-CTFs) could correspond to an etiological trigger of Alzheimer's disease (AD) pathology. Altered mitochondrial homeostasis is considered an early event in AD development. However, the specific contribution of APP-CTFs to mitochondrial structure, function, and mitophagy defects remains to be established. Here, we demonstrate in neuroblastoma SH-SY5Y cells expressing either APP Swedish mutations, or the ß-secretase-derived APP-CTF fragment (C99) combined with ß- and γ-secretase inhibition, that APP-CTFs accumulation independently of Aß triggers excessive mitochondrial morphology alteration (i.e., size alteration and cristae disorganization) associated with enhanced mitochondrial reactive oxygen species production. APP-CTFs accumulation also elicit basal mitophagy failure illustrated by enhanced conversion of LC3, accumulation of LC3-I and/or LC3-II, non-degradation of SQSTM1/p62, inconsistent Parkin and PINK1 recruitment to mitochondria, enhanced levels of membrane and matrix mitochondrial proteins, and deficient fusion of mitochondria with lysosomes. We confirm the contribution of APP-CTFs accumulation to morphological mitochondria alteration and impaired basal mitophagy in vivo in young 3xTgAD transgenic mice treated with γ-secretase inhibitor as well as in adeno-associated-virus-C99 injected mice. Comparison of aged 2xTgAD and 3xTgAD mice indicates that, besides APP-CTFs, an additional contribution of Aß to late-stage mitophagy activation occurs. Importantly, we report on mitochondrial accumulation of APP-CTFs in human post-mortem sporadic AD brains correlating with mitophagy failure molecular signature. Since defective mitochondria homeostasis plays a pivotal role in AD pathogenesis, targeting mitochondrial dysfunctions and/or mitophagy by counteracting early APP-CTFs accumulation may represent relevant therapeutic interventions in AD.


Assuntos
Doença de Alzheimer/patologia , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Encéfalo/patologia , Mitocôndrias/patologia , Mitocôndrias/ultraestrutura , Mitofagia/genética , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/metabolismo , Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Secretases da Proteína Precursora do Amiloide/metabolismo , Animais , Ácido Aspártico Endopeptidases/antagonistas & inibidores , Ácido Aspártico Endopeptidases/metabolismo , Autopsia , Linhagem Celular , Feminino , Humanos , Potencial da Membrana Mitocondrial , Camundongos , Mitocôndrias/metabolismo , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Espécies Reativas de Oxigênio/metabolismo
10.
Neurobiol Dis ; 145: 105062, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32866617

RESUMO

The discovery of contact sites was a breakthrough in cell biology. We have learned that an organelle cannot function in isolation, and that many cellular functions depend on communication between two or more organelles. One such contact site results from the close apposition of the endoplasmic reticulum (ER) and mitochondria, known as mitochondria-associated ER membranes (MAMs). These intracellular lipid rafts serve as hubs for the regulation of cellular lipid and calcium homeostasis, and a growing body of evidence indicates that MAM domains modulate cellular function in both health and disease. Indeed, MAM dysfunction has been described as a key event in Alzheimer disease (AD) pathogenesis. Our most recent work shows that, by means of its affinity for cholesterol, APP-C99 accumulates in MAM domains of the ER and induces the uptake of extracellular cholesterol as well as its trafficking from the plasma membrane to the ER. As a result, MAM functionality becomes chronically upregulated while undergoing continual turnover. The goal of this review is to discuss the consequences of C99 elevation in AD, specifically the upregulation of cholesterol trafficking and MAM activity, which abrogate cellular lipid homeostasis and disrupt the lipid composition of cellular membranes. Overall, we present a novel framework for AD pathogenesis that can be linked to the many complex alterations that occur during disease progression, and that may open a door to new therapeutic strategies.


Assuntos
Doença de Alzheimer/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Colesterol/metabolismo , Retículo Endoplasmático/metabolismo , Mitocôndrias/metabolismo , Fragmentos de Peptídeos/metabolismo , Doença de Alzheimer/patologia , Animais , Transporte Biológico/fisiologia , Retículo Endoplasmático/patologia , Humanos , Mitocôndrias/patologia
11.
Biochem Biophys Res Commun ; 530(2): 410-417, 2020 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-32540098

RESUMO

Alzheimer's disease (AD) is a progressive neurodegenerative disorder. The generation of amyloid-ß from the amyloid precursor protein (APP) C-terminal fragment (C99) by γ-secretase cleavage is one of the main pathological mechanisms of AD. Dendritic cell factor 1 (Dcf1) is a membrane protein that was previously found to play a role in the development of AD. Bioinformatic analysis of AD patients indicated that Dcf1 may affect γ-secretase. In this study, we confirmed that Dcf1 attenuates the cleavage of C99 in vivo and in vitro. By using C99 transgenic AD drosophila, we found that Dcf1 reduces the cleavage of C99 by γ-secretase using Dcf1 overexpression. The climbing ability and lifespan of C99 drosophila were significantly increased, while learning and memory were also enhanced with Dcf1 expression. Increased levels of C99 protein in Dcf1-AD drosophila reveals inhibition of C99 cleavage by Dcf1 in vivo. Dcf1 inhibition of γ-secretase was further confirmed in vitro. These results provide a potential therapeutic target for the treatment of AD and also propose a new mechanism for understanding the occurrence of AD.


Assuntos
Precursor de Proteína beta-Amiloide/metabolismo , Drosophila , Proteínas de Membrana/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Fragmentos de Peptídeos/metabolismo , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Secretases da Proteína Precursora do Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/genética , Animais , Animais Geneticamente Modificados , Modelos Animais de Doenças , Drosophila/genética , Drosophila/fisiologia , Humanos , Longevidade , Proteínas de Membrana/genética , Memória , Proteínas do Tecido Nervoso/genética , Fragmentos de Peptídeos/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Regulação para Cima
12.
Proc Natl Acad Sci U S A ; 114(15): E3129-E3138, 2017 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-28351972

RESUMO

Proteolytic processing of amyloid precursor protein (APP) C-terminal fragments (CTFs) by γ-secretase underlies the pathogenesis of Alzheimer's disease (AD). An RNA interference screen using APP-CTF [99-residue CTF (C99)]- and Notch-specific γ-secretase interaction assays identified a unique ErbB2-centered signaling network that was predicted to preferentially govern the proteostasis of APP-C99. Consistently, significantly elevated levels of ErbB2 were confirmed in the hippocampus of human AD brains. We then found that ErbB2 effectively suppressed autophagic flux by physically dissociating Beclin-1 from the Vps34-Vps15 complex independent of its kinase activity. Down-regulation of ErbB2 by CL-387,785 decreased the levels of C99 and secreted amyloid-ß in cellular, zebrafish, and mouse models of AD, through the activation of autophagy. Oral administration of an ErbB2-targeted CL-387,785 for 3 wk significantly improves the cognitive functions of APP/presenilin-1 (PS1) transgenic mice. This work unveils a noncanonical function of ErbB2 in modulating autophagy and establishes ErbB2 as a therapeutic target for AD.


Assuntos
Doença de Alzheimer/patologia , Secretases da Proteína Precursora do Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Autofagia , Encéfalo/patologia , Presenilina-1/metabolismo , Receptor ErbB-2/metabolismo , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Secretases da Proteína Precursora do Amiloide/genética , Peptídeos beta-Amiloides/genética , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Animais , Proteína Beclina-1/genética , Proteína Beclina-1/metabolismo , Encéfalo/metabolismo , Feminino , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Presenilina-1/genética , Proteostase , Receptor ErbB-2/genética , Peixe-Zebra/genética , Peixe-Zebra/crescimento & desenvolvimento , Peixe-Zebra/metabolismo
13.
Alzheimers Dement ; 16(2): 273-282, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31677937

RESUMO

INTRODUCTION: The levels and distribution of amyloid deposits in the brain does not correlate well with Alzheimer's disease (AD) progression. Therefore, it is likely that amyloid precursor protein and its proteolytic fragments other than amyloid b (Ab) contribute to the onset of AD. METHODS: We developed a sensitive assay adapted to the detection of C99, the direct precursor of b-amyloid. Three postmortem groups were studied: control with normal and stable cognition; patients with moderate AD, and individuals with severe AD. The amount of C99 and Aß was quantified and correlated with the severity of AD. RESULTS: C99 accumulates in vulnerable neurons, and its levels correlate with the degree of cognitive impairment in patients suffering from AD. In contrast, Aß levels are increased in both vulnerable and resistant brain areas. DISCUSSION: These results raise the possibility that C99, rather than Aß plaques, is responsible for the death of nerve cells in AD.


Assuntos
Doença de Alzheimer/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Progressão da Doença , Neurônios/metabolismo , Fragmentos de Peptídeos/efeitos adversos , Precursor de Proteína beta-Amiloide/efeitos adversos , Animais , Autopsia , Encéfalo/metabolismo , Humanos
14.
Cell Mol Life Sci ; 75(4): 757-773, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28956068

RESUMO

Amyloid beta peptide (Aß), the main component of senile plaques of Alzheimer's disease brains, is produced by sequential cleavage of amyloid precursor protein (APP) and of its C-terminal fragments (CTFs). An unanswered question is how amyloidogenic peptides spread throughout the brain during the course of the disease. Here, we show that small lipid vesicles called exosomes, secreted in the extracellular milieu by cortical neurons, carry endogenous APP and are strikingly enriched in CTF-α and the newly characterized CTF-η. Exosomes from N2a cells expressing human APP with the autosomal dominant Swedish mutation contain Aß peptides as well as CTF-α and CTF-η, while those from cells expressing the non-mutated form of APP only contain CTF-α and CTF-η. APP and CTFs are sorted into a subset of exosomes which lack the tetraspanin CD63 and specifically bind to dendrites of neurons, unlike exosomes carrying CD63 which bind to both neurons and glial cells. Thus, neuroblastoma cells secrete distinct populations of exosomes carrying different cargoes and targeting specific cell types. APP-carrying exosomes can be endocytosed by receiving cells, allowing the processing of APP acquired by exosomes to give rise to the APP intracellular domain (AICD). Thus, our results show for the first time that neuronal exosomes may indeed act as vehicles for the intercellular transport of APP and its catabolites.


Assuntos
Precursor de Proteína beta-Amiloide/metabolismo , Endocitose , Exossomos/metabolismo , Neurônios/metabolismo , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/química , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Células Cultivadas , Embrião de Mamíferos , Endocitose/fisiologia , Exossomos/patologia , Feminino , Humanos , Neurônios/patologia , Placa Amiloide/metabolismo , Placa Amiloide/patologia , Gravidez , Transporte Proteico , Ratos
15.
J Biol Chem ; 292(38): 15826-15837, 2017 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-28790170

RESUMO

One of the hallmarks of Alzheimer's disease is the formation of extracellular amyloid plaques that consist mainly of abnormally aggregated forms of amyloid ß (Aß) peptides. These peptides are generated by γ-secretase-catalyzed cleavage of a dimeric membrane-bound C-terminal fragment (C99) of the amyloid precursor protein. Although C99 homodimerization has been linked to Aß production and changes in the aggregation-determining Aß42/Aß40 ratio, the motif through which C99 dimerizes has remained controversial. Here, we have used two independent assays to gain insight into C99 homodimerization in the context of the membrane of live cells: bioluminescence resonance energy transfer and Tango membrane protein-protein interaction assays, which were further confirmed by traditional pull-down assays. Our results indicate a four-amino acid region within the C99 transmembrane helix (43TVIV46) as well as its local secondary structure as critical determinants for homodimerization. These four amino acids are also a hot spot of familial Alzheimer's disease-linked mutations that both decrease C99 homodimerization and γ-secretase cleavage and alter the initial cleavage site to increase the Aß42/40 ratio.


Assuntos
Secretases da Proteína Precursora do Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/química , Precursor de Proteína beta-Amiloide/metabolismo , Membrana Celular/metabolismo , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/metabolismo , Proteólise , Sequência de Aminoácidos , Precursor de Proteína beta-Amiloide/genética , Sítios de Ligação , Linhagem Celular , Humanos , Mutagênese , Fragmentos de Peptídeos/genética , Domínios Proteicos , Multimerização Proteica , Estrutura Secundária de Proteína
16.
FASEB J ; 31(6): 2446-2459, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28254759

RESUMO

Brain regions affected by Alzheimer disease (AD) display well-recognized early neuropathologic features in the endolysosomal and autophagy systems of neurons, including enlargement of endosomal compartments, progressive accumulation of autophagic vacuoles, and lysosomal dysfunction. Although the primary causes of these disturbances are still under investigation, a growing body of evidence suggests that the amyloid precursor protein (APP) intracellular C-terminal fragment ß (C99), generated by cleavage of APP by ß-site APP cleaving enzyme 1 (BACE-1), is the primary cause of the endosome enlargement in AD and the earliest initiator of synaptic plasticity and long-term memory impairment. The aim of the present study was to evaluate the possible relationship between the endolysosomal degradation pathway and autophagy on the proteolytic processing and turnover of C99. We found that pharmacologic treatments that either inhibit autophagosome formation or block the fusion of autophagosomes to endolysosomal compartments caused an increase in C99 levels. We also found that inhibition of autophagosome formation by depletion of Atg5 led to higher levels of C99 and to its massive accumulation in the lumen of enlarged perinuclear, lysosomal-associated membrane protein 1 (LAMP1)-positive organelles. In contrast, activation of autophagosome formation, either by starvation or by inhibition of the mammalian target of rapamycin, enhanced lysosomal clearance of C99. Altogether, our results indicate that autophagosomes are key organelles to help avoid C99 accumulation preventing its deleterious effects.-González, A. E., Muñoz, V. C., Cavieres, V. A., Bustamante, H. A., Cornejo, V.-H., Januário, Y. C., González, I., Hetz, C., daSilva, L. L., Rojas-Fernández, A., Hay, R. T., Mardones, G. A., Burgos, P. V. Autophagosomes cooperate in the degradation of intracellular C-terminal fragments of the amyloid precursor protein via the MVB/lysosomal pathway.


Assuntos
Precursor de Proteína beta-Amiloide/metabolismo , Autofagossomos/fisiologia , Lisossomos/fisiologia , Corpos Multivesiculares/fisiologia , Precursor de Proteína beta-Amiloide/genética , Proteína 5 Relacionada à Autofagia/genética , Proteína 5 Relacionada à Autofagia/metabolismo , Linhagem Celular Tumoral , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Regulação da Expressão Gênica/fisiologia , Inativação Gênica , Humanos , Naftiridinas/farmacologia , Neuroglia , RNA Interferente Pequeno , Serina-Treonina Quinases TOR/antagonistas & inibidores , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
17.
Biochem Biophys Res Commun ; 486(2): 444-450, 2017 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-28315680

RESUMO

Amyloid beta precursor protein (APP) is normally cleaved by α-secretase, but can also be cleaved by ß-secretase (BACE1) to produce C99 fragments in the endoplasmic reticulum (ER) membrane. C99 is subsequently cleaved to amyloid ß (Aß), the aggregation of which is known to cause Alzheimer's disease. Therefore, C99 removing is for preventing the disease. Selenoprotein S (SelS) is an ER membrane protein participating in endoplasmic reticulum-associated degradation (ERAD), one of the stages in resolving ER stress of misfolded proteins accumulated in the ER. ERAD has been postulated as one of the processes to degrade C99; however, it remains unclear if the degradation depends on SelS. In this study, we investigated the effect of SelS on C99 degradation. We observed that both SelS and C99 were colocalized in the membrane fraction of mouse neuroblastoma Neuro2a (N2a) cells. While the level of SelS was increased by ER stress, the level of C99 was decreased. However, despite the induction of ER stress, there was no change in the amount of C99 in SelS knock-down cells. The interaction of C99 with p97(VCP), an essential component of the ERAD complex, did not occur in SelS knock-down cells. The ubiquitination of C99 was decreased in SelS knock-down cells. We also found that the extracellular amount of Aß1-42 was relatively higher in SelS knock-down cells than in control cells. These results suggest that SelS is required for C99 degradation through ERAD, resulting in inhibition of Aß production.


Assuntos
Adenosina Trifosfatases/genética , Peptídeos beta-Amiloides/genética , Precursor de Proteína beta-Amiloide/genética , Proteínas de Ciclo Celular/genética , Degradação Associada com o Retículo Endoplasmático , Proteínas de Membrana/genética , Fragmentos de Peptídeos/genética , Selenoproteínas/genética , Adenosina Trifosfatases/metabolismo , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Retículo Endoplasmático/metabolismo , Estresse do Retículo Endoplasmático/genética , Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Cinética , Proteínas de Membrana/metabolismo , Camundongos , Neurônios/citologia , Neurônios/metabolismo , Fragmentos de Peptídeos/metabolismo , Proteólise , Selenoproteínas/metabolismo , Transgenes , Ubiquitinação , Proteína com Valosina
18.
Biochim Biophys Acta ; 1848(9): 1886-96, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25791349

RESUMO

Binding of specific lipids to large, polytopic membrane proteins is well described, and it is clear that such lipids are crucial for protein stability and activity. In contrast, binding of defined lipid species to individual transmembrane helices and regulation of transmembrane helix monomer-oligomer equilibria by binding of distinct lipids is a concept, which has emerged only lately. Lipids bind to single-span membrane proteins, both in the juxta-membrane region as well as in the hydrophobic membrane core. While some interactions counteract transmembrane helix oligomerization, in other cases lipid binding appears to enhance oligomerization. As reversible oligomerization is involved in activation of many membrane proteins, binding of defined lipids to single-span transmembrane proteins might be a mechanism to regulate and/or fine-tune the protein activity. But how could lipid binding trigger the activity of a protein? How can binding of a single lipid molecule to a transmembrane helix affect the structure of a transmembrane helix oligomer, and consequently its signaling state? These questions are discussed in the present article based on recent results obtained with simple, single-span transmembrane proteins. This article is part of a Special Issue entitled: Lipid-protein interactions.


Assuntos
Membrana Celular/química , Bicamadas Lipídicas/química , Lipídeos de Membrana/química , Proteínas de Membrana/química , Ligação Competitiva , Membrana Celular/metabolismo , Bicamadas Lipídicas/metabolismo , Lipídeos de Membrana/metabolismo , Proteínas de Membrana/metabolismo , Modelos Moleculares , Estrutura Molecular , Ligação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína
19.
Acta Neuropathol ; 132(2): 257-276, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27138984

RESUMO

Endosomal-autophagic-lysosomal (EAL) dysfunction is an early and prominent neuropathological feature of Alzheimers's disease, yet the exact molecular mechanisms contributing to this pathology remain undefined. By combined biochemical, immunohistochemical and ultrastructural approaches, we demonstrate a link between EAL pathology and the intraneuronal accumulation of the ß-secretase-derived ßAPP fragment (C99) in two in vivo models, 3xTgAD mice and adeno-associated viral-mediated C99-infected mice. We present a pathological loop in which the accumulation of C99 is both the effect and causality of impaired lysosomal-autophagic function. The deleterious effect of C99 was found to be linked to its aggregation within EAL-vesicle membranes leading to disrupted lysosomal proteolysis and autophagic impairment. This effect was Aß independent and was even exacerbated when γ-secretase was pharmacologically inhibited. No effect was observed in inhibitor-treated wild-type animals suggesting that lysosomal dysfunction was indeed directly linked to C99 accumulation. In some brain areas, strong C99 expression also led to inflammatory responses and synaptic dysfunction. Taken together, this work demonstrates a toxic effect of C99 which could underlie some of the early-stage anatomical hallmarks of Alzheimer's disease pathology. Our work also proposes molecular mechanisms likely explaining some of the unfavorable side-effects associated with γ-secretase inhibitor-directed therapies.


Assuntos
Doença de Alzheimer/patologia , Secretases da Proteína Precursora do Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Encéfalo/patologia , Neurônios/metabolismo , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Animais , Autofagia/fisiologia , Encéfalo/metabolismo , Modelos Animais de Doenças , Endossomos/metabolismo , Lisossomos/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neurônios/patologia
20.
J Alzheimers Dis ; 98(4): 1243-1275, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38578892

RESUMO

The "amyloid cascade" hypothesis of Alzheimer's disease (AD) pathogenesis invokes the accumulation in the brain of plaques (containing the amyloid-ß protein precursor [AßPP] cleavage product amyloid-ß [Aß]) and tangles (containing hyperphosphorylated tau) as drivers of pathogenesis. However, the poor track record of clinical trials based on this hypothesis suggests that the accumulation of these peptides is not the only cause of AD. Here, an alternative hypothesis is proposed in which the AßPP cleavage product C99, not Aß, is the main culprit, via its role as a regulator of cholesterol metabolism. C99, which is a cholesterol sensor, promotes the formation of mitochondria-associated endoplasmic reticulum (ER) membranes (MAM), a cholesterol-rich lipid raft-like subdomain of the ER that communicates, both physically and biochemically, with mitochondria. We propose that in early-onset AD (EOAD), MAM-localized C99 is elevated above normal levels, resulting in increased transport of cholesterol from the plasma membrane to membranes of intracellular organelles, such as ER/endosomes, thereby upregulating MAM function and driving pathology. By the same token, late-onset AD (LOAD) is triggered by any genetic variant that increases the accumulation of intracellular cholesterol that, in turn, boosts the levels of C99 and again upregulates MAM function. Thus, the functional cause of AD is upregulated MAM function that, in turn, causes the hallmark disease phenotypes, including the plaques and tangles. Accordingly, the MAM hypothesis invokes two key interrelated elements, C99 and cholesterol, that converge at the MAM to drive AD pathogenesis. From this perspective, AD is, at bottom, a lipid disorder.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/metabolismo , Mitocôndrias/metabolismo , Retículo Endoplasmático/metabolismo , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Colesterol/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA