RESUMO
Weeds surrounding crops may act as alternative hosts, playing important epidemiological roles as virus reservoirs and impacting virus evolution. We used high-throughput sequencing to identify viruses in Spanish melon crops and plants belonging to three pluriannual weed species, Ecballium elaterium, Malva sylvestris, and Solanum nigrum, sampled at the edges of the crops. Melon and E. elaterium, both belonging to the family Cucurbitaceae, shared three virus species, whereas there was no virus species overlap between melon and the other two weeds. The diversity of cucurbit aphid-borne yellows virus (CABYV) and tomato leaf curl New Delhi virus (ToLCNDV), both in melon and E. elaterium, was further studied by amplicon sequencing. Phylogenetic and population genetics analyses showed that the CABYV population was structured by the host, identifying three sites in the CABYV RNA-dependent RNA polymerase under positive selection, perhaps reflecting host adaptation. The ToLCNDV population was much less diverse than the CABYV one, likely as a consequence of the relatively recent introduction of ToLCNDV in Spain. In spite of its low diversity, we identified geographical but no host differentiation for ToLCNDV. Potential virus migration fluxes between E. elaterium and melon plants were also analyzed. For CABYV, no evidence of migration between the populations of the two hosts was found, whereas important fluxes were identified between geographically distant subpopulations for each host. For ToLCNDV, in contrast, evidence of migration from melon to E. elaterium was found, but not the other way around. IMPORTANCE It has been reported that about half of the emerging diseases affecting plants are caused by viruses. Alternative hosts often play critical roles in virus emergence as virus reservoirs, bridging host species that are otherwise unconnected and/or favoring virus diversification. In spite of this, the viromes of potential alternative hosts remain largely unexplored. In the case of crops, pluriannual weeds at the crop edges may play these roles. Here, we took advantage of the power of high-throughput sequencing to characterize the viromes of three weed species frequently found at the edges of melon crops. We identified three viruses shared by melon and the cucurbit weed, with two of them being epidemiologically relevant for melon crops. Further genetic analyses showed that these two viruses had contrasting patterns of diversification and migration, providing an interesting example on the role that weeds may play in the ecology and evolution of viruses affecting crops.
Assuntos
Begomovirus , Produtos Agrícolas , Cucurbitaceae , Interações entre Hospedeiro e Microrganismos , Luteoviridae , Doenças das Plantas , Plantas Daninhas , Animais , Afídeos/virologia , Begomovirus/classificação , Begomovirus/genética , Produtos Agrícolas/virologia , Cucurbitaceae/virologia , Genética Populacional , Interações entre Hospedeiro e Microrganismos/genética , Luteoviridae/genética , Malva/virologia , Filogenia , Doenças das Plantas/virologia , Plantas Daninhas/virologia , RNA Polimerase Dependente de RNA/metabolismo , Solanum nigrum/virologiaRESUMO
In Brazil, the main viral disease of melon plant is severe yellowing disease called "Amarelão do Meloeiro," and a polerovirus, cucurbit aphid-borne yellows virus (CABYV) was considered one of the etiological agents. This virus is a recombinant strain originated from CABYV and unknown polerovirus. Due to unsuccessful mechanical inoculations of CABYV to host plants, the study of its biological characterization is hampered. Therefore, an infectious clone of the recombinant strain of CABYV was constructed using the Gibson Assembly technology. The full-length cDNA clones produced in this study showed to be infectious in three cucurbit species; melon (Cucumis melo), squash (a hybrid of Cucurbita maxima × C. moschata), and West Indian gherkin (Cucumis anguria) plants, but not in watermelon, cucumber, and zucchini plants. This insusceptibility of watermelon plants to the infectious clone corroborates the observation that this virus was never found in watermelon plants often located next to the infected melon plants. This infectious clone provides important tools for future study in developing resistant melon variety to CABYV infection.
Assuntos
Cucurbita , Cucurbitaceae , Luteoviridae , DNA Complementar/genética , Brasil , Luteoviridae/genética , Cucurbitaceae/genética , Cucurbita/genética , PlantasRESUMO
Understanding the emergence and prevalence of viral diseases in crops requires the systematic epidemiological monitoring of viruses, as well as the analysis of how ecological and evolutionary processes combine to shape viral population dynamics. Here, we extensively monitored the occurrence of six aphid-transmitted viruses in melon and zucchini crops in Spain for 10 consecutive cropping seasons between 2011 and 2020. The most prevalent viruses were cucurbit aphid-borne yellows virus (CABYV) and watermelon mosaic virus (WMV), found in 31 and 26% of samples with yellowing and mosaic symptoms. Other viruses, such as zucchini yellow mosaic virus, cucumber mosaic virus, Moroccan watermelon mosaic virus, and papaya ring spot virus, were detected less frequently (<3%) and mostly in mixed infections. Notably, our statistical analysis showed a significant association between CABYV and WMV in melon and zucchini hosts, suggesting that mixed infections might be influencing the evolutionary epidemiology of these viral diseases. We then carried out a comprehensive genetic characterization of the full-length genome sequences from CABYV and WMV isolates by using the Pacific Biosciences single-molecule real-time (PacBio) high-throughput technology to assess the genetic variation and structure of their populations. Our results showed that the CABYV population displayed seven codons under positive selection, and although most isolates clustered in the Mediterranean clade, a subsequent analysis of molecular variance revealed a significant, fine-scale temporal structure, which was in part explained by the level of the variance between isolates from single and mixed infections. In contrast, the WMV population genetic analysis showed that most of the isolates grouped into the Emergent clade, with no genetic differentiation and under purifying selection. These results underlie the epidemiological relevance of mixed infections for CABYV and provide a link between genetic diversity and CABYV dynamics at the whole-genome level.
Assuntos
Afídeos , Coinfecção , Cucurbita , Cucurbitaceae , Luteoviridae , Viroses , Animais , Doenças das Plantas , Luteoviridae/genética , Produtos Agrícolas , Verduras , Variação GenéticaRESUMO
Cucurbits are among the most popular vegetables cultivated globally. They have high economic importance, especially in India, where they are cooked and eaten as vegetables (Dhillon et al. 2016). In February 2023, yellowing symptoms were observed on cucurbitaceous species, viz. Trichosanthes cucumerina (Snake gourd - SG), Luffa acutangula (Ridge gourd - RG), Lagenaria siceraria (Bottle gourd - BG), Luffa aegyptiaca (Sponge gourd - SPG) and yellow chlorotic spots were recorded on Benincasa hispida (Ash gourd - AG) growing in the experimental farm at the Indian Agricultural Research Institute, Regional Station, Pune (Supplementary Figure 1). The average disease incidence ranged from 5% to 30%. A total of 175 leaf samples, including thirty symptomatic and five asymptomatic plants of each cucurbit, were collected and tested by DAS-ELISA using antisera against cucurbit aphid-borne yellows virus (CABYV) (DSMZ, Germany), cucurbit yellow stunting disorder virus (CYSDV) (Arsh Biotech, India), cucumber mosaic virus (CMV), zucchini yellow mosaic virus (ZYMV), and papaya ringspot virus (PRSV) (Agdia, USA). All 150 symptomatic cucurbit samples tested positive for CABYV, while five samples from SG, 14 from RG, two from AG, and 11 from SPG hosts were also positive for PRSV. Asymptomatic samples were negative for all viruses tested. In order to further confirm the presence of the virus, total RNA was extracted from ten samples of each cucurbit host that were positive only for CABYV and the asymptomatic samples using the RNeasy Plant Mini Kit (Qiagen, Germany) as per the manufacturer's protocol. Two-step RT-PCR was carried out using the extracted RNA and CABYV-specific primers, amplifying c. 484 bp of the coat protein gene region (Boubourakas et al. 2006). Amplicons of expected size were obtained in all symptomatic samples, whereas the asymptomatic samples tested negative. Three amplicons obtained from positive samples from each of the cucurbit species were directly sequenced and found to be identical to each other. A representative virus sequence obtained from each cucurbit was deposited in GenBank (Snake gourd - OQ921128, Ridge gourd - OQ921127, Bottle gourd - OQ921126, Ash gourd - OQ921125, Sponge gourd - OQ921129). In BLASTn analysis, the isolates shared from 94.23 to 100% nucleotide identities with the Indian CABYV isolates of various cucurbits and clustered closely with other Pune isolates in the phylogenetic analysis (Supplementary Figure 2). CABYV (genus Polerovirus) is a single-stranded positive-sense RNA virus, and is known to infect and cause severe economic losses in cucurbits worldwide. Previously, occurrences of CABYV have been reported in cucurbits such as watermelon, bitter gourd, cucumber, squash, teasel gourd, and muskmelon in India (Nagendran et al. 2022; Tripathi et al. 2023). It has also been reported to infect a weed species - Abelmoschus moschatus from the same geographical region (Verma et al. 2023). To our knowledge, this is the first report of the natural occurrence of CABYV in snake gourd and ridge gourd worldwide and bottle gourd, ash gourd and sponge gourd in India. The present findings have significant epidemiological importance, as they demonstrate that CABYV is spreading to other cucurbits and occurring widely in India.
RESUMO
Non-canonical translation mechanisms have been described for many viral RNAs. In the case of several plant viruses, their protein synthesis is controlled by RNA elements in their genomic 3'-ends that are able to enhance cap-independent translation (3'-CITE). The proposed general mechanism of 3'-CITEs includes their binding to eukaryotic translation initiation factors (eIFs) that reach the 5'-end and AUG start codon through 5'-3'-UTR-interactions. It was previously shown that cucurbit aphid-borne yellows virus (CABYV) has a 3'-CITE, which varies in sequence and structure depending on the phylogenetic group to which the isolate belongs, possibly as a result of adaptation to the different geographical regions. In this work, the cap-independent translation mechanisms of two CABYV 3'-CITEs belonging to the Mediterranean (CMTE) and Asian (CXTE) groups, respectively, were studied. In vivo cap-independent translation assays show that these 3'-CITEs require the presence of the CABYV short genomic 5'-UTR with at least 40% adenines in cis and an accessible 5'-end for its activity. Additionally, they suggest that the eIF4E-independent CABYV 3'-CITE activities may not require either eIF4A or the eIF4F complex, but may depend on eIF4G and PABP. By pulling down host proteins using RNA baits containing both 5'- and 3'-CABYV-UTRs, 80 RNA binding proteins were identified. These interacted preferentially with either CMTE, CXTE, or both. One of these proteins, specifically interacting with the RNA containing CMTE, was HSP70.2. Preliminary results suggested that HSP70.2 may be involved in CMTE- but not CXTE-mediated cap-independent translation activity.
Assuntos
Luteoviridae , Biossíntese de Proteínas , Filogenia , Luteoviridae/genética , Códon de IniciaçãoRESUMO
Cucurbit aphid-borne yellows virus (CABYV) was first reported in France in 1992 but has since been observed worldwide (Lecoq et al. 1992; Choi and Choi 2016; Buzkan et al. 2017; Zindovic et al. 2017; Vidal et al. 2018; Khanal and Ali, 2018). This virus has caused severe losses to different crops especially to the members of Cucurbitaceae and yield losses can reach up to 40-50% if infection occurs at early stages (Lecoq et al. 1992). In July 2017, leaf samples showing virus-like symptoms were collected from five pumpkin (Cucurbita pepo L. var. Clypeata Alefield) and two cucumber (Cucumis sativus L. cv. Azuma matsunari) plants, growing in а field near Sadovo, Bulgaria. Nearly all plants in the field were affected and displayed green or yellow mosaic, interveinal yellowing, blisters, and leaf deformation (Fig. 1). The collected samples were all symptomatic and were subjected to double antibody sandwich (DAS) or triple antibody sandwich (TAS) enzyme-linked immunosorbent assay (ELISA) to determine the viral agent(s). Specific monoclonal antibodies (Leibniz institute DSMZ, Germany) raised against Cucumber leaf spot virus, Cucurbit chlorotic yellows virus, Cucurbit yellow stunting disorder virus, Cucumber mosaic virus (CMV), Melon necrotic spot virus, Beet western yellows virus (BWYV), CABYV, Watermelon mosaic virus (WMV), Zucchini yellow mosaic virus (ZYMV), and Cucumber green mottle mosaic virus, were used. The total number of tested samples was seven (n=5 from pumpkin and n=2 from cucumber). All of them displayed positive signals for CABYV and BWYV, both belonging to genus Polerovirus, family Luteoviridae. In addition, ZYMV and/or WMV were detected in pumpkins while CMV and/or WMV were detected in cucumber samples, respectively. To confirm the presence of CABYV and/or BWYV, total RNA was isolated from all seven samples by TRI Reagent® (Sigma, St. Louis, USA) and converted to cDNA with First Strand cDNA Synthesis Kit, Thermo Scientific™. Reverse transcription (RT)-polyemerase chain reaction (PCR) was performed using two pairs of primers (CABYV1FW: 5'-TTATCAGGGGACTATGTTTA-3' and CABYV14REV: 5'-GAGGGGATTTTAACTGACTG-3', and BWYV1FW: 5'-AGTAAGTCCTCCCCAACTGA-3' and BWYV2REV: 5'-CTACCCACGACCGTATTCAT-3'), specifically designed to detect CABYV and BWYV, respectively. Amplicons with expected sizes of 1,930 bp were obtained only with CABYV primers for all samples while no fragments were amplified with BWYV primers. The obtained products from two samples (pumpkin and cucumber) were purified and sent to Macrogen Inc., South Korea, for direct sequencing in both directions. High quality nucleotide sequences were submitted to GenBank We have evaluated the quality of the sequencing and trimmed those parts that did not comply the needed quality. The obtained smaller fragments Nucleotide sequences were submitted to GenBank with accession numbers MK671010 (656 bp) and MK671014 (712bp). These sequences contained ORFs encoding CABYV P1-P2 fusion proteins as determined by Blastp analysis (https://blast.ncbi.nlm.nih.gov/Blast.cgi?PAGE=Proteins). A phylogenetic tree constructed by the Neighbor-joining method using 18 CABYV accessions and Potato leafroll virus as an outlier (Fig. 2) showed that the closest accessions to MK671010 and MK671014 were NC003688 (France) and EU636992 (China) with respective nucleotide identity of 98% and 99%. In 2019, another outbreak was observed in the same field near Sadovo and in a field near Plovdiv planted with pumpkins. Nearly 30% of the plants showed leaf yellowing typical for Polerovirus infection. Screening of collected samples (n=17) by RT-PCR confirmed CABYV presence in 15 samples. Based on available reports and according to our knowledge this is the first report of CABYV in Bulgaria.
RESUMO
Most plant viruses lack the 5'-cap and 3'-poly(A) structures, which are common in their host mRNAs, and are crucial for translation initiation. Thus, alternative translation initiation mechanisms were identified for viral mRNAs, one of these being controlled by an RNA element in their 3'-ends that is able to enhance mRNA cap-independent translation (3'-CITE). The 3'-CITEs are modular and transferable RNA elements. In the case of poleroviruses, the mechanism of translation initiation of their RNAs in the host cell is still unclear; thus, it was studied for one of its members, cucurbit aphid-borne yellows virus (CABYV). We determined that efficient CABYV RNA translation requires the presence of a 3'-CITE in its 3'-UTR. We showed that this 3'-CITE requires the presence of the 5'-UTR in cis for its eIF4E-independent activity. Efficient virus multiplication depended on 3'-CITE activity. In CABYV isolates belonging to the three phylogenetic groups identified so far, the 3'-CITEs differ, and recombination prediction analyses suggest that these 3'-CITEs have been acquired through recombination with an unknown donor. Since these isolates have evolved in different geographical regions, this may suggest that their respective 3'-CITEs are possibly better adapted to each region. We propose that translation of other polerovirus genomes may also be 3'-CITE-dependent.
Assuntos
Luteoviridae , Luteoviridae/genética , Fator de Iniciação 4E em Eucariotos/genética , Filogenia , RNA Viral/metabolismo , Regiões 5' não Traduzidas , Regiões 3' não Traduzidas , Proteínas Virais/metabolismo , Biossíntese de ProteínasRESUMO
Many plant viruses depend on functional RNA elements, called 3'-UTR cap-independent translation enhancers (3'-CITEs), for translation of their RNAs. In this manuscript we provide direct proof for the existing hypothesis that 3'-CITEs are modular and transferable by recombination in nature, and that this is associated with an advantage for the created virus. By characterizing a newly identified Melon necrotic spot virus (MNSV; Tombusviridae) isolate, which is able to overcome eukaryotic translation initiation factor 4E (eIF4E)-mediated resistance, we found that it contains a 55 nucleotide insertion in its 3'-UTR. We provide strong evidence that this insertion was acquired by interfamilial recombination with the 3'-UTR of an Asiatic Cucurbit aphid-borne yellows virus (CABYV; Luteoviridae). By constructing chimeric viruses, we showed that this recombined sequence is responsible for resistance breaking. Analysis of the translational efficiency of reporter constructs showed that this sequence functions as a novel 3'-CITE in both resistant and susceptible plants, being essential for translation control in resistant plants. In conclusion, we showed that a recombination event between two clearly identified viruses from different families led to the transfer of exactly the sequence corresponding to a functional RNA element, giving rise to a new isolate with the capacity to infect an otherwise nonsusceptible host.
Assuntos
Resistência à Doença/imunologia , Luteoviridae/genética , Doenças das Plantas/virologia , Biossíntese de Proteínas/genética , RNA Viral/genética , Recombinação Genética , Tombusviridae/genética , Sequência de Bases , Elementos Facilitadores Genéticos/genética , Fator de Iniciação 4E em Eucariotos/metabolismo , Especificidade de Hospedeiro , Luteoviridae/fisiologia , Dados de Sequência Molecular , Mutagênese Insercional/genética , Conformação de Ácido Nucleico , Doenças das Plantas/imunologia , Capuzes de RNA/metabolismo , RNA Viral/química , Tombusviridae/isolamento & purificação , Tombusviridae/patogenicidade , Tombusviridae/fisiologia , VirulênciaRESUMO
Drought affects crops directly, and indirectly by affecting the activity of insect pests and the transmitted pathogens. Here, we established an experiment with well-watered or water-stressed melon plants, later single infected with either cucumber mosaic virus (CMV: non-persistent), or cucurbit aphid-borne yellow virus (CABYV: persistent), or both CMV and CABYV, and mock-inoculated control. We tested whether i) the relation between CMV and CABYV is additive, and ii) the relationship between water stress and virus infection is antagonistic, i.e., water stress primes plants for enhanced tolerance to virus infection. Water stress increased leaf greenness and temperature, and reduced leaf water potential, shoot biomass, stem dimensions, rate of flowering, CABYV symptom severity, and marketable fruit yield. Virus infection reduced leaf water potential transiently in single infected plants and persistently until harvest in double-infected plants. Double-virus infection caused the largest and synergistic reduction of marketable fruit yield. The relationship between water regime and virus treatment was additive in 12 out of 15 traits at harvest, with interactions for leaf water content, leaf:stem ratio, and fruit set. We conclude that both virus-virus relations in double infection and virus-drought relations cannot be generalized because they vary with virus, trait, and plant ontogeny.
Assuntos
Cucurbitaceae , Secas , Doenças das Plantas , Doenças das Plantas/virologia , Cucurbitaceae/virologia , Cucumovirus/fisiologia , Cucumovirus/patogenicidade , Folhas de Planta/virologia , Vírus de Plantas/fisiologia , Água/metabolismoRESUMO
High-throughput sequencing (HTS) has been an important tool for the discovery of plant viruses and their surveillance. In 2015, several virus-like symptoms were observed in passion fruit (PF) plants in Bahia state, Brazil. Using HTS technology, bioinformatics tools, RT-PCR, and Sanger sequencing, we identified the cucurbit aphid-borne yellows virus (CABYV, Polerovirus, Solemoviridae) in co-infection with cowpea aphid-borne mosaic virus (CABMV, Potyvirus, Potyviridae) in PF, in green manure, and spontaneous plants in several localities in Bahia. Complete genomes of CABYV-PF isolates were determined and analyzed with other CABYV isolates available in GenBank that have been identified in various countries. Phylogenetic analysis and pairwise identity comparison with CABYV isolates showed that CABYV-PFs are more closely related to French and Spanish isolates. Overall, analyses of all the CABYV genomes revealed that these could represent ten distinct species, and we thus proposed reclassifying these CABYV as isolates into ten species, tentatively named "Polerovirus curcubitaeprimum" to "Polerovirus curcubitaenonum", and "Polerovirus melo". CABYV-PF is a member of "Polerovirus curcubitaeprimum".
Assuntos
Luteoviridae , Passiflora , Brasil , Frutas , Filogenia , Luteoviridae/genéticaRESUMO
The effectiveness of pest and disease management in crops relies on knowledge about their presence and distribution in crop-producing areas. Aphids and whiteflies are among the main threats to vegetable crops since these hemipterans feed on plants, causing severe damage, and are also able to transmit a large number of devastating plant viral diseases. In particular, the widespread occurrence of aphid-transmitted viruses in cucurbit crops, along with the lack of effective control measures, makes surveillance programs and virus epidemiology necessary for providing sound advice and further integration into the management strategies that can ensure sustainable food production. This review describes the current presence and distribution of aphid-transmitted viruses in cucurbits in Spain, providing valuable epidemiological information, including symptom expressions of virus-infected plants for further surveillance and viral detection. We also provide an overview of the current measures for virus infection prevention and control strategies in cucurbits and indicate the need for further research and innovative strategies against aphid pests and their associated viral diseases.
RESUMO
The ability of plant resistance inducers to provide protection against viral diseases is one of their main advantages over conventional pesticides. In the case of viral diseases that cannot be controlled directly with pesticides, insecticides are used to control the vectors of viruses. However, the effectiveness of such treatments is strictly dependent on the time of application. The plant response to the application of systemic acquired resistance (SAR) inducers, as a result of the stimulating action of these substances, does not depend on the time of application as it triggers the plant's natural defence mechanism. The best-recognised substance showing SAR inducer activity is acibenzolar-S-methyl ester (ASM, BTH). As its activity against different plant pathogens of crops has been well documented, the current research is concentrated on the search for novel substances of the type. The tested substance, N-methoxy-N-methylbenzo(1,2,3)thiadiazole-7-carboxamide (BTHWA), is an amide derivative of benzothiadiazole, showing plant resistance-inducing activity. This article presents the activity of BTHWA that has led to increased resistance of zucchini (Cucurbita pepo convar. giromontiina) towards viral infections. In addition, since the occurrence of the fungal pathogen, powdery mildew, was also observed during the two-year field experiments, the activity of BTHWA related to the reduction of infection with this fungus was also investigated. The substance was applied in two different variants either four or eight times, over the whole vegetation season. Surprisingly, the variant of four applications performed at the beginning of the vegetation season proved more effective in protection against viruses and fungus. A possible explanation may be the occurrence of the growth-immunity trade-off phenomenon that is known in the literature. Disturbance in plant metabolism resulting from eight applications may lead to lower yields of plants treated with SAR inducers. Perhaps such overstimulation of the plants we treated eight times may not have brought the optimum increase in plant resistance.
RESUMO
Field information about viruses infecting crops is fundamental for understanding the severity of the effects they cause in plants. To determine the status of cucurbit viruses, surveys were conducted for three consecutive years (2016-2018) in different agricultural districts of Oklahoma. A total of 1331 leaf samples from >90 fields were randomly collected from both symptomatic and asymptomatic cucurbit plants across 11 counties. All samples were tested with the dot-immunobinding assay (DIBA) against the antisera of 10 known viruses. Samples infected with papaya ringspot virus (PRSV-W), watermelon mosaic virus (WMV), zucchini yellow mosaic virus (ZYMV), and cucurbit aphid-borne-yellows virus (CABYV) were also tested by RT-PCR. Of the 10 viruses, PRSV-W was the most widespread, with an overall prevalence of 59.1%, present in all 11 counties, followed by ZYMV (27.6%), in 10 counties, and WMV (20.7%), in seven counties, while the remaining viruses were present sporadically with low incidence. Approximately 42% of the infected samples were positive, with more than one virus indicating a high proportion of mixed infections. CABYV was detected for the first time in Oklahoma, and the phylogenetic analysis of the first complete genome sequence of a CABYV isolate (BL-4) from the US showed a close relationship with Asian isolates.
RESUMO
Symptoms like bright yellowing, puckering of the leaf, vein banding, and vein thickening were observed on different cucurbit hosts at the experimental farm of Indian Agricultural Research Institute, New Delhi during Kharif 2019. Leaf-dip electron microscopy of the symptomatic leaves revealed the association of isometric virus particles measuring ~ 25 nm with bitter gourd and cucumber samples. The RT-PCR assay using polerovirus generic primers covering the partial RdRp, intergenic region, and partial CP region was resulted the amplicons of ~ 1.1 kb. Subsequent cloning, sequencing, and sequence analysis revealed the association of cucurbit aphid-borne yellows virus (CABYV) with bitter gourd (Momordica charantia) and cucumber (Cucumis sativus) plants. These results constitute the first report of CABYV infection on cucumber plants from India. SUPPLEMENTARY INFORMATION: The online version of this article (10.1007/s13337-020-00645-4) contains supplementary material, which is available to authorized users.
RESUMO
Complete genome sequences of 22 isolates of Cucurbit aphid-borne yellows virus (CABYV), collected from melon plants showing yellowing symptom in Korea during the years 2013-2014, were determined and compared with previously reported CABYV genome sequences. The complete genomes were found to be 5,680-5,684 nucleotides in length and to encode six open reading frames (ORFs) that are separated into two regions by a non-coding internal region (IR) of 199 nucleotides. Their genomic organization is typical of the genus Polerovirus. Based on phylogenetic analyses of complete nucleotide (nt) sequences, CABYV isolates were divided into four groups: Asian, Mediterranean, Taiwanese, and R groups. The Korean CABYV isolates clustered with the Asian group with > 94% nt sequence identity. In contrast, the Korean CABYV isolates shared 87-89% sequence identities with the Mediterranean group, 88% with the Taiwanese group, 81-84% with the CABYV-R group, and 72% with another polerovirus, M.. Recombination analyses identified 24 recombination events (12 different recombination types) in the analyzed CABYV population. In the Korean CABYV isolates, four recombination types were detected from eight isolates. Two recombination types were detected in the IR and P3-P5 regions, respectively, which have been reported as hotspots for recombination of CABYV. This result suggests that recombination is an important evolutionary force in the genetic diversification of CABYV populations.
RESUMO
Background:Cucurbit aphid-borne yellows virus (CABYV) is among the most important yellowing viruses on cucurbits in Iran. The presence of CABYV has been previously reported from the major cucurbit growing areas in Iran, however, there are few studies concerning the detection of the different strains of this virus in the grower's fields, and especially, there is no report of the weed host plants near crop fields. Objectives: This study was done in order to detect the new strains of the CABYV polerovirus in cucurbits and the weed plants in the Lorestan province, Iran, as an introductory investigation for initiating a program of the breeding for resistance. Material and Methods: During a survey carried out in 2013-2014 in Lorestan province; Iran, 189 cucurbit and 261 weed samples were investigated for the presence of CABYV using RT-PCR. In addition, the phylogeny and nucleotide similarities were discussed on the basis of the partial nucleotide sequence of RNA dependent RNA polymerase (RdRP) gene. Results: The RT-PCR carried out on leaf samples revealed the infection with the CABYV in 43 cucumber and 12 weed samples. RT-PCR using strain specific primers detected the presence of the both common (C) and recombinant (R) strains of CABYV in the tested samples. On the basis of the phylogenetic analyses, the CABYV-C isolates from Iran were clustered into two distinct sub-populations (CI and CII), such that all the weed samples with two sequenced cucumber isolates were clustered in the CI sub-population. Meanwhile, a distinct sub-population of the isolates was clustered in the CABYV-R group showed a shared sequence identity of 97% to a Taiwanese isolate (JQ700306). Conclusions: This study has indicated the incidence of CABYV-R in the Southwest Asia; Iran for the first time. We were also able to show CABYV occurrence in Sysimbrium irio and Citrullus colocynthis from this area of the world. Identification of cucurbit infecting viruses and studying their distribution and potential reservoir hosts are important for developing successful control programs for virus disease management.