Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.145
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Annu Rev Immunol ; 37: 145-171, 2019 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-30526160

RESUMO

Genetically engineered T cells are powerful new medicines, offering hope for curative responses in patients with cancer. Chimeric antigen receptor (CAR) T cells were recently approved by the US Food and Drug Administration and are poised to enter the practice of medicine for leukemia and lymphoma, demonstrating that engineered immune cells can serve as a powerful new class of cancer therapeutics. The emergence of synthetic biology approaches for cellular engineering provides a broadly expanded set of tools for programming immune cells for enhanced function. Advances in T cell engineering, genetic editing, the selection of optimal lymphocytes, and cell manufacturing have the potential to broaden T cell-based therapies and foster new applications beyond oncology, in infectious diseases, organ transplantation, and autoimmunity.


Assuntos
Antineoplásicos Imunológicos/uso terapêutico , Imunoterapia Adotiva/tendências , Neoplasias/terapia , Receptores de Antígenos de Linfócitos T/genética , Linfócitos T/fisiologia , Animais , Engenharia Genética , Humanos , Neoplasias/imunologia , Linfócitos T/transplante , Estados Unidos , United States Food and Drug Administration
2.
Cell ; 187(11): 2690-2702.e17, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38723627

RESUMO

The quality and quantity of tumor-infiltrating lymphocytes, particularly CD8+ T cells, are important parameters for the control of tumor growth and response to immunotherapy. Here, we show in murine and human cancers that these parameters exhibit circadian oscillations, driven by both the endogenous circadian clock of leukocytes and rhythmic leukocyte infiltration, which depends on the circadian clock of endothelial cells in the tumor microenvironment. To harness these rhythms therapeutically, we demonstrate that efficacy of chimeric antigen receptor T cell therapy and immune checkpoint blockade can be improved by adjusting the time of treatment during the day. Furthermore, time-of-day-dependent T cell signatures in murine tumor models predict overall survival in patients with melanoma and correlate with response to anti-PD-1 therapy. Our data demonstrate the functional significance of circadian dynamics in the tumor microenvironment and suggest the importance of leveraging these features for improving future clinical trial design and patient care.


Assuntos
Linfócitos T CD8-Positivos , Imunoterapia , Linfócitos do Interstício Tumoral , Camundongos Endogâmicos C57BL , Microambiente Tumoral , Animais , Humanos , Camundongos , Linfócitos T CD8-Positivos/imunologia , Linhagem Celular Tumoral , Relógios Circadianos , Ritmo Circadiano , Células Endoteliais/imunologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Inibidores de Checkpoint Imunológico/farmacologia , Imunoterapia/métodos , Linfócitos do Interstício Tumoral/imunologia , Melanoma/imunologia , Melanoma/terapia , Melanoma/patologia , Microambiente Tumoral/imunologia
3.
Cell ; 187(5): 1278-1295.e20, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38387457

RESUMO

CRISPR technologies have begun to revolutionize T cell therapies; however, conventional CRISPR-Cas9 genome-editing tools are limited in their safety, efficacy, and scope. To address these challenges, we developed multiplexed effector guide arrays (MEGA), a platform for programmable and scalable regulation of the T cell transcriptome using the RNA-guided, RNA-targeting activity of CRISPR-Cas13d. MEGA enables quantitative, reversible, and massively multiplexed gene knockdown in primary human T cells without targeting or cutting genomic DNA. Applying MEGA to a model of CAR T cell exhaustion, we robustly suppressed inhibitory receptor upregulation and uncovered paired regulators of T cell function through combinatorial CRISPR screening. We additionally implemented druggable regulation of MEGA to control CAR activation in a receptor-independent manner. Lastly, MEGA enabled multiplexed disruption of immunoregulatory metabolic pathways to enhance CAR T cell fitness and anti-tumor activity in vitro and in vivo. MEGA offers a versatile synthetic toolkit for applications in cancer immunotherapy and beyond.


Assuntos
Engenharia Metabólica , Linfócitos T , Humanos , Perfilação da Expressão Gênica , Engenharia Metabólica/métodos , RNA , Transcriptoma
4.
Cell ; 186(2): 446-460.e19, 2023 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-36638795

RESUMO

Precise targeting of large transgenes to T cells using homology-directed repair has been transformative for adoptive cell therapies and T cell biology. Delivery of DNA templates via adeno-associated virus (AAV) has greatly improved knockin efficiencies, but the tropism of current AAV serotypes restricts their use to human T cells employed in immunodeficient mouse models. To enable targeted knockins in murine T cells, we evolved Ark313, a synthetic AAV that exhibits high transduction efficiency in murine T cells. We performed a genome-wide knockout screen and identified QA2 as an essential factor for Ark313 infection. We demonstrate that Ark313 can be used for nucleofection-free DNA delivery, CRISPR-Cas9-mediated knockouts, and targeted integration of large transgenes. Ark313 enables preclinical modeling of Trac-targeted CAR-T and transgenic TCR-T cells in immunocompetent models. Efficient gene targeting in murine T cells holds great potential for improved cell therapies and opens avenues in experimental T cell immunology.


Assuntos
Dependovirus , Engenharia Genética , Linfócitos T , Animais , Camundongos , Sistemas CRISPR-Cas/genética , Dependovirus/genética , Marcação de Genes , Engenharia Genética/métodos
5.
Cell ; 186(21): 4567-4582.e20, 2023 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-37794590

RESUMO

CRISPR-Cas9 genome editing has enabled advanced T cell therapies, but occasional loss of the targeted chromosome remains a safety concern. To investigate whether Cas9-induced chromosome loss is a universal phenomenon and evaluate its clinical significance, we conducted a systematic analysis in primary human T cells. Arrayed and pooled CRISPR screens revealed that chromosome loss was generalizable across the genome and resulted in partial and entire loss of the targeted chromosome, including in preclinical chimeric antigen receptor T cells. T cells with chromosome loss persisted for weeks in culture, implying the potential to interfere with clinical use. A modified cell manufacturing process, employed in our first-in-human clinical trial of Cas9-engineered T cells (NCT03399448), reduced chromosome loss while largely preserving genome editing efficacy. Expression of p53 correlated with protection from chromosome loss observed in this protocol, suggesting both a mechanism and strategy for T cell engineering that mitigates this genotoxicity in the clinic.


Assuntos
Sistemas CRISPR-Cas , Aberrações Cromossômicas , Edição de Genes , Linfócitos T , Humanos , Cromossomos , Sistemas CRISPR-Cas/genética , Dano ao DNA , Edição de Genes/métodos , Ensaios Clínicos como Assunto
6.
Cell ; 186(15): 3148-3165.e20, 2023 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-37413990

RESUMO

Chimeric antigen receptor (CAR) T cell therapy effectively treats human cancer, but the loss of the antigen recognized by the CAR poses a major obstacle. We found that in vivo vaccine boosting of CAR T cells triggers the engagement of the endogenous immune system to circumvent antigen-negative tumor escape. Vaccine-boosted CAR T promoted dendritic cell (DC) recruitment to tumors, increased tumor antigen uptake by DCs, and elicited the priming of endogenous anti-tumor T cells. This process was accompanied by shifts in CAR T metabolism toward oxidative phosphorylation (OXPHOS) and was critically dependent on CAR-T-derived IFN-γ. Antigen spreading (AS) induced by vaccine-boosted CAR T enabled a proportion of complete responses even when the initial tumor was 50% CAR antigen negative, and heterogeneous tumor control was further enhanced by the genetic amplification of CAR T IFN-γ expression. Thus, CAR-T-cell-derived IFN-γ plays a critical role in promoting AS, and vaccine boosting provides a clinically translatable strategy to drive such responses against solid tumors.


Assuntos
Vacinas Anticâncer , Neoplasias , Receptores de Antígenos Quiméricos , Humanos , Neoplasias/terapia , Linfócitos T , Imunoterapia Adotiva , Receptores de Antígenos de Linfócitos T/metabolismo
7.
Cell ; 185(8): 1431-1443.e16, 2022 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-35427499

RESUMO

Synthetic biology has established powerful tools to precisely control cell function. Engineering these systems to meet clinical requirements has enormous medical implications. Here, we adopted a clinically driven design process to build receptors for the autonomous control of therapeutic cells. We examined the function of key domains involved in regulated intramembrane proteolysis and showed that systematic modular engineering can generate a class of receptors that we call synthetic intramembrane proteolysis receptors (SNIPRs) that have tunable sensing and transcriptional response abilities. We demonstrate the therapeutic potential of the receptor platform by engineering human primary T cells for multi-antigen recognition and production of dosed, bioactive payloads relevant to the treatment of disease. Our design framework enables the development of fully humanized and customizable transcriptional receptors for the programming of therapeutic cells suitable for clinical translation.


Assuntos
Terapia Baseada em Transplante de Células e Tecidos , Receptores Artificiais , Humanos , Receptores de Antígenos de Linfócitos T/genética , Receptores Artificiais/genética , Biologia Sintética , Linfócitos T
8.
Cell ; 185(10): 1745-1763.e22, 2022 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-35483375

RESUMO

Regulatable CAR platforms could circumvent toxicities associated with CAR-T therapy, but existing systems have shortcomings including leakiness and attenuated activity. Here, we present SNIP CARs, a protease-based platform for regulating CAR activity using an FDA-approved small molecule. Design iterations yielded CAR-T cells that manifest full functional capacity with drug and no leaky activity in the absence of drug. In numerous models, SNIP CAR-T cells were more potent than constitutive CAR-T cells and showed diminished T cell exhaustion and greater stemness. In a ROR1-based CAR lethality model, drug cessation following toxicity onset reversed toxicity, thereby credentialing the platform as a safety switch. In the same model, reduced drug dosing opened a therapeutic window that resulted in tumor eradication in the absence of toxicity. SNIP CARs enable remote tuning of CAR activity, which provides solutions to safety and efficacy barriers that are currently limiting progress in using CAR-T cells to treat solid tumors.


Assuntos
Neoplasias , Receptores de Antígenos Quiméricos , Humanos , Imunoterapia Adotiva/métodos , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Peptídeo Hidrolases , Receptores de Antígenos de Linfócitos T , Linfócitos T/patologia
9.
Cell ; 185(16): 3008-3024.e16, 2022 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-35870449

RESUMO

Here, we report inducible mosaic animal for perturbation (iMAP), a transgenic platform enabling in situ CRISPR targeting of at least 100 genes in parallel throughout the mouse body. iMAP combines Cre-loxP and CRISPR-Cas9 technologies and utilizes a germline-transmitted transgene carrying a large array of individually floxed, tandemly linked gRNA-coding units. Cre-mediated recombination triggers expression of all the gRNAs in the array but only one of them per cell, converting the mice to mosaic organisms suitable for phenotypic characterization and also for high-throughput derivation of conventional single-gene perturbation lines via breeding. Using gRNA representation as a readout, we mapped a miniature Perturb-Atlas cataloging the perturbations of 90 genes across 39 tissues, which yields rich insights into context-dependent gene functions and provides a glimpse of the potential of iMAP in genome decoding.


Assuntos
Sistemas CRISPR-Cas , RNA Guia de Cinetoplastídeos , Animais , Sistemas CRISPR-Cas/genética , Edição de Genes , Genoma , Camundongos , RNA Guia de Cinetoplastídeos/genética , RNA Guia de Cinetoplastídeos/metabolismo , Transgenes
10.
Cell ; 185(4): 585-602.e29, 2022 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-35051368

RESUMO

The relevance of extracellular magnesium in cellular immunity remains largely unknown. Here, we show that the co-stimulatory cell-surface molecule LFA-1 requires magnesium to adopt its active conformation on CD8+ T cells, thereby augmenting calcium flux, signal transduction, metabolic reprogramming, immune synapse formation, and, as a consequence, specific cytotoxicity. Accordingly, magnesium-sufficiency sensed via LFA-1 translated to the superior performance of pathogen- and tumor-specific T cells, enhanced effectiveness of bi-specific T cell engaging antibodies, and improved CAR T cell function. Clinically, low serum magnesium levels were associated with more rapid disease progression and shorter overall survival in CAR T cell and immune checkpoint antibody-treated patients. LFA-1 thus directly incorporates information on the composition of the microenvironment as a determinant of outside-in signaling activity. These findings conceptually link co-stimulation and nutrient sensing and point to the magnesium-LFA-1 axis as a therapeutically amenable biologic system.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Antígeno-1 Associado à Função Linfocitária/metabolismo , Magnésio/metabolismo , Animais , Infecções Bacterianas/imunologia , Restrição Calórica , Linhagem Celular Tumoral , Citotoxicidade Imunológica , Células HEK293 , Humanos , Memória Imunológica , Sinapses Imunológicas/metabolismo , Imunoterapia , Ativação Linfocitária/imunologia , Sistema de Sinalização das MAP Quinases , Magnésio/administração & dosagem , Masculino , Camundongos Endogâmicos C57BL , Neoplasias/imunologia , Neoplasias/patologia , Neoplasias/terapia , Fenótipo , Fosforilação , Proteínas Proto-Oncogênicas c-jun/metabolismo
11.
Cell ; 184(19): 4981-4995.e14, 2021 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-34464586

RESUMO

Poor tumor infiltration, development of exhaustion, and antigen insufficiency are common mechanisms that limit chimeric antigen receptor (CAR)-T cell efficacy. Delivery of pattern recognition receptor agonists is one strategy to improve immune function; however, targeting these agonists to immune cells is challenging, and off-target signaling in cancer cells can be detrimental. Here, we engineer CAR-T cells to deliver RN7SL1, an endogenous RNA that activates RIG-I/MDA5 signaling. RN7SL1 promotes expansion and effector-memory differentiation of CAR-T cells. Moreover, RN7SL1 is deployed in extracellular vesicles and selectively transferred to immune cells. Unlike other RNA agonists, transferred RN7SL1 restricts myeloid-derived suppressor cell (MDSC) development, decreases TGFB in myeloid cells, and fosters dendritic cell (DC) subsets with costimulatory features. Consequently, endogenous effector-memory and tumor-specific T cells also expand, allowing rejection of solid tumors with CAR antigen loss. Supported by improved endogenous immunity, CAR-T cells can now co-deploy peptide antigens with RN7SL1 to enhance efficacy, even when heterogenous CAR antigen tumors lack adequate neoantigens.


Assuntos
Fatores Imunológicos/farmacologia , RNA/farmacologia , Receptores de Antígenos Quiméricos/imunologia , Linfócitos T/imunologia , Animais , Antígenos/metabolismo , Linfócitos T CD8-Positivos/imunologia , Linhagem Celular Tumoral , Proteína DEAD-box 58/metabolismo , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/metabolismo , Vesículas Extracelulares/metabolismo , Humanos , Imunidade/efeitos dos fármacos , Imunocompetência , Memória Imunológica , Imunoterapia , Interferons/metabolismo , Melanoma Experimental/patologia , Camundongos Endogâmicos C57BL , Células Mieloides/efeitos dos fármacos , Células Mieloides/metabolismo , Peptídeos/metabolismo , Receptores de Reconhecimento de Padrão/metabolismo , Linfócitos T/efeitos dos fármacos
12.
Cell ; 184(25): 6081-6100.e26, 2021 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-34861191

RESUMO

Chimeric antigen receptor (CAR) T cell therapy has achieved remarkable success in hematological malignancies but remains ineffective in solid tumors, due in part to CAR T cell exhaustion in the solid tumor microenvironment. To study dysfunction of mesothelin-redirected CAR T cells in pancreatic cancer, we establish a robust model of continuous antigen exposure that recapitulates hallmark features of T cell exhaustion and discover, both in vitro and in CAR T cell patients, that CAR dysregulation is associated with a CD8+ T-to-NK-like T cell transition. Furthermore, we identify a gene signature defining CAR and TCR dysregulation and transcription factors, including SOX4 and ID3 as key regulators of CAR T cell exhaustion. Our findings shed light on the plasticity of human CAR T cells and demonstrate that genetic downmodulation of ID3 and SOX4 expression can improve the efficacy of CAR T cell therapy in solid tumors by preventing or delaying CAR T cell dysfunction.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Imunoterapia Adotiva/métodos , Neoplasias Pancreáticas/terapia , Receptores de Antígenos Quiméricos/imunologia , Animais , Linfócitos T CD8-Positivos/citologia , Linhagem Celular Tumoral , Células HEK293 , Humanos , Proteínas Inibidoras de Diferenciação/imunologia , Masculino , Camundongos , Camundongos Knockout , Camundongos Nus , Camundongos SCID , Proteínas de Neoplasias/imunologia , Fatores de Transcrição SOXC/imunologia
13.
Cell ; 180(1): 188-204.e22, 2020 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-31883794

RESUMO

Glioblastomas exhibit vast inter- and intra-tumoral heterogeneity, complicating the development of effective therapeutic strategies. Current in vitro models are limited in preserving the cellular and mutational diversity of parental tumors and require a prolonged generation time. Here, we report methods for generating and biobanking patient-derived glioblastoma organoids (GBOs) that recapitulate the histological features, cellular diversity, gene expression, and mutational profiles of their corresponding parental tumors. GBOs can be generated quickly with high reliability and exhibit rapid, aggressive infiltration when transplanted into adult rodent brains. We further demonstrate the utility of GBOs to test personalized therapies by correlating GBO mutational profiles with responses to specific drugs and by modeling chimeric antigen receptor T cell immunotherapy. Our studies show that GBOs maintain many key features of glioblastomas and can be rapidly deployed to investigate patient-specific treatment strategies. Additionally, our live biobank establishes a rich resource for basic and translational glioblastoma research.


Assuntos
Técnicas de Cultura de Células/métodos , Glioblastoma/metabolismo , Organoides/crescimento & desenvolvimento , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Bancos de Espécimes Biológicos , Feminino , Glioblastoma/genética , Glioblastoma/patologia , Humanos , Masculino , Camundongos , Camundongos Nus , Pessoa de Meia-Idade , Modelos Biológicos , Organoides/metabolismo , Reprodutibilidade dos Testes , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
14.
Cell ; 182(4): 855-871.e23, 2020 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-32730808

RESUMO

A T cell receptor (TCR) mediates antigen-induced signaling through its associated CD3ε, δ, γ, and ζ, but the contributions of different CD3 chains remain elusive. Using quantitative mass spectrometry, we simultaneously quantitated the phosphorylation of the immunoreceptor tyrosine-based activation motif (ITAM) of all CD3 chains upon TCR stimulation. A subpopulation of CD3ε ITAMs was mono-phosphorylated, owing to Lck kinase selectivity, and specifically recruited the inhibitory Csk kinase to attenuate TCR signaling, suggesting that TCR is a self-restrained signaling machinery containing both activating and inhibitory motifs. Moreover, we found that incorporation of the CD3ε cytoplasmic domain into a second-generation chimeric antigen receptor (CAR) improved antitumor activity of CAR-T cells. Mechanistically, the Csk-recruiting ITAM of CD3ε reduced CAR-T cytokine production whereas the basic residue rich sequence (BRS) of CD3ε promoted CAR-T persistence via p85 recruitment. Collectively, CD3ε is a built-in multifunctional signal tuner, and increasing CD3 diversity represents a strategy to design next-generation CAR.


Assuntos
Complexo CD3/metabolismo , Imunoterapia Adotiva/métodos , Receptores de Antígenos Quiméricos/metabolismo , Transdução de Sinais , Motivos de Aminoácidos , Animais , Complexo CD3/química , Proteína Tirosina Quinase CSK/metabolismo , Linhagem Celular , Citocinas/metabolismo , Humanos , Ativação Linfocitária/efeitos dos fármacos , Proteína Tirosina Quinase p56(lck) Linfócito-Específica/metabolismo , Camundongos , Camundongos Endogâmicos NOD , Neoplasias/mortalidade , Neoplasias/patologia , Neoplasias/terapia , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismo , Análise de Sobrevida , Vanadatos/farmacologia
15.
Cell ; 179(4): 880-894.e10, 2019 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-31668804

RESUMO

Current approaches to reducing the latent HIV reservoir entail first reactivating virus-containing cells to become visible to the immune system. A critical second step is killing these cells to reduce reservoir size. Endogenous cytotoxic T-lymphocytes (CTLs) may not be adequate because of cellular exhaustion and the evolution of CTL-resistant viruses. We have designed a universal CAR-T cell platform based on CTLs engineered to bind a variety of broadly neutralizing anti-HIV antibodies. We show that this platform, convertibleCAR-T cells, effectively kills HIV-infected, but not uninfected, CD4 T cells from blood, tonsil, or spleen and only when armed with anti-HIV antibodies. convertibleCAR-T cells also kill within 48 h more than half of the inducible reservoir found in blood of HIV-infected individuals on antiretroviral therapy. The modularity of convertibleCAR-T cell system, which allows multiplexing with several anti-HIV antibodies yielding greater breadth and control, makes it a promising tool for attacking the latent HIV reservoir.


Assuntos
Anticorpos Anti-Idiotípicos/farmacologia , Infecções por HIV/terapia , Imunoterapia Adotiva , Replicação Viral/genética , Animais , Anticorpos Anti-Idiotípicos/imunologia , Células HEK293 , Infecções por HIV/genética , Infecções por HIV/imunologia , Infecções por HIV/virologia , HIV-1/imunologia , HIV-1/patogenicidade , Humanos , Camundongos , Tonsila Palatina/imunologia , Tonsila Palatina/metabolismo , Cultura Primária de Células , Baço/imunologia , Baço/metabolismo , Linfócitos T Citotóxicos/imunologia , Latência Viral/imunologia , Replicação Viral/imunologia
16.
Immunity ; 57(2): 287-302.e12, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38354704

RESUMO

The interaction of the tumor necrosis factor receptor (TNFR) family member CD27 on naive CD8+ T (Tn) cells with homotrimeric CD70 on antigen-presenting cells (APCs) is necessary for T cell memory fate determination. Here, we examined CD27 signaling during Tn cell activation and differentiation. In conjunction with T cell receptor (TCR) stimulation, ligation of CD27 by a synthetic trimeric CD70 ligand triggered CD27 internalization and degradation, suggesting active regulation of this signaling axis. Internalized CD27 recruited the signaling adaptor TRAF2 and the phosphatase SHP-1, thereby modulating TCR and CD28 signals. CD27-mediated modulation of TCR signals promoted transcription factor circuits that induced memory rather than effector associated gene programs, which are induced by CD28 costimulation. CD27-costimulated chimeric antigen receptor (CAR)-engineered T cells exhibited improved tumor control compared with CD28-costimulated CAR-T cells. Thus, CD27 signaling during Tn cell activation promotes memory properties with relevance to T cell immunotherapy.


Assuntos
Antígenos CD28 , Redes Reguladoras de Genes , Fator 2 Associado a Receptor de TNF/genética , Fator 2 Associado a Receptor de TNF/metabolismo , Antígenos CD28/metabolismo , Transdução de Sinais , Ativação Linfocitária , Receptores de Antígenos de Linfócitos T/metabolismo , Membro 7 da Superfamília de Receptores de Fatores de Necrose Tumoral/genética , Membro 7 da Superfamília de Receptores de Fatores de Necrose Tumoral/metabolismo , Ligante CD27/genética , Ligante CD27/metabolismo , Linfócitos T CD8-Positivos
17.
Cell ; 173(6): 1426-1438.e11, 2018 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-29706540

RESUMO

T cells expressing chimeric antigen receptors (CARs) are promising cancer therapeutic agents, with the prospect of becoming the ultimate smart cancer therapeutics. To expand the capability of CAR T cells, here, we present a split, universal, and programmable (SUPRA) CAR system that simultaneously encompasses multiple critical "upgrades," such as the ability to switch targets without re-engineering the T cells, finely tune T cell activation strength, and sense and logically respond to multiple antigens. These features are useful to combat relapse, mitigate over-activation, and enhance specificity. We test our SUPRA system against two different tumor models to demonstrate its broad utility and humanize its components to minimize potential immunogenicity concerns. Furthermore, we extend the orthogonal SUPRA CAR system to regulate different T cell subsets independently, demonstrating a dually inducible CAR system. Together, these SUPRA CARs illustrate that multiple advanced logic and control features can be implemented into a single, integrated system.


Assuntos
Ativação Linfocitária/imunologia , Receptores de Antígenos Quiméricos/imunologia , Subpopulações de Linfócitos T/imunologia , Animais , Antígenos , Feminino , Humanos , Imunoterapia , Células Jurkat , Células K562 , Camundongos , Camundongos Endogâmicos NOD , Transplante de Neoplasias , Neoplasias/imunologia , Proteínas Recombinantes de Fusão/imunologia , Transdução de Sinais
18.
Immunity ; 56(10): 2388-2407.e9, 2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37776850

RESUMO

Chimeric antigen receptor (CAR) T cell therapy targeting CD19 has achieved tremendous success treating B cell malignancies; however, some patients fail to respond due to poor autologous T cell fitness. To improve response rates, we investigated whether disruption of the co-inhibitory receptors CTLA4 or PD-1 could restore CART function. CRISPR-Cas9-mediated deletion of CTLA4 in preclinical models of leukemia and myeloma improved CAR T cell proliferation and anti-tumor efficacy. Importantly, this effect was specific to CTLA4 and not seen upon deletion of CTLA4 and/or PDCD1 in CAR T cells. Mechanistically, CTLA4 deficiency permitted unopposed CD28 signaling and maintenance of CAR expression on the T cell surface under conditions of high antigen load. In clinical studies, deletion of CTLA4 rescued the function of T cells from patients with leukemia that previously failed CAR T cell treatment. Thus, selective deletion of CTLA4 reinvigorates dysfunctional chronic lymphocytic leukemia (CLL) patient T cells, providing a strategy for increasing patient responses to CAR T cell therapy.


Assuntos
Leucemia Linfocítica Crônica de Células B , Receptores de Antígenos Quiméricos , Humanos , Receptores de Antígenos de Linfócitos T/metabolismo , Antígeno CTLA-4/genética , Antígeno CTLA-4/metabolismo , Linfócitos T , Imunoterapia Adotiva , Antígenos CD19
19.
CA Cancer J Clin ; 73(3): 275-285, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36627265

RESUMO

Multiple myeloma (MM) is a hematologic malignancy defined by the clonal proliferation of transformed plasma cells. Despite tremendous advances in the treatment paradigm of MM, a cure remains elusive for most patients. Although long-term disease control can be achieved in a very large number of patients, the acquisition of tumor resistance leads to disease relapse, especially in patients with triple-class refractory MM (defined as resistance to immunomodulatory agents, proteosome inhibitors, and monoclonal antibodies). There is an unmet need for effective treatment options in these patients. Chimeric antigen receptor (CAR) T-cell therapy is a novel approach that has demonstrated promising efficacy in the treatment of relapsed, refractory MM (RRMM). These genetically modified cellular therapies have demonstrated deep and durable remissions in other B-cell malignancies, and current efforts aim to achieve similar results in patients with RRMM. Early studies have demonstrated remarkable response rates with CAR T-cell therapy in RRMM; however, durable responses with CAR T-cell therapies in myeloma have yet to be realized. In this comprehensive review, the authors describe the development of CAR T-cell therapies in myeloma, the outcomes of notable clinical trials, the toxicities and limitations of CAR T-cell therapies, and the strategies to overcome therapeutic challenges of CAR T cells in the hope of achieving a cure for multiple myeloma.


Assuntos
Mieloma Múltiplo , Receptores de Antígenos Quiméricos , Humanos , Imunoterapia Adotiva/efeitos adversos , Mieloma Múltiplo/terapia , Mieloma Múltiplo/patologia , Receptores de Antígenos Quiméricos/uso terapêutico , Resultado do Tratamento , Terapia Baseada em Transplante de Células e Tecidos
20.
Genes Dev ; 36(9-10): 514-532, 2022 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-35680424

RESUMO

Medulloblastoma is an aggressive brain tumor that occurs predominantly in children. Despite intensive therapy, many patients die of the disease, and novel therapies are desperately needed. Although immunotherapy has shown promise in many cancers, the low mutational burden, limited infiltration of immune effector cells, and immune-suppressive microenvironment of medulloblastoma have led to the assumption that it is unlikely to respond to immunotherapy. However, emerging evidence is challenging this view. Here we review recent preclinical and clinical studies that have identified mechanisms of immune evasion in medulloblastoma, and highlight possible therapeutic interventions that may give new hope to medulloblastoma patients and their families.


Assuntos
Neoplasias Encefálicas , Neoplasias Cerebelares , Meduloblastoma , Neoplasias Cerebelares/genética , Neoplasias Cerebelares/terapia , Criança , Humanos , Imunoterapia , Meduloblastoma/terapia , Microambiente Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA