Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 272
Filtrar
1.
Mol Biol Evol ; 41(2)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38285634

RESUMO

Rainforest hunter-gatherers from Southeast Asia are characterized by specific morphological features including a particularly dark skin color (D), short stature (S), woolly hair (W), and the presence of steatopygia (S)-fat accumulation localized in the hips (DSWS phenotype). Based on previous evidence in the Andamanese population, we first characterized signatures of adaptive natural selection around the calcium-sensing receptor gene in Southeast Asian rainforest groups presenting the DSWS phenotype and identified the R990G substitution (rs1042636) as a putative adaptive variant for experimental follow-up. Although the calcium-sensing receptor has a critical role in calcium homeostasis by directly regulating the parathyroid hormone secretion, it is expressed in different tissues and has been described to be involved in many biological functions. Previous works have also characterized the R990G substitution as an activating polymorphism of the calcium-sensing receptor associated with hypocalcemia. Therefore, we generated a knock-in mouse for this substitution and investigated organismal phenotypes that could have become adaptive in rainforest hunter-gatherers from Southeast Asia. Interestingly, we found that mouse homozygous for the derived allele show not only lower serum calcium concentration but also greater body weight and fat accumulation, probably because of enhanced preadipocyte differentiation and lipolysis impairment resulting from the calcium-sensing receptor activation mediated by R990G. We speculate that such differential features in humans could have facilitated the survival of hunter-gatherer groups during periods of nutritional stress in the challenging conditions of the Southeast Asian tropical rainforests.


Assuntos
Polimorfismo Genético , Receptores de Detecção de Cálcio , Animais , Humanos , Camundongos , Cálcio , Fenótipo , Receptores de Detecção de Cálcio/genética , Seleção Genética
2.
Brain ; 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38537648

RESUMO

Dopamine's role as the principal neurotransmitter in motor functions has long been accepted. We broaden this conventional perspective by demonstrating the involvement of non-dopaminergic mechanisms. In mouse models of Parkinson's Disease (PD), we observed that L-DOPA elicited a substantial motor response even when its conversion to dopamine was blocked by inhibiting the enzyme aromatic amino acid decarboxylase (AADC). Remarkably, the motor activity response to L-DOPA in the presence of an AADC inhibitor (NSD1015) showed a delayed onset, yet greater intensity and longer duration, peaking at 7 hours, compared to when L-DOPA was administered alone. This suggests an alternative pathway or mechanism, independent of dopamine signaling, mediating the motor functions. We sought to determine the metabolites associated with the pronounced hyperactivity observed, using comprehensive metabolomics analysis. Our results revealed that the peak in motor activity induced by NSD1015/L-DOPA in PD mice is associated with a surge (20-fold) in brain levels of the tripeptide ophthalmic acid (OA, also known as ophthalmate in its anionic form). Interestingly, we found that administering ophthalmate directly to the brain rescued motor deficits in PD mice in a dose-dependent manner. We investigated the molecular mechanisms underlying ophthalmate's action and discovered, through radioligand binding and cAMP-luminescence assays, that ophthalmate binds to and activates the calcium-sensing receptor (CaSR). Additionally, our findings demonstrated that a CaSR antagonist inhibits the motor-enhancing effects of ophthalmate, further solidifying the evidence that ophthalmate modulates motor functions through the activation of the CaSR. The discovery of ophthalmate as a novel regulator of motor function presents significant potential to transform our understanding of brain mechanisms of movement control and the therapeutic management of related disorders.

3.
J Physiol ; 602(13): 3207-3224, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38367250

RESUMO

High concentrations of urinary calcium counteract vasopressin action via the activation of the Calcium-Sensing Receptor (CaSR) expressed in the luminal membrane of the collecting duct cells, which impairs the trafficking of aquaporin-2 (AQP2). In line with these findings, we provide evidence that, with respect to wild-type mice, CaSR knock-in (KI) mice mimicking autosomal dominant hypocalcaemia, display a significant decrease in the total content of AQP2 associated with significantly higher levels of AQP2 phosphorylation at Ser261, a phosphorylation site involved in AQP2 degradation. Interestingly, KI mice also had significantly higher levels of phosphorylated p38MAPK, a downstream effector of CaSR and known to phosphorylate AQP2 at Ser261. Moreover, ATF1 phosphorylated at Ser63, a transcription factor downstream of p38MAPK, was significantly higher in KI. In addition, KI mice had significantly higher levels of AQP2-targeting miRNA137 consistent with a post-transcriptional downregulation of AQP2. In vivo treatment of KI mice with the calcilytic JTT-305, a CaSR antagonist, increased AQP2 expression and reduced AQP2-targeting miRNA137 levels in KI mice. Together, these results provide direct evidence for a critical role of CaSR in impairing both short-term vasopressin response by increasing AQP2-pS261, as well as AQP2 abundance, via the p38MAPK-ATF1-miR137 pathway. KEY POINTS: Calcium-Sensing Receptor (CaSR) activating mutations are the main cause of autosomal dominant hypocalcaemia (ADH) characterized by inappropriate renal calcium excretion leading to hypocalcaemia and hypercalciuria. Current treatments of ADH patients with parathyroid hormone, although improving hypocalcaemia, do not improve hypercalciuria or nephrocalcinosis. In vivo treatment with calcilytic JTT-305/MK-5442 ameliorates most of the ADH phenotypes of the CaSR knock-in mice including hypercalciuria or nephrocalcinosis and reverses the downregulation of the vasopressin-sensitive aquaporin-2 (AQP2) expression, providing direct evidence for a critical role of CaSR in impairing vasopressin response. The beneficial effect of calcilytic in reducing the risk of renal calcification may occur in a parathyroid hormone-independent action through vasopressin-dependent inhibition of cAMP synthesis in the thick ascending limb and in the collecting duct. The amelioration of most of the abnormalities in calcium metabolism including hypercalciuria, renal calcification, and AQP2-mediated osmotic water reabsorption makes calcilytic a good candidate as a novel therapeutic agent for ADH.


Assuntos
Aquaporina 2 , Regulação para Baixo , Receptores de Detecção de Cálcio , Vasopressinas , Animais , Aquaporina 2/metabolismo , Aquaporina 2/genética , Receptores de Detecção de Cálcio/metabolismo , Receptores de Detecção de Cálcio/genética , Camundongos , Vasopressinas/metabolismo , Técnicas de Introdução de Genes , Rim/metabolismo , Rim/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Masculino , Transdução de Sinais , Fenótipo , Hipercalciúria/genética , Hipercalciúria/metabolismo , Hipercalciúria/tratamento farmacológico , Cálcio/metabolismo , Fosforilação , Hipocalcemia , Hipoparatireoidismo/congênito
4.
Crit Rev Clin Lab Sci ; 61(6): 496-509, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38456354

RESUMO

Calcium is a fundamental and integrative element and helps to ensure optimal health by regulating various physiological and pathological processes. While there is substantiated evidence confirming the beneficial effects of calcium in the treatment, management, and prevention of various health conditions, including cancer, conflicting studies are imperative to acknowledge the potential negative role of calcium supplementation. The studies on calcium supplementation showed that a specific dose can help in the maintenance of good human health, and in the control of different types of diseases, including cancer. Calcium alone and when combined with vitamin D, emerges as a promising therapeutic option for efficiently managing cancer growth, when used with chemotherapy. Combination therapy is considered a more effective approach for treating advanced types of colorectal cancer. Nevertheless, several challenges drastically influence the treatment of cancer, such as individual discrepancy, drug resistance, and stage of cancer, among others. Henceforth, novel preventive, reliable therapeutic modalities are essential to control and reduce the incidence and mortality of colorectal cancer (CRC). The calcium-sensing receptor (CaSR) plays a pivotal role in calcium homeostasis, metabolism, and regulation of oncogenesis. Numerous studies have underscored the potential of CaSR, a G protein-coupled receptor, as a potential biomarker and target for colorectal cancer prevention and treatment. The multifaceted involvement of CaSR in anti-inflammatory and anti-carcinogenic processes paves the way for its utilization in the diagnosis and management of colorectal cancer. The current review highlights the important role of supplemental calcium in overall health and disease, along with the exploration of intricate mechanisms of CaSR pathways in the management and prevention of colorectal cancer.


Assuntos
Cálcio , Neoplasias Colorretais , Suplementos Nutricionais , Humanos , Neoplasias Colorretais/prevenção & controle , Neoplasias Colorretais/tratamento farmacológico , Cálcio/metabolismo , Receptores de Detecção de Cálcio/metabolismo , Vitamina D/uso terapêutico , Vitamina D/administração & dosagem
5.
Am J Physiol Renal Physiol ; 326(5): F792-F801, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38545651

RESUMO

The kidney controls systemic inorganic phosphate (Pi) levels by adapting reabsorption to Pi intake. Renal Pi reabsorption is mostly mediated by sodium-phosphate cotransporters NaPi-IIa (SLC34A1) and NaPi-IIc (SLC34A3) that are tightly controlled by various hormones including parathyroid hormone (PTH) and fibroblast growth factor 23 (FGF23). PTH and FGF23 rise in response to Pi intake and decrease NaPi-IIa and NaPi-IIc brush border membrane abundance enhancing phosphaturia. Phosphaturia and transporter regulation occurs even in the absence of PTH and FGF23 signaling. The calcium-sensing receptor (CaSR) regulates PTH and FGF23 secretion, and may also directly affect renal Pi handling. Here, we combined pharmacological and genetic approaches to examine the role of the CaSR in the acute phosphaturic response to Pi loading. Animals pretreated with the calcimimetic cinacalcet were hyperphosphatemic, had blunted PTH levels upon Pi administration, a reduced Pi-induced phosphaturia, and no Pi-induced NaPi-IIa downregulation. The calcilytic NPS-2143 exaggerated the PTH response to Pi loading but did not abolish Pi-induced downregulation of NaPi-IIa. In mice with a dominant inactivating mutation in the Casr (CasrBCH002), baseline NaPi-IIa expression was higher, whereas downregulation of transporter expression was blunted in double CasrBCH002/PTH knockout (KO) transgenic animals. Thus, in response to an acute Pi load, acute modulation of the CaSR affects the endocrine and renal response, whereas chronic genetic inactivation, displays only subtle differences in the downregulation of NaPi-IIa and NaPi-IIc renal expression. We did not find evidence that the CaSR impacts on the acute renal response to oral Pi loading beyond its role in regulating PTH secretion.NEW & NOTEWORTHY Consumption of phosphate-rich diets causes an adaptive response of the body leading to the urinary excretion of phosphate. The underlying mechanisms are still poorly understood. Here, we examined the role of the calcium-sensing receptor (CaSR) that senses both calcium and phosphate. We confirmed that the receptor increases the secretion of parathyroid hormone involved in stimulating urinary phosphate excretion. However, we did not find any evidence for a role of the receptor beyond this function.


Assuntos
Fator de Crescimento de Fibroblastos 23 , Rim , Camundongos Knockout , Hormônio Paratireóideo , Fosfatos , Receptores de Detecção de Cálcio , Proteínas Cotransportadoras de Sódio-Fosfato Tipo IIa , Proteínas Cotransportadoras de Sódio-Fosfato Tipo IIc , Receptores de Detecção de Cálcio/metabolismo , Receptores de Detecção de Cálcio/genética , Animais , Hormônio Paratireóideo/metabolismo , Proteínas Cotransportadoras de Sódio-Fosfato Tipo IIa/metabolismo , Proteínas Cotransportadoras de Sódio-Fosfato Tipo IIa/genética , Fosfatos/metabolismo , Rim/metabolismo , Rim/efeitos dos fármacos , Proteínas Cotransportadoras de Sódio-Fosfato Tipo IIc/metabolismo , Proteínas Cotransportadoras de Sódio-Fosfato Tipo IIc/genética , Camundongos , Reabsorção Renal/efeitos dos fármacos , Masculino , Fatores de Crescimento de Fibroblastos/metabolismo , Fatores de Crescimento de Fibroblastos/genética , Camundongos Endogâmicos C57BL
6.
J Neurochem ; 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39164935

RESUMO

It is well recognized that changes in the extracellular concentration of calcium ions influence the excitability of neurons, yet what mechanism(s) mediate these effects is still a matter of debate. Using patch-clamp recordings from rat hippocampal CA1 pyramidal neurons, we examined the contribution of G-proteins and intracellular calcium-dependent signaling mechanisms to changes in intrinsic excitability evoked by altering the extracellular calcium concentration from physiological (1.2 mM) to a commonly used experimental (2 mM) level. We find that the inhibitory effect on intrinsic excitability of calcium ions is mainly expressed as an increased threshold for action potential firing (with no significant effect on resting membrane potential) that is not blocked by either the G-protein inhibitor GDPßS or the calcium chelator BAPTA. Our results therefore argue that in the concentration range studied, G-protein coupled calcium-sensing receptors, non-selective cation conductances, and intracellular calcium signaling pathways are not involved in mediating the effect of extracellular calcium ions on intrinsic excitability. Analysis of the derivative of the action potential, dV/dt versus membrane potential, indicates a current shift towards more depolarized membrane potentials at the higher calcium concentration. Our results are thus consistent with a mechanism in which extracellular calcium ions act directly on the voltage-gated sodium channels by neutralizing negative charges on the extracellular surface of these channels to modulate the threshold for action potential activation.

7.
Am J Physiol Gastrointest Liver Physiol ; 326(4): G438-G459, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38193195

RESUMO

The calcium-sensing receptor (CaSR), a G protein-coupled receptor, regulates Ca2+ concentration in plasma by regulating parathyroid hormone secretion. In other tissues, it is reported to play roles in cellular differentiation and migration and in secretion and absorption. We reported previously that CaSR can be conditionally deleted in the mouse esophagus. This conditional knockout (KO) (EsoCaSR-/-) model showed a significant reduction in the levels of adherens and tight junction proteins and had a marked buildup of bacteria on the luminal esophageal surface. To further examine the role of CaSR, we used RNA sequencing to determine gene expression profiles in esophageal epithelia of control and EsoCaSR-/-mice RNA Seq data indicated upregulation of gene sets involved in DNA replication and cell cycle in EsoCaSR-/-. This is accompanied by the downregulation of gene sets involved in the innate immune response and protein homeostasis including peptide elongation and protein trafficking. Ingenuity pathway analysis (IPA) demonstrated that these genes are mapped to important biological networks including calcium and Ras homologus A (RhoA) signaling pathways. To further explore the bacterial buildup in EsoCaSR-/- esophageal tissue, 16S sequencing of the mucosal-associated bacterial microbiome was performed. Three bacterial species, g_Rodentibacter, s_Rodentibacter_unclassified, and s_Lactobacillus_hilgardi were significantly increased in EsoCaSR-/-. Furthermore, metagenomic analysis of 16S sequences indicated that pathways related to oxidative phosphorylation and metabolism were downregulated in EsoCaSR-/- tissues. These data demonstrate that CaSR impacts major pathways of cell proliferation, differentiation, cell cycle, and innate immune response in esophageal epithelium. The disruption of these pathways causes inflammation and significant modifications of the microbiome.NEW & NOTEWORTHY Calcium-sensing receptor (CaSR) plays a significant role in maintaining the barrier function of esophageal epithelium. Using RNA sequencing, we show that conditional deletion of CaSR from mouse esophagus causes upregulation of genes involved in DNA replication and cell cycle and downregulation of genes involved in the innate immune response, protein translation, and cellular protein synthesis. Pathway analysis shows disruption of signaling pathways of calcium and actin cytoskeleton. These changes caused inflammation and esophageal dysbiosis.


Assuntos
Cálcio , Microbiota , Animais , Camundongos , Cálcio/metabolismo , Receptores de Detecção de Cálcio/genética , Receptores de Detecção de Cálcio/metabolismo , Esôfago/metabolismo , Inflamação , Expressão Gênica
8.
J Nanobiotechnology ; 22(1): 492, 2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-39160624

RESUMO

BACKGROUND: Despite recent advances the prognosis of pulmonary hypertension remains poor and warrants novel therapeutic options. Extensive studies, including ours, have revealed that hypoxia-induced pulmonary hypertension is associated with high oxidative stress. Cerium oxide nanozyme or nanoparticles (CeNPs) have displayed catalytic activity mimicking both catalase and superoxide dismutase functions and have been widely used as an anti-oxidative stress approach. However, whether CeNPs can attenuate hypoxia-induced pulmonary vascular oxidative stress and pulmonary hypertension is unknown. RESULTS: In this study, we designed a new ceria nanozyme or nanoparticle (AuCeNPs) exhibiting enhanced enzyme activity. The AuCeNPs significantly blunted the increase of reactive oxygen species and intracellular calcium concentration while limiting proliferation of pulmonary artery smooth muscle cells and pulmonary vasoconstriction in a model of hypoxia-induced pulmonary hypertension. In addition, the inhalation of nebulized AuCeNPs, but not CeNPs, not only prevented but also blunted hypoxia-induced pulmonary hypertension in rats. The benefits of AuCeNPs were associated with limited increase of intracellular calcium concentration as well as enhancement of extracellular calcium-sensing receptor (CaSR) activity and expression in rat pulmonary artery smooth muscle cells. Nebulised AuCeNPs showed a favorable safety profile, systemic arterial pressure, liver and kidney function, plasma Ca2+ level, and blood biochemical parameters were not affected. CONCLUSION: We conclude that AuCeNPs is an improved reactive oxygen species scavenger that effectively prevents and treats hypoxia-induced pulmonary hypertension.


Assuntos
Cério , Hipertensão Pulmonar , Hipóxia , Miócitos de Músculo Liso , Artéria Pulmonar , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio , Animais , Cério/farmacologia , Cério/química , Cério/uso terapêutico , Ratos , Hipertensão Pulmonar/tratamento farmacológico , Espécies Reativas de Oxigênio/metabolismo , Masculino , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/metabolismo , Artéria Pulmonar/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Nanopartículas/química , Cálcio/metabolismo
9.
Int J Mol Sci ; 25(8)2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38673977

RESUMO

Transient receptor potential canonical sub-family channel 3 (TRPC3) is considered to play a critical role in calcium homeostasis. However, there are no established findings in this respect with regard to TRPC6. Although the parathyroid gland is a crucial organ in calcium household regulation, little is known about the protein distribution of TRPC channels-especially TRPC3 and TRPC6-in this organ. Our aim was therefore to investigate the protein expression profile of TRPC3 and TRPC6 in healthy and diseased human parathyroid glands. Surgery samples from patients with healthy parathyroid glands and from patients suffering from primary hyperparathyroidism (pHPT) were investigated by immunohistochemistry using knockout-validated antibodies against TRPC3 and TRPC6. A software-based analysis similar to an H-score was performed. For the first time, to our knowledge, TRPC3 and TRPC6 protein expression is described here in the parathyroid glands. It is found in both chief and oxyphilic cells. Furthermore, the TRPC3 staining score in diseased tissue (pHPT) was statistically significantly lower than that in healthy tissue. In conclusion, TRPC3 and TRPC6 proteins are expressed in the human parathyroid gland. Furthermore, there is strong evidence indicating that TRPC3 plays a role in pHPT and subsequently in parathyroid hormone secretion regulation. These findings ultimately require further research in order to not only confirm our results but also to further investigate the relevance of these channels and, in particular, that of TRPC3 in the aforementioned physiological functions and pathophysiological conditions.


Assuntos
Regulação para Baixo , Hiperparatireoidismo Primário , Glândulas Paratireoides , Canais de Cátion TRPC , Canal de Cátion TRPC6 , Humanos , Canais de Cátion TRPC/metabolismo , Canais de Cátion TRPC/genética , Hiperparatireoidismo Primário/metabolismo , Hiperparatireoidismo Primário/genética , Hiperparatireoidismo Primário/patologia , Glândulas Paratireoides/metabolismo , Glândulas Paratireoides/patologia , Feminino , Masculino , Canal de Cátion TRPC6/metabolismo , Canal de Cátion TRPC6/genética , Pessoa de Meia-Idade , Idoso , Adulto , Imuno-Histoquímica , Hormônio Paratireóideo/metabolismo
10.
Am J Respir Cell Mol Biol ; 69(2): 182-196, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37098022

RESUMO

Asthma is a heterogeneous chronic airway disease with an unmet need for improved therapeutics in uncontrolled severe disease. The calcium-sensing receptor (CaSR) is a G protein-coupled receptor upregulated in asthma. The CaSR agonist, spermine, is also increased in asthmatic airways and contributes to bronchoconstriction. CaSR negative allosteric modulators (NAMs) oppose chronic airway inflammation, remodeling, and hyperresponsiveness in murine and guinea pig asthma models, but whether CaSR NAMs are effective acute bronchodilators compared with standard of care has not yet been established. Furthermore, the ability of different classes of NAMs to inhibit spermine-induced CaSR signaling or methacholine (MCh)-induced airway contraction has not been quantified. Here, we show CaSR NAMs differentially inhibit spermine-induced intracellular calcium mobilization and inositol monophosphate accumulation in HEK293 cells stably expressing the CaSR. NAMs reverse MCh-mediated airway contraction in mouse precision-cut lung slices with similar maximal relaxation compared with the standard treatment, salbutamol. Of note, the bronchodilator effects of CaSR NAMs are maintained under conditions of ß2-adrenergic receptor desensitization when salbutamol efficacy is abolished. Furthermore, overnight treatment with some, but not all, CaSR NAMs prevents MCh-mediated bronchoconstriction. These findings further support the CaSR as a putative drug target and NAMs as alternative or adjunct bronchodilators in asthma.


Assuntos
Asma , Broncodilatadores , Camundongos , Humanos , Animais , Cobaias , Broncodilatadores/farmacologia , Receptores de Detecção de Cálcio/agonistas , Receptores de Detecção de Cálcio/metabolismo , Células HEK293 , Espermina/uso terapêutico , Asma/tratamento farmacológico , Asma/metabolismo , Albuterol/farmacologia , Cloreto de Metacolina/farmacologia
11.
Biochem Biophys Res Commun ; 659: 105-112, 2023 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-37060830

RESUMO

Fibroblast growth factor (FGF)-23 and calcium-sensing receptor (CaSR) have previously been postulated to be parts of a negative feedback regulation of the intestinal calcium absorption to prevent excessive calcium uptake and its toxicity. However, the underlying mechanism of this feedback regulation remained elusive, especially whether it required transcription of FGF-23. Herein, we induced calcium hyperabsorptive state (CHS) by exposing intestinal epithelium-like Caco-2 monolayer to 30 mM CaCl2 and 1,25-dihydroxyvitamin D3 [1,25(OH)2D3] after which FGF-23 mRNA levels and transepithelial calcium flux were determined. We found that CHS upregulated FGF-23 transcription, which was reverted by CaSR inhibitors (Calhex-231 and NPS2143) but without effect on CaSR transcription. Although 10 nM 1,25(OH)2D3 was capable of enhancing transepithelial calcium flux, the higher-than-normal calcium inundation as in CHS led to a decrease in calcium flux, consistent with an increase in FGF-23 protein expression. Administration of inhibitors (≤10 µM CN585 and cyclosporin A) of calcineurin, a mediator of CaSR action to control transcription and production of its target proteins, was found to partially prevent FGF-23 protein production and the negative effect of CHS on calcium transport, while having no effect on FGF-23 mRNA expression. Direct exposure to FGF-23, but not FGF-23 + PD173074 (FGFR1/3 inhibitor), also completely abolished the 1,25(OH)2D3-enhanced calcium transport in Caco-2 monolayer. Nevertheless, CHS and CaSR inhibitors had no effect on the mRNA levels of calcineurin (PPP3CB) or its targets (i.e., NFATc1-4). In conclusion, exposure to CHS induced by high apical calcium and 1,25(OH)2D3 triggered a negative feedback mechanism to prevent further calcium uptake. CaSR and its downstream mediator, calcineurin, possibly contributed to the regulatory process, in part by enhancing FGF-23 production to inhibit calcium transport. Our study, therefore, corroborated the physiological significance of CaSR-autocrine FGF-23 axis as a local feedback loop for prevention of excessive calcium uptake.


Assuntos
Cálcio , Receptores de Detecção de Cálcio , Humanos , Células CACO-2 , Calcineurina , Cálcio/metabolismo , Cálcio da Dieta , Fator de Crescimento de Fibroblastos 23 , Fatores de Crescimento de Fibroblastos/genética , Fatores de Crescimento de Fibroblastos/metabolismo , Receptores de Detecção de Cálcio/genética , Receptores de Detecção de Cálcio/metabolismo , RNA Mensageiro/genética
12.
Eur J Nutr ; 62(7): 2873-2890, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37392244

RESUMO

BACKGROUND AND AIMS: Amino acids (AAs) not only constitute milk protein but also stimulate milk synthesis through the activation of mTORC1 signaling, but which amino acids that have the greatest impact on milk fat and protein synthesis is still very limited. In this study, we aimed to identify the most critical AAs involved in the regulation of milk synthesis and clarify how these AAs regulate milk synthesis through the G-protein-coupled receptors (GPCRs) signaling pathway. METHODS: In this study, a mouse mammary epithelial cell line (HC11) and porcine mammary epithelial cells (PMECs) were selected as study subjects. After treatment with different AAs, the amount of milk protein and milk fat synthesis were detected. Activation of mTORC1 and GPCRs signaling induced by AAs was also investigated. RESULTS: In this study, we demonstrate that essential amino acids (EAAs) are crucial to promote lactation by increasing the expression of genes and proteins related to milk synthesis, such as ACACA, FABP4, DGAT1, SREBP1, α-casein, ß-casein, and WAP in HC11 cells and PMECs. In addition to activating mTORC1, EAAs uniquely regulate the expression of calcium-sensing receptor (CaSR) among all amino-acid-responsive GPCRs, which indicates a potential link between CaSR and the mTORC1 pathway in mammary gland epithelial cells. Compared with other EAAs, leucine and arginine had the greatest capacity to trigger GPCRs (p-ERK) and mTORC1 (p-S6K1) signaling in HC11 cells. In addition, CaSR and its downstream G proteins Gi, Gq, and Gßγ are involved in the regulation of leucine- and arginine-induced milk synthesis and mTORC1 activation. Taken together, our data suggest that leucine and arginine can efficiently trigger milk synthesis through the CaSR/Gi/mTORC1 and CaSR/Gq/mTORC1 pathways. CONCLUSION: We found that the G-protein-coupled receptor CaSR is an important amino acid sensor in mammary epithelial cells. Leucine and arginine promote milk synthesis partially through the CaSR/Gi/mTORC1 and CaSR/Gq/mTORC1 signaling systems in mammary gland epithelial cells. Although this mechanism needs further verification, it is foreseeable that this mechanism may provide new insights into the regulation of milk synthesis.


Assuntos
Proteínas do Leite , Receptores de Detecção de Cálcio , Camundongos , Feminino , Animais , Suínos , Leucina/farmacologia , Leucina/metabolismo , Receptores de Detecção de Cálcio/genética , Receptores de Detecção de Cálcio/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina , Arginina/farmacologia , Aminoácidos/metabolismo , Caseínas/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Glândulas Mamárias Animais/metabolismo , Células Epiteliais/metabolismo
13.
Int J Med Sci ; 20(12): 1570-1583, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37859698

RESUMO

Background: The aim of this study was to investigate whether calcium-sensing receptor (CaSR) was involved in HRF-mediated exacerbation of MI/R injury through NLRP3 inflammasome activation and pyroptosis. Methods: In vivo, a rat MI/R model was established by ligating the left coronary artery, and short-term HRF exposure was induced during reoxygenation. Then, TUNEL, H&E, Masson staining, immunohistochemical (IHC) and serum levels of lactate dehydrogenase (LDH) and creatine kinase isoenzyme (CK), as well as the expression levels of CaSR and pyroptosis-related proteins in heart tissues, were measured. H9c2 cells were cultured to create a hypoxia/reoxygenation (H/R) model and exposed to different concentrations of RF. After pretreatment with the CaSR activator gadolinium chloride (GdCl3) and inhibitor NPS2143 in the H/R model and treatment with HRF, we compared cellular viability, TUNEL, cytosolic [Ca2+]i, the levels of LDH and CK, pyroptosis-related proteins and CaSR in H9c2 cells. We further researched the mechanisms of CaSR-mediated pyroptosis in the H/R+HRF model by CaSR-shRNA, Ac-YVAD-CMK, MCC950 and NAC. Results: We found that HRF significantly increased CaSR expression, rate of cell death, levels of CK and LDH, and exacerbated pyroptosis in MI/R model. In vitro, HRF increased CaSR expression, decreased viability, enhanced cytosolic [Ca2+]i and exacerbated pyroptosis in H/R cells. Pretreated with GdCl3 worsen these changes, and NPS2143, MCC950, Ac-YVAD-CMK, NAC and sh-CaSR can reversed these effects. Conclusion: Exposure to HRF for a short time exacerbates MI/R-induced injury by targeting CaSR to increase cytosolic [Ca2+]i and ROS levels, which mediate the NLRP3 inflammasome and pyroptosis.


Assuntos
Traumatismo por Reperfusão Miocárdica , Traumatismo por Reperfusão , Animais , Ratos , Inflamassomos/metabolismo , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Miócitos Cardíacos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Piroptose , Receptores de Detecção de Cálcio/metabolismo , Remifentanil , Traumatismo por Reperfusão/metabolismo
14.
Mikrochim Acta ; 191(1): 34, 2023 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-38108923

RESUMO

Magnetic solid phase extraction with the functionalization of protein onto micro- or nano-particles as a probe is favorable for the discovery of new drugs from complicated natural products. Herein, we aimed to develop a rapid method by immobilizing halogenated alkane dehalogenase (Halo)-tagged calcium-sensing receptor (CaSR) directly out of crude cell lysates onto the surface of magnetic microspheres (MM) with no need to purify protein. Thereby we achieved CaSR-functionalized MM for revealing adsorption characteristics of agonist neomycin and screening ligands from herbal medicine Radix Astragali (RA). About 43.87 mg CaSR could be immobilized per 1 g MM within 30 min, and the acquired CaSR-functionalized MM showed good stability and activity for 4 weeks. The maximum adsorption capacity of neomycin on CaSR-functionalized MM was determined as 4.70 × 10-4 ~ 3.96 × 10-4 mol/g within 277 ~ 310 K, and its adsorption isotherm characteristics described best by the Temkin model were further validated using isothermal titration calorimetry. It was inferred that CaSR's affinity for neomycin was driven by electrostatic forces in a spontaneous process when the system reached an equilibrium state. Moreover, the ligands from the RA extract were screened, three of which were assigned as astragaloside IV, ononin, and calycosin based on HPLC-MS. Our findings demonstrated that the functionalization of a receptor onto magnetic materials designed as an affinity probe has the capability to recognize its agonist and capture the ligands selectively from complex matrices like herbs.


Assuntos
Neomicina , Receptores de Detecção de Cálcio , Microesferas , Adsorção , Ligantes , Fenômenos Magnéticos
15.
Int J Mol Sci ; 24(5)2023 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-36902353

RESUMO

The calcium-sensing receptor (CaSR) is an important regulator of epidermal function. We previously reported that knockdown of the CaSR or treatment with its negative allosteric modulator, NPS-2143, significantly reduced UV-induced DNA damage, a key factor in skin cancer development. We subsequently wanted to test whether topical NPS-2143 could also reduce UV-DNA damage, immune suppression, or skin tumour development in mice. In this study, topical application of NPS-2143 (228 or 2280 pmol/cm2) to Skh:hr1 female mice reduced UV-induced cyclobutane pyrimidine dimers (CPD) (p < 0.05) and oxidative DNA damage (8-OHdG) (p < 0.05) to a similar extent as the known photoprotective agent 1,25(OH)2 vitamin D3 (calcitriol, 1,25D). Topical NPS-2143 failed to rescue UV-induced immunosuppression in a contact hypersensitivity study. In a chronic UV photocarcinogenesis protocol, topical NPS-2143 reduced squamous cell carcinomas for only up to 24 weeks (p < 0.02) but had no other effect on skin tumour development. In human keratinocytes, 1,25D, which protected mice from UV-induced skin tumours, significantly reduced UV-upregulated p-CREB expression (p < 0.01), a potential early anti-tumour marker, while NPS-2143 had no effect. This result, together with the failure to reduce UV-induced immunosuppression, may explain why the reduction in UV-DNA damage in mice with NPS-2143 was not sufficient to inhibit skin tumour formation.


Assuntos
Receptores de Detecção de Cálcio , Neoplasias Cutâneas , Feminino , Animais , Camundongos , Humanos , Camundongos Pelados , Receptores de Detecção de Cálcio/metabolismo , Raios Ultravioleta , Dano ao DNA , Neoplasias Cutâneas/metabolismo , Dímeros de Pirimidina/metabolismo , Pele/metabolismo
16.
Molecules ; 28(12)2023 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-37375140

RESUMO

Aldehydes are natural volatile aroma compounds generated by the Maillard reaction of sugars and amino acids in food and affect the flavor of food. They have been reported to exert taste-modifying effects, such as increases in taste intensity at concentrations below the odor detection threshold. The present study examined the taste-enhancing effects of short-chain aliphatic aldehydes, such as isovaleraldehyde (IVAH) and 2-methylbutyraldehyde, thus attempting to identify the taste receptors involved. The results obtained revealed that IVAH enhanced the taste intensity of taste solutions even under the condition of olfactory deprivation by a noseclip. Furthermore, IVAH activated the calcium-sensing receptor CaSR in vitro. Receptor assays on aldehyde analogues showed that C3-C6 aliphatic aldehydes and methional, a C4 sulfur aldehyde, activated CaSR. These aldehydes functioned as a positive allosteric modulator for CaSR. The relationship between the activation of CaSR and taste-modifying effects was investigated by a sensory evaluation. Taste-modifying effects were found to be dependent on the activation state of CaSR. Collectively, these results suggest that short-chain aliphatic aldehydes function as taste modulators that modify sensations by activating orally expressed CaSR. We propose that volatile aroma aldehydes may also partially contribute to the taste-modifying effect via the same molecular mechanism as kokumi substances.


Assuntos
Receptores de Detecção de Cálcio , Papilas Gustativas , Receptores de Detecção de Cálcio/metabolismo , Paladar/fisiologia , Percepção Gustatória , Papilas Gustativas/metabolismo , Aldeídos/farmacologia , Aldeídos/metabolismo
17.
Calcif Tissue Int ; 111(3): 229-241, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35567607

RESUMO

Childhood and adolescent primary hyperparathyroidism (PHPT) is a very rare disease. Data on its molecular genetics are scarce. We performed a retrospective analysis (January 2000-January 2021) to determine the deleterious germline variants and genotype-phenotype correlations in children and adolescents < 20 years diagnosed with PHPT from a single referral center. Clinical features, biochemistry, imaging, management, and genetics (clinical exome analyzed for 11 PHPT and 7 pancreatitis-associated genes, MLPA for CDC73) were recorded. Thirty-six patients (20 males; median age 17 years) were classified into those with familial and/or syndromic (F/S) or apparently sporadic (AS) presentation. Sixteen (44.4%) harbored pathogenic/likely pathogenic germline variants in PHPT-associated genes. The genetic yield in F/S group was 90% (MEN1:8/10; CDC73:1/10), and AS group was 26.9% (CDC73:4/26; CASR:3/26). F/S group had frequent asymptomatic presentation (60% vs none; P < 0.001), lower serum PTH (237.5 vs 1369.1 pg/mL; P = 0.001), and maximum parathyroid dimension (0.9 vs 2.2 cm; P = 0.01) than AS group. Among the AS group, renal involvement was higher in those with molecular diagnoses (71.4% vs 10.5%; P = 0.01). All those with novel CASR variants (including one homozygous) had hypercalciuria and histology-proven parathyroid adenoma/carcinoma. A missense CTRC VUS occurred in one patient with chronic pancreatitis. In summary, Asian Indian children and adolescents with PHPT have high genetic yield, even with apparently sporadic presentation. The phenotypic spectrum of CASR variants is expanded to include childhood/adolescent PHPT with hypercalciuria and single gland neoplasia. The proposed roles for renal involvement to predict molecular diagnosis among those with apparently sporadic presentation require further elucidation.


Assuntos
Hiperparatireoidismo Primário , Neoplasias das Paratireoides , Estudos de Associação Genética , Humanos , Hipercalciúria , Hiperparatireoidismo Primário/genética , Hiperparatireoidismo Primário/patologia , Masculino , Neoplasias das Paratireoides/genética , Neoplasias das Paratireoides/patologia , Estudos Retrospectivos , Proteínas Supressoras de Tumor/genética
18.
Chem Senses ; 472022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-35512652

RESUMO

In addition to the well-accepted taste receptors corresponding to the 6 basic taste qualities, sweet, salty, sour, bitter, umami, and fatty, another type of taste receptor, calcium-sensing receptor (CaSR), is located in taste bud cells. CaSR is called the kokumi receptor because its agonists induce koku (or kokumi), a Japanese word meaning the enhancement of flavor characteristics, such as thickness, mouthfulness, and continuity. Kokumi is an important factor in enhancing food palatability. γ-Glu-Val-Gly (EVG) is the most potent agonist of CaSR, which induces a strong kokumi flavor. However, no behavioral studies have been documented in animals using EVG. Here, we show that EVG at low concentrations that do not elicit a taste of its own enhances preferences for umami, fat, and sweet taste solutions in rats. An increased preference for inosine monophosphate (IMP) and Intralipos was the most dominant effect. NPS-2143, an antagonist of CaSR, abolished the additive effect of EVG on IMP and Intralipos solutions. These effects of EVG on taste stimuli are thought to occur in the oral cavity, because the effects of EVG were confirmed in a brief exposure test. The additive effects on IMP and Intralipos remained after the transection of the chorda tympani, indicating that these effects also occur in the palate and/or posterior part of the tongue. Moreover, the additive effects of EVG were verified in electrophysiological taste nerve responses. These results may partially provide the underlying mechanisms for EVG to induce kokumi flavor in humans.


Assuntos
Papilas Gustativas , Paladar , Animais , Suplementos Nutricionais , Dipeptídeos , Ingestão de Alimentos , Inosina Monofosfato/farmacologia , Ratos , Receptores de Detecção de Cálcio , Paladar/fisiologia
19.
Crit Rev Food Sci Nutr ; 62(5): 1230-1241, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-33103468

RESUMO

Kokumi is a complex sensation characterized by thickness, mouthfulness and continuity. Kokumi-active peptides, which are distributed in many kinds of food, induce a rich and long-lasting mouthfeel of food. Aimed to provide a comprehensive overview of kokumi peptides, this review covers the aspects of preparation and evaluation methods for kokumi peptides, kokumi receptor calcium-sensing receptor (CaSR), as well as structural features of kokumi peptides and derivatives. Apart from extraction and separation from natural and fermented food, preparation of kokumi peptides can be effectively obtained from enzymatic generation. Kokumi peptides are perceived by CaSR in taste cells and the proposed transduction pathway has been described. The evaluation on kokumi-inducing effect of peptides has employed a combination of sensory assessment and CaSR method. The discovered kokumi peptides mainly comprise glutamyl peptides, leucyl peptides and other peptides without specific features. Derivatives of amino acids and peptides including sulphur-containing amino acids, N-acyl-Tyr derivatives, N-acetylated amino acids and Maillard reaction products (MRPs) also work as kokumi enhancers. Based on the summarized developments, great sensory properties and bioactivities enable kokumi peptides as promising protein ingredients in future application.


Assuntos
Peptídeos , Paladar , Aminoácidos , Receptores de Detecção de Cálcio
20.
BMC Endocr Disord ; 22(1): 324, 2022 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-36536367

RESUMO

BACKGROUND: Familial hypocalciuric hypercalcaemia (FHH) is a rare, inherited disorder of extracellular calcium sensing. It is clinically characterised by mild to moderate parathyroid hormone dependent hypercalcaemia, an autosomal dominant pattern of inheritance, and a normal to reduced urinary calcium excretion in spite of high serum calcium. CASE PRESENTATION: We report two cases of FHH in a family caused by a novel pathogenic missense variant in the CaSR gene, p. His41Arg. Case 1, describes a 17 year old female with no significant past medical history, admitted with acute appendicitis requiring laparoscopic appendectomy and reporting a six month history of polydipsia. Routine investigations were significant for hypercalcaemia, corrected calcium 3.19 mmol/L (2.21-2.52mmol/L), elevated parathyroid hormone of 84pg/ml (15-65pg/ml) and a low 24-hour urine calcium of 0.75mmol/24 (2.50-7.50mmol/24). She was initially managed with intravenous fluids and Zolendronic acid with temporary normalisation of calcium though ultimately required commencement of Cinacalcet 30 mg daily for persistent symptomatic hypercalcaemia. Genetic analysis was subsequently positive for the above variant. Case 2, a 50-year-old female, was referred to the endocrine outpatient clinic for the management of type 2 diabetes and reported a longstanding history of asymptomatic hypercalcaemia which had not been investigated previously. Investigation revealed hypercalcaemia; corrected calcium of 2.6 mmol/L (reference range: 2.21-2.52 mmol/L); PTH of 53.7ng/L (reference range: 15-65 ng/L) and an elevated 24-hour urine calcium of 10 mmol/24 (2.50-7.50 mmol/24hr) with positive genetic analysis and is managed conservatively. Despite sharing this novel mutation, these cases have different phenotypes and their natural history is yet to be determined. Two further relatives are currently undergoing investigation for hypercalcaemia and the family have been referred for genetic counselling. CONCLUSION: Accurate diagnosis of FHH and differentiation from classic primary hyperparathyroidism can be challenging, however it is essential to avoid unnecessary investigations and parathyroid surgery. Genetic analysis may be helpful in establishing a diagnosis of FHH in light of the biochemical heterogeneity in this population and overlap with other causes of hypercalcaemia.


Assuntos
Diabetes Mellitus Tipo 2 , Hipercalcemia , Hiperparatireoidismo , Nefropatias , Feminino , Humanos , Hipercalcemia/diagnóstico , Cálcio , Hipercalciúria , Hormônio Paratireóideo , Receptores de Detecção de Cálcio/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA