Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 480
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Immunity ; 57(7): 1603-1617.e7, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38761804

RESUMO

Recent evidence reveals hyper T follicular helper (Tfh) cell responses in systemic lupus erythematosus (SLE); however, molecular mechanisms responsible for hyper Tfh cell responses and whether they cause SLE are unclear. We found that SLE patients downregulated both ubiquitin ligases, casitas B-lineage lymphoma (CBL) and CBLB (CBLs), in CD4+ T cells. T cell-specific CBLs-deficient mice developed hyper Tfh cell responses and SLE, whereas blockade of Tfh cell development in the mutant mice was sufficient to prevent SLE. ICOS was upregulated in SLE Tfh cells, whose signaling increased BCL6 by attenuating BCL6 degradation via chaperone-mediated autophagy (CMA). Conversely, CBLs restrained BCL6 expression by ubiquitinating ICOS. Blockade of BCL6 degradation was sufficient to enhance Tfh cell responses. Thus, the compromised expression of CBLs is a prevalent risk trait shared by SLE patients and causative to hyper Tfh cell responses and SLE. The ICOS-CBLs axis may be a target to treat SLE.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Proteína Coestimuladora de Linfócitos T Induzíveis , Lúpus Eritematoso Sistêmico , Camundongos Knockout , Proteínas Proto-Oncogênicas c-bcl-6 , Proteínas Proto-Oncogênicas c-cbl , Células T Auxiliares Foliculares , Animais , Feminino , Humanos , Camundongos , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Autofagia/imunologia , Proteína Coestimuladora de Linfócitos T Induzíveis/metabolismo , Proteína Coestimuladora de Linfócitos T Induzíveis/genética , Lúpus Eritematoso Sistêmico/imunologia , Lúpus Eritematoso Sistêmico/genética , Camundongos Endogâmicos C57BL , Proteólise , Proteínas Proto-Oncogênicas c-bcl-6/metabolismo , Proteínas Proto-Oncogênicas c-bcl-6/genética , Proteínas Proto-Oncogênicas c-cbl/metabolismo , Proteínas Proto-Oncogênicas c-cbl/genética , Proteínas Proto-Oncogênicas c-cbl/deficiência , Transdução de Sinais/imunologia , Células T Auxiliares Foliculares/imunologia , Linfócitos T Auxiliares-Indutores/imunologia , Ubiquitinação
2.
Immunity ; 53(4): 805-823.e15, 2020 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-33053330

RESUMO

The activating receptor CD226 is expressed on lymphocytes, monocytes, and platelets and promotes anti-tumor immunity in pre-clinical models. Here, we examined the role of CD226 in the function of tumor-infiltrating lymphocytes (TILs) and resistance to immunotherapy. In murine tumors, a large proportion of CD8+ TILs had decreased surface expression of CD226 and exhibited features of dysfunction, whereas CD226hi TILs were highly functional. This correlation was seen also in TILs isolated from HNSCC patients. Mutation of CD226 at tyrosine 319 (Y319) led to increased CD226 surface expression, enhanced anti-tumor immunity and improved efficacy of immune checkpoint blockade (ICB). Mechanistically, tumor-derived CD155, the ligand for CD226, initiated phosphorylation of Y319 by Src kinases, thereby enabling ubiquitination of CD226 by CBL-B, internalization, and proteasomal degradation. In pre-treatment samples from melanoma patients, CD226+CD8+ T cells correlated with improved progression-free survival following ICB. Our findings argue for the development of therapies aimed at maintaining the expression of CD226.


Assuntos
Antígenos de Diferenciação de Linfócitos T/imunologia , Linfócitos T CD8-Positivos/imunologia , Receptores Virais/imunologia , Animais , Linhagem Celular , Linhagem Celular Tumoral , Células HEK293 , Humanos , Inibidores de Checkpoint Imunológico/imunologia , Imunoterapia/métodos , Células Jurkat , Linfócitos do Interstício Tumoral/imunologia , Masculino , Melanoma/imunologia , Camundongos , Camundongos Endogâmicos C57BL
3.
Immunity ; 48(3): 530-541.e6, 2018 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-29562201

RESUMO

Selective expansion of high-affinity antigen-specific B cells in germinal centers (GCs) is a key event in antibody affinity maturation. GC B cells with improved affinity can either continue affinity-driven selection or exit the GC to differentiate into plasma cells (PCs) or memory B cells. Here we found that deleting E3 ubiquitin ligases Cbl and Cbl-b (Cbls) in GC B cells resulted in the early exit of high-affinity antigen-specific B cells from the GC reaction and thus impaired clonal expansion. Cbls were highly expressed in GC light zone (LZ) B cells, where they promoted the ubiquitination and degradation of Irf4, a transcription factor facilitating PC fate choice. Strong CD40 and BCR stimulation triggered the Cbl degradation, resulting in increased Irf4 expression and exit from GC affinity selection. Thus, a regulatory cascade that is centered on the Cbl ubiquitin ligases ensures affinity-driven clonal expansion by connecting BCR affinity signals with differentiation programs.


Assuntos
Linfócitos B/imunologia , Linfócitos B/metabolismo , Centro Germinativo/imunologia , Centro Germinativo/metabolismo , Proteínas Proto-Oncogênicas c-cbl/genética , Proteínas Proto-Oncogênicas c-cbl/metabolismo , Animais , Afinidade de Anticorpos/ética , Afinidade de Anticorpos/imunologia , Formação de Anticorpos/genética , Formação de Anticorpos/imunologia , Subpopulações de Linfócitos B/imunologia , Subpopulações de Linfócitos B/metabolismo , Diferenciação Celular/genética , Diferenciação Celular/imunologia , Seleção Clonal Mediada por Antígeno/genética , Seleção Clonal Mediada por Antígeno/imunologia , Expressão Gênica , Técnicas de Inativação de Genes , Fatores Reguladores de Interferon/genética , Fatores Reguladores de Interferon/metabolismo , Ativação Linfocitária/genética , Ativação Linfocitária/imunologia , Camundongos , Camundongos Transgênicos , Mutação , Ligação Proteica , Proteólise , Receptores de Antígenos de Linfócitos B/genética , Receptores de Antígenos de Linfócitos B/metabolismo , Ubiquitinação
4.
Immunity ; 49(5): 886-898.e5, 2018 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-30446383

RESUMO

Pathogenic Th17 (pTh17) cells drive inflammation and immune-pathology, but whether pTh17 cells are a Th17 cell subset whose generation is under specific molecular control remains unaddressed. We found that Ras p21 protein activator 3 (RASA3) was highly expressed by pTh17 cells relative to non-pTh17 cells and was required specifically for pTh17 generation in vitro and in vivo. Mice conditionally deficient for Rasa3 in T cells showed less pathology during experimental autoimmune encephalomyelitis. Rasa3-deficient T cells acquired a Th2 cell-biased program that dominantly trans-suppressed pTh17 cell generation via interleukin 4 production. The Th2 cell bias of Rasa3-deficient T cells was due to aberrantly elevated transcription factor IRF4 expression. RASA3 promoted proteasome-mediated IRF4 protein degradation by facilitating interaction of IRF4 with E3-ubiquitin ligase Cbl-b. Therefore, a RASA3-IRF4-Cbl-b pathway specifically directs pTh17 cell generation by balancing reciprocal Th17-Th2 cell programs. These findings indicate that a distinct molecular program directs pTh17 cell generation and reveals targets for treating pTh17 cell-related pathology and diseases.


Assuntos
Diferenciação Celular/genética , Proteínas Ativadoras de GTPase/genética , Células Th17/citologia , Células Th17/metabolismo , Células Th2/citologia , Células Th2/metabolismo , Animais , Autoimunidade , Biomarcadores , Encefalomielite Autoimune Experimental/etiologia , Encefalomielite Autoimune Experimental/metabolismo , Encefalomielite Autoimune Experimental/patologia , Proteínas Ativadoras de GTPase/metabolismo , Expressão Gênica , Imunofenotipagem , Fatores Reguladores de Interferon/genética , Fatores Reguladores de Interferon/metabolismo , Camundongos , Proteólise , RNA Mensageiro , Células Th17/imunologia , Células Th2/imunologia
5.
Mol Cell ; 71(4): 637-648.e5, 2018 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-30118682

RESUMO

Although macrophages are armed with potent antibacterial functions, Mycobacterium tuberculosis (Mtb) replicates inside these innate immune cells. Determinants of macrophage intrinsic bacterial control, and the Mtb strategies to overcome them, are poorly understood. To further study these processes, we used an affinity tag purification mass spectrometry (AP-MS) approach to identify 187 Mtb-human protein-protein interactions (PPIs) involving 34 secreted Mtb proteins. This interaction map revealed two factors involved in Mtb pathogenesis-the secreted Mtb protein, LpqN, and its binding partner, the human ubiquitin ligase CBL. We discovered that an lpqN Mtb mutant is attenuated in macrophages, but growth is restored when CBL is removed. Conversely, Cbl-/- macrophages are resistant to viral infection, indicating that CBL regulates cell-intrinsic polarization between antibacterial and antiviral immunity. Collectively, these findings illustrate the utility of this Mtb-human PPI map for developing a deeper understanding of the intricate interactions between Mtb and its host.


Assuntos
Proteínas de Bactérias/genética , HIV/genética , Interações Hospedeiro-Patógeno , Mycobacterium tuberculosis/genética , Proteínas Proto-Oncogênicas c-cbl/genética , Fatores de Virulência/genética , Animais , Proteínas de Bactérias/imunologia , Linhagem Celular Tumoral , Chlamydia trachomatis/genética , Chlamydia trachomatis/imunologia , Regulação da Expressão Gênica , HIV/imunologia , Herpesvirus Humano 8/genética , Herpesvirus Humano 8/imunologia , Humanos , Linfócitos/microbiologia , Linfócitos/virologia , Macrófagos/microbiologia , Macrófagos/virologia , Camundongos , Mycobacterium tuberculosis/imunologia , Cultura Primária de Células , Ligação Proteica , Mapeamento de Interação de Proteínas , Proteínas Proto-Oncogênicas c-cbl/deficiência , Proteínas Proto-Oncogênicas c-cbl/imunologia , Células RAW 264.7 , Transdução de Sinais , Fatores de Virulência/imunologia
6.
Stem Cells ; 42(7): 662-674, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38655781

RESUMO

Cortactin (CTTN), a cytoskeletal protein and substrate of Src kinase, is implicated in tumor aggressiveness. However, its role in bone cell differentiation remains unknown. The current study revealed that CTTN was upregulated during osteoblast and adipocyte differentiation. Functional experiments demonstrated that CTTN promoted the in vitro differentiation of mesenchymal stem/progenitor cells into osteogenic and adipogenic lineages. Mechanistically, CTTN was able to stabilize the protein level of mechanistic target of rapamycin kinase (mTOR), leading to the activation of mTOR signaling. In-depth investigation revealed that CTTN could bind with casitas B lineage lymphoma-c (c-CBL) and counteract the function of c-CBL, a known E3 ubiquitin ligase responsible for the proteasomal degradation of mTOR. Silencing c-Cbl alleviated the impaired differentiation of osteoblasts and adipocytes caused by CTTN siRNA, while silencing mTOR mitigated the stimulation of osteoblast and adipocyte differentiation induced by CTTN overexpression. Notably, transplantation of CTTN-silenced bone marrow stromal cells (BMSCs) into the marrow of mice led to a reduction in trabecular bone mass, accompanied by a decrease in osteoblasts and an increase in osteoclasts. Furthermore, CTTN-silenced BMSCs expressed higher levels of receptor activator of nuclear factor κB ligand (RANKL) than control BMSCs did and promoted osteoclast differentiation when cocultured with bone marrow-derived osteoclast precursor cells. This study provides evidence that CTTN favors osteoblast differentiation by counteracting the c-CBL-induced degradation of mTOR and inhibits osteoclast differentiation by downregulating the expression of RANKL. It also suggests that maintaining an appropriate level of CTTN expression may be advantageous for maintaining bone homeostasis.


Assuntos
Diferenciação Celular , Cortactina , Homeostase , Osteoblastos , Osteoclastos , Proteínas Proto-Oncogênicas c-cbl , Osteoblastos/metabolismo , Osteoblastos/citologia , Animais , Osteoclastos/metabolismo , Camundongos , Cortactina/metabolismo , Cortactina/genética , Proteínas Proto-Oncogênicas c-cbl/metabolismo , Proteínas Proto-Oncogênicas c-cbl/genética , Serina-Treonina Quinases TOR/metabolismo , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/citologia , Osteogênese , Osso e Ossos/metabolismo , Adipócitos/metabolismo , Adipócitos/citologia , Ligante RANK/metabolismo , Transdução de Sinais
7.
FASEB J ; 38(10): e23662, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38752545

RESUMO

The ubiquitination function in diabetic nephropathy (DN) has attracted much attention, but there is a lack of information on its ubiquitylome profile. To examine the differences in protein content and ubiquitination in the kidney between db/db mice and db/m mice, we deployed liquid chromatography-mass spectrometry (LC-MS/MS) to conduct analysis. We determined 145 sites in 86 upregulated modified proteins and 66 sites in 49 downregulated modified proteins at the ubiquitinated level. Moreover, 347 sites among the 319 modified proteins were present only in the db/db mouse kidneys, while 213 sites among the 199 modified proteins were present only in the db/m mouse kidneys. The subcellular localization study indicated that the cytoplasm had the highest proportion of ubiquitinated proteins (31.87%), followed by the nucleus (30.24%) and the plasma membrane (20.33%). The enrichment analysis revealed that the ubiquitinated proteins are mostly linked to tight junctions, oxidative phosphorylation, and thermogenesis. Podocin, as a typical protein of slit diaphragm, whose loss is a crucial cause of proteinuria in DN. Consistent with the results of ubiquitination omics, the K261R mutant of podocin induced the weakest ubiquitination compared with the K301R and K370R mutants. As an E3 ligase, c-Cbl binds to podocin, and the regulation of c-Cbl can impact the ubiquitination of podocin. In conclusion, in DN, podocin ubiquitination contributes to podocyte injury, and K261R is the most significant site. c-Cbl participates in podocin ubiquitination and may be a direct target for preserving the integrity of the slit diaphragm structure, hence reducing proteinuria in DN.


Assuntos
Nefropatias Diabéticas , Peptídeos e Proteínas de Sinalização Intracelular , Proteínas de Membrana , Podócitos , Proteínas Proto-Oncogênicas c-cbl , Ubiquitinação , Animais , Nefropatias Diabéticas/metabolismo , Nefropatias Diabéticas/patologia , Podócitos/metabolismo , Podócitos/patologia , Camundongos , Proteínas Proto-Oncogênicas c-cbl/metabolismo , Proteínas Proto-Oncogênicas c-cbl/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Masculino , Camundongos Endogâmicos C57BL
8.
J Biol Chem ; 299(10): 105233, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37690689

RESUMO

In many cell types, the E3 ubiquitin ligases c-Cbl and Cbl-b induce ligand-dependent ubiquitylation of the hepatocyte growth factor (HGF)-stimulated c-Met receptor and target it for lysosomal degradation. This study determines whether c-Cbl/Cbl-b are negative regulators of c-Met in the corneal epithelium (CE) and if their inhibition can augment c-Met-mediated CE homeostasis. Immortalized human corneal epithelial cells were transfected with Cas9 only (Cas9, control cells) or with Cas9 and c-Cbl/Cbl-b guide RNAs to knockout each gene singularly (-c-Cbl or -Cbl-b cells) or both genes (double KO [DKO] cells) and monitored for their responses to HGF. Cells were assessed for ligand-dependent c-Met ubiquitylation via immunoprecipitation, magnitude, and duration of c-Met receptor signaling via immunoblot and receptor trafficking by immunofluorescence. Single KO cells displayed a decrease in receptor ubiquitylation and an increase in phosphorylation compared to control. DKO cells had no detectable ubiquitylation, had delayed receptor trafficking, and a 2.3-fold increase in c-Met phosphorylation. Based on the observed changes in receptor trafficking and signaling, we examined HGF-dependent in vitro wound healing via live-cell time-lapse microscopy in control and DKO cells. HGF-treated DKO cells healed at approximately twice the rate of untreated cells. From these data, we have generated a model in which c-Cbl/Cbl-b mediate the ubiquitylation of c-Met, which targets the receptor through the endocytic pathway toward lysosomal degradation. In the absence of ubiquitylation, the stimulated receptor stays phosphorylated longer and enhances in vitro wound healing. We propose that c-Cbl and Cbl-b are promising pharmacologic targets for enhancing c-Met-mediated CE re-epithelialization.


Assuntos
Proteínas Proto-Oncogênicas c-cbl , Transdução de Sinais , Humanos , Ligantes , Proteínas Proto-Oncogênicas c-cbl/genética , Proteínas Proto-Oncogênicas c-cbl/metabolismo , Proteínas Proto-Oncogênicas c-met/genética , Proteínas Proto-Oncogênicas c-met/metabolismo , Fosforilação , Ubiquitinação , Immunoblotting
9.
J Biol Chem ; 299(1): 102766, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36470425

RESUMO

Epidermal growth factor receptor (EGFR) signaling is frequently dysregulated in various cancers. The ubiquitin ligase Casitas B-lineage lymphoma proto-oncogene (Cbl) regulates degradation of activated EGFR through ubiquitination and acts as an adaptor to recruit proteins required for trafficking. Here, we used stable isotope labeling with amino acids in cell culture mass spectrometry to compare Cbl complexes with or without epidermal growth factor (EGF) stimulation. We identified over a hundred novel Cbl interactors, and a secondary siRNA screen found that knockdown of Flotillin-2 (FLOT2) led to increased phosphorylation and degradation of EGFR upon EGF stimulation in HeLa cells. In PC9 and H441 cells, FLOT2 knockdown increased EGF-stimulated EGFR phosphorylation, ubiquitination, and downstream signaling, reversible by EGFR inhibitor erlotinib. CRISPR knockout (KO) of FLOT2 in HeLa cells confirmed EGFR downregulation, increased signaling, and increased dimerization and endosomal trafficking. Furthermore, we determined that FLOT2 interacted with both Cbl and EGFR. EGFR downregulation upon FLOT2 loss was Cbl dependent, as coknockdown of Cbl and Cbl-b restored EGFR levels. In addition, FLOT2 overexpression decreased EGFR signaling and growth. Overexpression of wildtype (WT) FLOT2, but not the soluble G2A FLOT2 mutant, inhibited EGFR phosphorylation upon EGF stimulation in HEK293T cells. FLOT2 loss induced EGFR-dependent proliferation and anchorage-independent growth. Lastly, FLOT2 KO increased tumor formation and tumor volume in nude mice and NSG mice, respectively. Together, these data demonstrated that FLOT2 negatively regulated EGFR activation and dimerization, as well as its subsequent ubiquitination, endosomal trafficking, and degradation, leading to reduced proliferation in vitro and in vivo.


Assuntos
Receptores ErbB , Neoplasias , Proteínas Proto-Oncogênicas c-cbl , Animais , Humanos , Camundongos , Fator de Crescimento Epidérmico/metabolismo , Receptores ErbB/genética , Receptores ErbB/metabolismo , Células HEK293 , Células HeLa , Camundongos Nus , Neoplasias/genética , Neoplasias/fisiopatologia , Fosforilação , Proteínas Proto-Oncogênicas c-cbl/genética , Proteínas Proto-Oncogênicas c-cbl/metabolismo , Ubiquitinação , Proteínas de Membrana/metabolismo , Proteólise , Regulação Neoplásica da Expressão Gênica
10.
Plant Mol Biol ; 114(3): 53, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38714550

RESUMO

Plants have a variety of regulatory mechanisms to perceive, transduce, and respond to biotic and abiotic stress. One such mechanism is the calcium-sensing CBL-CIPK system responsible for the sensing of specific stressors, such as drought or pathogens. CBLs perceive and bind Calcium (Ca2+) in response to stress and then interact with CIPKs to form an activated complex. This leads to the phosphorylation of downstream targets, including transporters and ion channels, and modulates transcription factor levels and the consequent levels of stress-associated genes. This review describes the mechanisms underlying the response of the CBL-CIPK pathway to biotic and abiotic stresses, including regulating ion transport channels, coordinating plant hormone signal transduction, and pathways related to ROS signaling. Investigation of the function of the CBL-CIPK pathway is important for understanding plant stress tolerance and provides a promising avenue for molecular breeding.


Assuntos
Proteínas de Plantas , Transdução de Sinais , Estresse Fisiológico , Estresse Fisiológico/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas , Plantas/genética , Plantas/metabolismo , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/metabolismo , Cálcio/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Espécies Reativas de Oxigênio/metabolismo
11.
Mol Med ; 30(1): 164, 2024 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-39342146

RESUMO

BACKGROUND: Asthma is a common immune disease with high morbidity in children. Type 2 inflammation is the center of asthma development, and mainly mediated by a subset of CD4 + T cells, T helper 2 (Th2) cells. Excess Th2 differentiation was generally associated with asthmatic attack. Casitas B-lineage lymphoma (c-CBL) was reported to involved in T cell development and databank showed its decreased expression in CD4 + T cells from peripheral blood of asthmatic children. This study aims to investigate the role of c-CBL in childhood asthma and Th2 differentiation, and explore the underlying mechanism. METHODS: We collected peripheral blood samples from clinical childhood asthma cases and healthy controls, and determined c-CBL expression in CD4 + T cells. Asthma was induced in neonatal mice by ovalbumin (OVA) intraperitoneal injection and aerosol inhalation, and c-CBL expression in CD4 + T cells from peripheral blood and spleen was measured. Gain-of-function experiments was performed to confirm the effects of c-CBL on Th2 differentiation in vitro. Finally, c-CBL was delivered into asthmatic mice via lentivirus infection to verify its effects on experimental asthma. RESULTS: c-CBL was lowly expressed in CD4 + T cells from asthmatic children than those of healthy controls. Similarly, it was downregulated in CD4 + T cells from peripheral blood and spleen of asthma mice. Overexpression of c-CBL restrained lung pathological injury and type 2 inflammation in experimental asthmatic mice. Gain-of-function experiments demonstrated that c-CBL inhibited Th2 differentiation of CD4 + T cells from healthy children, and mediated the ubiquitination of lymphocyte cell-specific protein-tyrosine kinase (LCK). LCK acted as a kinase to phosphorylate and activate c-JUN, which was predicted to bind promoter sequence of CD28 by bioinformatic analysis. Dual-luciferase reporter assay verified that c-JUN and ETS1 synergically enhanced transcription of CD28, and this transcription activation was aggravated by LCK overexpression. CONCLUSION: c-CBL alleviated asthma and suppressed Th2 differentiation by facilitating LCK ubiquitination, interrupting c-JUN activation and CD28 expression in vivo and in vitro. c-CBL/LCK/c-JUN/ETS1/CD28 axis was partially involved in childhood asthma, and may provide novel insights for clinical treatment for asthma.


Assuntos
Asma , Antígenos CD28 , Diferenciação Celular , Proteína Proto-Oncogênica c-ets-1 , Proteínas Proto-Oncogênicas c-cbl , Células Th2 , Asma/metabolismo , Asma/imunologia , Asma/genética , Animais , Proteínas Proto-Oncogênicas c-cbl/metabolismo , Proteínas Proto-Oncogênicas c-cbl/genética , Humanos , Células Th2/metabolismo , Células Th2/imunologia , Camundongos , Criança , Masculino , Feminino , Proteína Proto-Oncogênica c-ets-1/metabolismo , Proteína Proto-Oncogênica c-ets-1/genética , Antígenos CD28/metabolismo , Antígenos CD28/genética , Modelos Animais de Doenças , Transdução de Sinais , Pré-Escolar
12.
BMC Plant Biol ; 24(1): 30, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38182981

RESUMO

BACKGROUND: Potato late blight, caused by Phytophthora infestans, is the most devastating disease on potato. Dissecting critical immune components in potato will be supportive for engineering P. infestans resistance. Upon pathogens attack, plant Ca2+ signature is generated and decoded by an array of Ca2+ sensors, among which calcineurin B-like proteins (CBLs) coupled with plant specific CBL-interacting protein kinases (CIPKs) are much less explored in plant immunity. RESULTS: In this study, we identified that two differential potato CBL-CIPK modules regulate plant defense responses against Phytophthora and ROS production, respectively. By deploying virus-induced gene silencing (VIGS) system-based pathogen inoculation assays, StCBL3 was shown to negatively regulate Phytophthora resistance. Consistently, StCBL3 was further found to negatively regulate PTI and ETI responses in Nicotiana benthamiana. Furthermore, StCIPK7 was identified to act together with StCBL3 to negatively regulate Phytophthora resistance. StCIPK7 physically interacts with StCBL3 and phosphorylates StCBL3 in a Ca2+-dependent manner. StCBL3 promotes StCIPK7 kinase activity. On the other hand, another StCBL3-interacting kinase StCIPK24 negatively modulating flg22-triggered accumulation of reactive oxygen species (ROS) by interacting with StRBOHB. CONCLUSIONS: Together, these findings demonstrate that the StCBL3-StCIPK7 complex negatively modulates Phytophthora resistance and StCBL3-StCIPK24 complex negatively regulate ROS production. Our results offer new insights into the roles of potato CBL-CIPK in plant immunity and provide valuable gene resources to engineer the disease resistance potato in the future.


Assuntos
Phytophthora infestans , Solanum tuberosum , Cálcio , Solanum tuberosum/genética , Espécies Reativas de Oxigênio , Imunidade Vegetal/genética , Proteínas de Plantas/genética
13.
Cell Immunol ; 403-404: 104863, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39186873

RESUMO

For adoptive therapy with T cell receptor engineered T (TCR-T) cells, the quantity and quality of the final cell product directly affect their anti-tumor efficacy. The post-transfer efficacy window of TCR-T cells is keen to optimizing attempts during the manufacturing process. Cbl-b is a E3 ubiquitin ligase previously shown with critical negative impact in T cell functions. This study investigated whether strategic inclusion of a commercially available small inhibitor targeting Cbl-b (Cbl-b-IN-1) prior to T cell activation could enhance the quality of the final TCR-T cell product. Examination with both PBMCs and TCR-T cells revealed that Cbl-b-IN-1 treatment promoted TCR expression efficiency, T cell proliferation potential and, specifically, cell survival capability post antigenic stimulation. Cbl-b-IN-1 exposure facilitated T cells in maintaining less differentiated states with enhanced cytokine production. Further, we found that Cbl-b-IN-1 effectively augmented the activation of TCR signaling, shown by increased phosphorylation levels of Zeta-chain-associated protein kinase 70 (ZAP70) and phospholipase c-γ1 (PLCγ1). In conclusion, our results evidence that the inclusion of Cbl-b inhibitor immediately prior to TCR-T cell activation may enhance their proliferation, survival, and function potentials, presenting an applicable optimization strategy for immunotherapy with adoptive cell transfer.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Diferenciação Celular , Proliferação de Células , Citocinas , Ativação Linfocitária , Proteínas Proto-Oncogênicas c-cbl , Receptores de Antígenos de Linfócitos T , Transdução de Sinais , Linfócitos T , Proteínas Proto-Oncogênicas c-cbl/metabolismo , Humanos , Ativação Linfocitária/efeitos dos fármacos , Ativação Linfocitária/imunologia , Linfócitos T/imunologia , Linfócitos T/efeitos dos fármacos , Linfócitos T/metabolismo , Citocinas/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismo , Receptores de Antígenos de Linfócitos T/imunologia , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/imunologia , Proliferação de Células/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Fosfolipase C gama/metabolismo , Proteína-Tirosina Quinase ZAP-70/metabolismo , Fosforilação/efeitos dos fármacos , Imunoterapia Adotiva/métodos , Fenótipo , Sobrevivência Celular/efeitos dos fármacos
14.
J Med Virol ; 96(10): e70007, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39400381

RESUMO

Nuclear factor κB (NF-κB) plays a crucial role in various cellular processes, including inflammatory and immune responses. Its activation is tightly regulated by the IKK (IκB kinase) complex. Upon severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, the virus is initially recognized by the innate immune system and typically activates the NF-κB pathway, leading to a severe inflammatory response. However, the influence of viral proteins upon pro-inflammatory pathway is complicated. Here, we demonstrated that the viral protein nsp3 of SARS-CoV-2 exhibits an unusual function, which attenuated the NF-κB-mediated inflammatory response against SARS-CoV-2 infection in a unique manner. nsp3 interacted with the essential NF-κB modulator NEMO/IKKγ and promoted its polyubiquitylation via the E3 ubiquitin ligase CBL (Cbl Proto-Oncogene). Consequently, polyubiquitylated NEMO undergoes proteasome-dependent degradation, which disrupts NF-κB activation. Moreover, we found that the SARS unique domain (SUD) in nsp3 of SARS-CoV-2 is essential for inducing NEMO degradation, whereas this function is absent in SUD of SARS-CoV. The reduced activation of pro-inflammatory response at an early stage could mask the host immune response and faciliate excessive viral replication. Conversely, this finding may partially explain why SARS-CoV-2 causes a less inflammatory reaction than SARS-CoV, resulting in more mild or moderate COVID-19 cases and greater transmissibility. Given that NEMO is important for NF-κB activation, we propose that inhibiting polyubiquitylation and degradation of NEMO upon SARS-CoV-2 infection is a novel strategy to modulate the host inflammatory response.


Assuntos
COVID-19 , Quinase I-kappa B , NF-kappa B , SARS-CoV-2 , Humanos , NF-kappa B/metabolismo , SARS-CoV-2/imunologia , COVID-19/imunologia , COVID-19/virologia , COVID-19/metabolismo , Quinase I-kappa B/metabolismo , Quinase I-kappa B/genética , Proteases Semelhantes à Papaína de Coronavírus/metabolismo , Transdução de Sinais , Células HEK293 , Ubiquitinação , Proto-Oncogene Mas , Domínios Proteicos , Imunidade Inata , Proteínas não Estruturais Virais/metabolismo , Proteínas não Estruturais Virais/imunologia , Proteínas não Estruturais Virais/genética
15.
Cytokine ; 179: 156596, 2024 07.
Artigo em Inglês | MEDLINE | ID: mdl-38669907

RESUMO

OBJECTIVE: To assess whether Casitas B-lineage lymphoma (CBL) gene polymorphism influences the risk of microscopic polyangiitis (MPA) in Chinese populations. METHODS: In total, 266 MPA patients and 297 healthy controls were recruited for a case-control study. Five CBL SNPs were genotyped using multiplex polymerase chain reaction and high-throughput sequencing. The relationship between SNPs and the risk of MPA under different genetic models was evaluated by SNPstats. SNP-SNP interaction was analyzed by generalized multifactor dimensionality reduction (GMDR). Finally, the association between CBL SNPs and treatment effects were assessed. RESULTS: The results showed that CBL rs2276083 was associated with decreasing MPA risk under dominant (OR: 0.53; p = 0.014) and recessive models (OR: 0.52; p = 0.0034). Stratification analysis indicated that rs2276083 and rs2509671 in age < 60 years, rs2276083 in female or in Han population were protective factors for MPA. The CBL haplotype (A-A-G-C-T) was associated with an increased risk of MPA. GMDR suggested that CBL rs2276083, phosphatidylinositol-4, 5-bisphosphate 3-kinase catalytic subunit alpha (PI3KCA) rs1607237, and autophagy-related gene 7 (ATG7) rs7549008 might interact with each other in MPA development (p = 0.0107). CBL rs1047417 with AG genotype and rs11217234 with AG genotype had better clinical treatment effects than other two genotypes (p = 0.048 and p = 0.025, respectively). CONCLUSION: The genetic polymorphism of CBL had a potential association with the risk of MPA and clinical treatment effects in Guangxi population in China.


Assuntos
Povo Asiático , Predisposição Genética para Doença , Poliangiite Microscópica , Polimorfismo de Nucleotídeo Único , Proteínas Proto-Oncogênicas c-cbl , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Povo Asiático/genética , Estudos de Casos e Controles , China/epidemiologia , População do Leste Asiático , Estudos de Associação Genética , Predisposição Genética para Doença/genética , Haplótipos/genética , Poliangiite Microscópica/genética , Polimorfismo de Nucleotídeo Único/genética , Proteínas Proto-Oncogênicas c-cbl/genética
16.
Toxicol Appl Pharmacol ; 482: 116765, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37995810

RESUMO

CBL0137, a promising small molecular anti-cancer drug candidate, has been found to effectively induce apoptosis via activating p53 and suppressing nuclear factor-kappa B (NF-κB). However, it is still not clear whether CBL0137 can induce necroptosis in liver cancer; and if so, what is the underlying molecular mechanism. Here we found that CBL0137 could significantly induce left-handed double helix structure Z-DNA formation in HepG2 cells as shown by Z-DNA specific antibody assay, which was further confirmed by observing the expression of Z-DNA binding protein 1 (ZBP1) and adenosine deaminase acting on RNA 1 (ADAR1). Interestingly, we found that caspase inhibition significantly promoted CBL0137-induced necroptosis, which was further supported with the increase of the late apoptosis and necrosis assessed by the flow cytometry. Furthermore, we found that CBL0137 can also induce the expression of the three necroptosis-related proteins: receptor interacting serine/threonine kinase 1 (RIPK1), receptor interacting serine/threonine kinase 3 (RIPK3), and mixed lineage kinase domain-like (MLKL). Taken together, it was assumed that CBL0137-indued necroptosis in liver cells was due to induction of Z-DNA and ZBP1, which activated RIPK1/RIPK3/MLKL pathway. This represents the first report on the induction of the Z-DNA-mediated necroptosis by CBL0137 in the liver cancer cells, which should provide new perspectives for CBL0137 treatment of liver cancer.


Assuntos
Antineoplásicos , Carbazóis , DNA Forma Z , Neoplasias Hepáticas , Humanos , Proteínas de Transporte/metabolismo , Necroptose , Proteínas Quinases/metabolismo , Apoptose , Antineoplásicos/farmacologia , Neoplasias Hepáticas/tratamento farmacológico , Proteínas Serina-Treonina Quinases/metabolismo , Serina
17.
FASEB J ; 37(6): e22964, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37199660

RESUMO

Cardiac ischemia/reperfusion (I/R) injury is a complicated pathological event, which has close association with pyroptosis. This study uncovered the regulatory mechanisms of fat mass and obesity-associated protein (FTO) in NLRP3-mediated pyroptosis during cardiac I/R injury. H9c2 cells were stimulated with oxygen-glucose deprivation/reoxygenation (OGD/R). Cell viability and pyroptosis were detected by CCK-8 and flow cytometry. Western blotting or RT-qPCR was performed to analyze target molecule expression. NLRP3 and Caspase-1 expression was observed by immunofluorescence staining. IL-18 and IL-1ß production was detected by ELISA. The total m6A and m6A level of CBL was determined by dot blot assay and methylated RNA immunoprecipitation-qPCR, respectively. The interaction between IGF2BP3 and CBL mRNA was confirmed by RNA pull-down and RIP assays. The protein interaction between CBL and ß-catenin and ß-catenin ubiquitination were evaluated by Co-IP. Myocardial I/R model was established in rats. We determined infarct size by TTC staining and pathological changes by H&E staining. LDH, CK-MB, LVFS, and LVEF were also assessed. FTO and ß-catenin were down-regulated, while CBL was up-regulated by OGD/R stimulation. FTO/ß-catenin overexpression or CBL silencing restrained OGD/R-induced NLRP3 inflammasome-mediated pyroptosis. CBL repressed ß-catenin expression via ubiquitination and degradation. FTO reduced the mRNA stability of CBL by inhibiting m6A modification. CBL-mediated ubiquitination and degradation of ß-catenin were involved in FTO-induced pyroptosis inhibition during myocardial I/R injury. FTO inhibits NLRP3-mediated pyroptosis to attenuate myocardial I/R injury via repressing CBL-induced ubiquitination degradation of ß-catenin.


Assuntos
Traumatismo por Reperfusão Miocárdica , Traumatismo por Reperfusão , Animais , Ratos , beta Catenina , Inflamassomos/metabolismo , Traumatismo por Reperfusão Miocárdica/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Piroptose/fisiologia , Traumatismo por Reperfusão/metabolismo , RNA , Proteínas Proto-Oncogênicas c-cbl
18.
Am J Med Genet A ; 194(8): e63627, 2024 08.
Artigo em Inglês | MEDLINE | ID: mdl-38613168

RESUMO

Casitas B-lineage lymphoma (CBL) encodes an adaptor protein with E3-ligase activity negatively controlling intracellular signaling downstream of receptor tyrosine kinases. Somatic CBL mutations play a driver role in a variety of cancers, particularly myeloid malignancies, whereas germline defects in the same gene underlie a RASopathy having clinical overlap with Noonan syndrome (NS) and predisposing to juvenile myelomonocytic leukemia and vasculitis. Other features of the disorder include cardiac defects, postnatal growth delay, cryptorchidism, facial dysmorphisms, and predisposition to develop autoimmune disorders. Here we report a novel CBL variant (c.1202G>T; p.Cys401Phe) occurring de novo in a subject with café-au-lait macules, feeding difficulties, mild dysmorphic features, psychomotor delay, autism spectrum disorder, thrombocytopenia, hepatosplenomegaly, and recurrent hypertransaminasemia. The identified variant affects an evolutionarily conserved residue located in the RING finger domain, a known mutational hot spot of both germline and somatic mutations. Functional studies documented enhanced EGF-induced ERK phosphorylation in transiently transfected COS1 cells. The present findings further support the association of pathogenic CBL variants with immunological and hematological manifestations in the context of a presentation with only minor findings reminiscent of NS or a clinically related RASopathy.


Assuntos
Mutação em Linhagem Germinativa , Proteínas Proto-Oncogênicas c-cbl , Humanos , Proteínas Proto-Oncogênicas c-cbl/genética , Mutação em Linhagem Germinativa/genética , Masculino , Síndrome de Noonan/genética , Síndrome de Noonan/patologia , Transtorno do Espectro Autista/genética , Transtorno do Espectro Autista/patologia , Transtorno do Espectro Autista/imunologia , Transtorno do Espectro Autista/sangue , Predisposição Genética para Doença , Pré-Escolar , Criança , Animais , Fenótipo , Células COS , Trombocitopenia/genética , Trombocitopenia/patologia
19.
J Neurooncol ; 2024 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-39251545

RESUMO

PURPOSE: Standard-of-care for glioblastoma remains surgical debulking followed by temozolomide and radiation. However, many tumors become radio-resistant while radiation damages surrounding brain tissue. Novel therapies are needed to increase the effectiveness of radiation and reduce the required radiation dose. Drug candidate CBL0137 is efficacious against glioblastoma by inhibiting histone chaperone FACT, known to be involved in DNA damage repair. We investigated the combination of CBL0137 and radiation on glioblastoma. METHODS: In vitro, we combined CBL0137 with radiation on U87MG and A1207 glioblastoma cells using the clonogenic assay to evaluate the response to several treatment regimens, and the Fast Halo Assay to examine DNA repair. In vivo, we used the optimum combination treatment regimen to evaluate the response of orthotopic tumors in nude mice. RESULTS: In vitro, the combination of CBL0137 and radiation is superior to either alone and administering CBL0137 two hours prior to radiation, having the drug present during and for a prolonged period post-radiation, is an optimal schedule. CBL0137 inhibits DNA damage repair following radiation and affects the subcellular distribution of histone chaperone ATRX, a molecule involved in DNA repair. In vivo, one dose of CBL0137 is efficacious and the combination of CBL0137 with radiation increases median survival over either monotherapy. CONCLUSIONS: CBL0137 is most effective with radiation for glioblastoma when present at the time of radiation, immediately after and for a prolonged period post-radiation, by inhibiting DNA repair caused by radiation. The combination leads to increased survival making it attractive as a dual therapy.

20.
Inflamm Res ; 73(4): 597-617, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38353723

RESUMO

OBJECTIVE: PANoptosis, a new form of regulated cell death, concomitantly manifests hallmarks for pyroptosis, apoptosis, and necroptosis. It has been usually observed in macrophages, a class of widely distributed innate immune cells in various tissues, upon pathogenic infections. The second-generation curaxin, CBL0137, can trigger necroptosis and apoptosis in cancer-associated fibroblasts. This study aimed to explore whether CBL0137 induces PANoptosis in macrophages in vitro and in mouse tissues in vivo. METHODS: Bone marrow-derived macrophages and J774A.1 cells were treated with CBL0137 or its combination with LPS for indicated time periods. Cell death was assayed by propidium iodide staining and immunoblotting. Immunofluorescence microscopy was used to detect cellular protein distribution. Mice were administered with CBL0137 plus LPS and their serum and tissues were collected for biochemical and histopathological analyses, respectively. RESULTS: The results showed that CBL0137 alone or in combination with LPS induced time- and dose-dependent cell death in macrophages, which was inhibited by a combination of multiple forms of cell death inhibitors but not each alone. This cell death was independent of NLRP3 expression. CBL0137 or CBL0137 + LPS-induced cell death was characterized by simultaneously increased hallmarks for pyroptosis, apoptosis and necroptosis, indicating that this is PANoptosis. Induction of PANoptosis was associated with Z-DNA formation in the nucleus and likely assembly of PANoptosome. ZBP1 was critical in mediating CBL0137 + LPS-induced cell death likely by sensing Z-DNA. Moreover, intraperitoneal administration of CBL0137 plus LPS induced systemic inflammatory responses and caused multi-organ (including the liver, kidney and lung) injury in mice due to induction of PANoptosis in these organs. CONCLUSIONS: CBL0137 alone or plus inflammatory stimulation induces PANoptosis both in vitro and in vivo, which is associated with systemic inflammatory responses in mice.


Assuntos
Carbazóis , DNA Forma Z , Neoplasias , Camundongos , Animais , Lipopolissacarídeos/farmacologia , Apoptose , Piroptose
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA