Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Plant J ; 110(4): 932-945, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35218268

RESUMO

Flavonoids are a well-known class of specialized metabolites that play key roles in plant development, reproduction, and survival. Flavonoids are also of considerable interest from the perspective of human health, as both phytonutrients and pharmaceuticals. RNA sequencing analysis of an Arabidopsis null allele for chalcone synthase (CHS), which catalyzes the first step in flavonoid metabolism, has uncovered evidence that these compounds influence the expression of genes associated with the plant circadian clock. Analysis of promoter-luciferase constructs further showed that the transcriptional activity of CCA1 and TOC1, two key clock genes, is altered in CHS-deficient seedlings across the day/night cycle. Similar findings for a mutant line lacking flavonoid 3'-hydroxylase (F3'H) activity, and thus able to synthesize mono- but not dihydroxylated B-ring flavonoids, suggests that the latter are at least partially responsible; this was further supported by the ability of quercetin to enhance CCA1 promoter activity in wild-type and CHS-deficient seedlings. The effects of flavonoids on circadian function were also reflected in photosynthetic activity, with chlorophyll cycling abolished in CHS- and F3'H-deficient plants. Remarkably, the same phenotype was exhibited by plants with artificially high flavonoid levels, indicating that neither the antioxidant potential nor the light-screening properties of flavonoids contribute to optimal clock function, as has recently also been demonstrated in animal systems. Collectively, the current experiments point to a previously unknown connection between flavonoids and circadian cycling in plants and open the way to better understanding of the molecular basis of flavonoid action.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Relógios Circadianos , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Relógios Circadianos/genética , Ritmo Circadiano/genética , Flavonoides/metabolismo , Regulação da Expressão Gênica de Plantas , Mutação , Plântula/metabolismo
2.
BMC Genomics ; 23(1): 374, 2022 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-35581536

RESUMO

BACKGROUND: CIRCADIAN CLOCK ASSOCIATED 1 like (CCA1L) proteins are important components that participate in plant growth and development, and now have been characterized in multiple plant species. However, information on mungbean CCA1L genes is limited. RESULTS: In this study, we identified 27 VrCCA1L genes from the mungbean genome. VrCCA1L genes were unevenly distributed on 10 of the 11 chromosomes and showed one tandem and two interchromosomal duplication events. Two distinct kinds of conserved MYB domains, MYB 1 and MYB 2, were found, and the conserved SHAQK(Y/F) F sequence was found at the C terminus of each MYB 2 domain. The VrCCA1Ls displayed a variety of exon-intron organizations, and 24 distinct motifs were found among these genes. Based on phylogenetic analysis, VrCCA1L proteins were classified into five groups; group I contained the most members, with 11 VrCCA1Ls. VrCCA1L promoters contained different types and numbers of cis-acting elements, and VrCCA1Ls showed different expression levels in different tissues. The VrCCA1Ls also displayed distinct expression patterns under different photoperiod conditions throughout the day in leaves. VrCCA1L26 shared greatest homology to Arabidopsis CCA1 and LATE ELONGATED HYPOCOTYL (LHY). It delayed the flowering time in Arabidopsis by affecting the expression levels of CONSTANS (CO), FLOWERING LOCUS T (FT), and SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 (SOC1). CONCLUSION: We identified and characterized 27 VrCCA1L genes from mungbean genome, and investigated their spatio-temporal expression patterns. Further analysis revealed that VrCCA1L26 delayed flowering time in transgenic Arabidopsis plants. Our results provide useful information for further functional characterization of the VrCCA1L genes.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Relógios Circadianos , Vigna , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Relógios Circadianos/genética , Ritmo Circadiano/genética , Flores , Regulação da Expressão Gênica de Plantas , Fotoperíodo , Filogenia , Vigna/genética
3.
BMC Plant Biol ; 22(1): 472, 2022 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-36195835

RESUMO

BACKGROUND: To adapt the periodic fluctuation of environmental factors, plants are subtle to monitor the natural variation for the growth and development. The daily activities and physiological functions in coordination with the natural variation are regulated by circadian clock genes. The circadian emission of floral scents is one of the rhythmic physiological activities controlled by circadian clock genes. Here, we study the molecular mechanism of circadian emission pattern of ocimene and linalool compounds in Oncidium Sharry Baby (Onc. SB) orchid. RESULTS: GC-Mass analysis revealed that Onc. SB periodically emitted ocimene and linalool during 6 to 14 o'clock daily. Terpene synthase, one of the key gene in the terpenoid biosynthetic pathway is expressed in coordination with scent emission. The promoter structure of terpene synthase revealed a circadian binding sequence (CBS), 5'-AGATTTTT-3' for CIRCADIAN CLOCK ASSOCIATED1 (CCA1) transcription factor. EMSA data confirms the binding affinity of CCA1. Transactivation assay further verified that TPS expression is regulated by CCA1. It suggests that the emission of floral scents is controlled by CCA1. CONCLUSIONS: The work validates that the mechanism of circadian emission of floral scents in Onc. Sharry Baby is controlled by the oscillator gene, CCA1(CIRCADIAN CLOCK ASSOCIATED 1) under light condition. CCA1 transcription factor up-regulates terpene synthase (TPS) by binding on CBS motif, 5'-AGATTTTT-3' of promoter region to affect the circadian emission of floral scents in Onc. SB.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Relógios Circadianos , Orchidaceae , Monoterpenos Acíclicos , Alquil e Aril Transferases , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Relógios Circadianos/genética , Ritmo Circadiano/fisiologia , Regulação da Expressão Gênica de Plantas , Odorantes , Orchidaceae/genética , Orchidaceae/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
4.
Biosci Biotechnol Biochem ; 86(12): 1623-1630, 2022 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-36149326

RESUMO

Nonhost resistance (NHR) is the most robust and durable resistance in plants, but its spatiotemporal regulation is poorly understood. The circadian clock functions in a tissue-specific manner and regulates individual physiological processes in plants. Using mutant and RNA-seq analyses, we revealed a role of CIRCADIAN CLOCK ASSOCIATED1 (CCA1) in tissue-specific and time-of-day-specific regulation of NHR to Pyricularia oryzae (syn. Magnaporthe oryzae) in Arabidopsis thaliana (Arabidopsis). Targeted perturbation of CCA1 function in epidermis compromised time-of-day-specific regulation of NHR to P. oryzae in Arabidopsis. RNA-seq analysis showed that P. oryzae inoculation alters the transcriptome in penetration 2 (pen2) plants and identified POWDERY MILDEW RESISTANCE 5 (PMR5) as a candidate gene of direct targets of CCA1. Time-of-day-specific penetration resistance to P. oryzae was reduced in Arabidopsis pen2 pmr5 mutant plants. These findings suggest that epidermal CCA1 and PMR5 contribute to the establishment of time-of-day-specific NHR to P. oryzae in Arabidopsis.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Relógios Circadianos , Arabidopsis/metabolismo , Relógios Circadianos/genética , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Mutação , Epiderme/metabolismo , Ritmo Circadiano , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
5.
Plant Cell Physiol ; 62(5): 815-826, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-33693842

RESUMO

The plant circadian oscillation system is based on the circadian clock of individual cells. Circadian behavior of cells has been observed by monitoring the circadian reporter activity, such as bioluminescence of AtCCA1::LUC+. To deeply analyze different circadian behaviors in individual cells, we developed the dual-color bioluminescence monitoring system that automatically measured the luminescence of two luciferase reporters simultaneously at a single-cell level. We selected a yellow-green-emitting firefly luciferase (LUC+) and a red-emitting luciferase (PtRLUC) that is a mutant form of Brazilian click beetle ELUC. We used AtCCA1::LUC+ and CaMV35S::PtRLUC. CaMV35S::LUC+ was previously reported as a circadian reporter with a low-amplitude rhythm. These bioluminescent reporters were introduced into the cells of a duckweed, Lemna minor, by particle bombardment. Time series of the bioluminescence of individual cells in a frond were obtained using a dual-color bioluminescence monitoring system with a green-pass- and red-pass filter. Luminescence intensities from the LUC+ and PtRLUC of each cell were calculated from the filtered luminescence intensities. We succeeded in reconstructing the bioluminescence behaviors of AtCCA1::LUC+ and CaMV35S::PtRLUC in the same cells. Under prolonged constant light conditions, AtCCA1::LUC+ showed a robust circadian rhythm in individual cells in an asynchronous state in the frond, as previously reported. By contrast, CaMV35S::PtRLUC stochastically showed circadian rhythms in a synchronous state. These results strongly suggested the uncoupling of cellular behavior between these circadian reporters. This dual-color bioluminescence monitoring system is a powerful tool to analyze various stochastic phenomena accompanying large cell-to-cell variation in gene expression.


Assuntos
Araceae/fisiologia , Ritmo Circadiano/fisiologia , Medições Luminescentes/métodos , Araceae/citologia , Caulimovirus/genética , Genes Reporter , Luciferases/genética , Luciferases/metabolismo , Luciferases de Vaga-Lume/genética , Luciferases de Vaga-Lume/metabolismo , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Transfecção
6.
Plant Cell Rep ; 40(2): 421-432, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33398474

RESUMO

KEY MESSAGE: CCA1α and CCA1ß protein variants respond to environmental light and temperature cues, and higher temperature promotes CCA1ß protein production and causes its retention detectable in the cytoplasm. CIRCADIAN CLOCK ASSOCIATED1 (CCA1), as the core transcription factor of circadian clock, is involved in the regulation of endogenous circadian rhythm in Arabidopsis. Previous studies have shown that CCA1 consists of two abundant splice variants, fully spliced CCA1α and intron-retaining CCA1ß. CCA1ß is believed to form a nonfunctional heterodimer with CCA1α and its closed-related homolog LHY. Many studies have established that CCA1ß is a transcription product, while how CCA1ß protein is produced and how two CCA1 isoforms respond to environmental cues have not been elucidated. In this study, we identified CCA1α and CCA1ß protein variants under different photoperiods with warm or cold temperature cycles, respectively. Our results showed that CCA1 protein production is regulated by prolonged light exposure and warm temperature. The protein levels of CCA1α and CCA1ß peak in the morning, but the detection of CCA1ß is dependent on immunoprecipitation enrichment at 22 °C. Higher temperature of 37 °C promotes CCA1ß protein production and causes its retention to be detectable in the cytoplasm. Overall, our results indicate that two splice variants of the CCA1 protein respond to environmental light and temperature signals and may, therefore, maintain the circadian rhythms and give individuals the ability to adapt to environment.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Ritmo Circadiano/genética , Fatores de Transcrição/metabolismo , Aclimatação , Processamento Alternativo , Arabidopsis/fisiologia , Arabidopsis/efeitos da radiação , Proteínas de Arabidopsis/genética , Citoplasma/metabolismo , Luz , Fotoperíodo , Isoformas de Proteínas , Temperatura , Fatores de Transcrição/genética
7.
Proc Natl Acad Sci U S A ; 115(45): 11631-11636, 2018 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-30352855

RESUMO

CONSTITUTIVELY PHOTOMORPHOGENIC 1 (COP1) and DE-ETIOLATED 1 (DET1) are founding components of two central repressor complexes of photomorphogenesis that trigger the degradation of a larger number of photomorphogenic-promoting factors in darkness. Here, we identify COP1 SUPPRESSOR 4 (CSU4) as a genetic suppressor of the cop1-6 mutation. Mutations in CSU4 largely rescued the constitutively photomorphogenic phenotype of cop1-6 and det1-1 in darkness. Loss of CSU4 function resulted in significantly longer hypocotyl in the light. Further biochemical studies revealed that CSU4 physically interacts with CIRCADIAN CLOCK-ASSOCIATED 1 (CCA1) and negatively regulates its transcriptional repression activity toward its targets. CSU4 represses the expression of CCA1 in the early morning and of PHYTOCHROME INTERACTING FACTOR 4 (PIF4) in the early evening. Our study suggests that CSU4 acts as a negative regulator of CCA1 via physically associating with CCA1, which in turn, likely serves to repress expression of CCA1 and PIF4 to promote photomorphogenesis.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Regulação da Expressão Gênica de Plantas , Desenvolvimento Vegetal/genética , Folhas de Planta/genética , Proteínas Repressoras/genética , Fatores de Transcrição/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Arabidopsis/efeitos da radiação , Proteínas de Arabidopsis/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Escuridão , Regulação da Expressão Gênica no Desenvolvimento , Peptídeos e Proteínas de Sinalização Intracelular , Mutação , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fotossíntese/genética , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Folhas de Planta/efeitos da radiação , Ligação Proteica , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas Repressoras/metabolismo , Plântula/genética , Plântula/crescimento & desenvolvimento , Plântula/metabolismo , Plântula/efeitos da radiação , Transdução de Sinais , Fatores de Transcrição/metabolismo , Transcrição Gênica , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
8.
Biochem Biophys Res Commun ; 527(4): 935-940, 2020 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-32430181

RESUMO

Circadian clock controls plant behaviors to anticipate day-night switch and keeps plant fitness. Here, we reported that plant response to auxin is also strictly governed by clock. The amplitude of auxin-responsive gene expressions gradually declined from morning to the dusk, and then enhanced from dusk to dawn. Plants with defects in both CIRCADIAN CLOCK ASSOCIATED1 (CCA1) and its closest homologue LATE ELONGATED HYPOCOTYL (LHY) (cca1 lhy) showed comparable responses to auxin at different time points in consecutive days, suggesting that CCA1 and LHY were required for gating auxin responses. Moreover, CCA1/LHY physically interacted with the core transcriptional repressors (Aux/IAA proteins), which might further modulate plant sensitivity to auxin. Taken together, we demonstrate that the central morning phased circadian oscillator CCA1 plays a pivotal role in gating auxin response.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Ácidos Indolacéticos/metabolismo , Mapas de Interação de Proteínas , Fatores de Transcrição/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Fatores de Transcrição/genética
9.
Planta ; 252(4): 48, 2020 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-32892254

RESUMO

MAIN CONCLUSION: The NAC transcription factor ATAF2 suppresses its own transcription via self-promoter binding. ATAF2 genetically interacts with the circadian regulator CCA1 and phytochrome A to modulate seedling photomorphogenesis in Arabidopsis thaliana. ATAF2 (ANAC081) is a NAC (NAM, ATAF and CUC) transcription factor (TF) that participates in the regulation of disease resistance, stress tolerance and hormone metabolism in Arabidopsis thaliana. We previously reported that ATAF2 promotes Arabidopsis hypocotyl growth in a light-dependent manner via transcriptionally suppressing the brassinosteroid (BR)-inactivating cytochrome P450 genes BAS1 (CYP734A1, formerly CYP72B1) and SOB7 (CYP72C1). Assays using low light intensities suggest that the photoreceptor phytochrome A (PHYA) may play a more critical role in ATAF2-regulated photomorphogenesis than phytochrome B (PHYB) and cryptochrome 1 (CRY1). In addition, ATAF2 is also regulated by the circadian clock. The core circadian TF CIRCADIAN CLOCK ASSOCIATED 1 (CCA1) physically interacts with ATAF2 at the DNA-protein and protein-protein levels, and both differentially suppress BAS1- and SOB7-mediated BR catabolism. In this research, we show that ATAF2 can bind its own promoter as a transcriptional self-repressor. This self-feedback-suppression loop is a typical feature of multiple circadian-regulated genes. Additionally, ATAF2 and CCA1 synergistically suppress seedling photomorphogenesis as reflected by the light-dependent hypocotyl growth analysis of their single and double gene knock-out mutants. Similar fluence-rate response assays using ATAF2 and photoreceptor (PHYB, CRY1 and PHYA) knock-out mutants demonstrate that PHYA is required for ATAF2-regulated photomorphogenesis in a wide range of light intensities. Furthermore, disruption of PHYA can suppress the BR-insensitive hypocotyl-growth phenotype of ATAF2 loss-of-function seedlings in the light, but not in darkness. Collectively, our results provide a genetic interaction synopsis of the circadian-clock-photomorphogenesis-BR integration node involving ATAF2, CCA1 and PHYA.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Regulação da Expressão Gênica de Plantas , Fitocromo A , Desenvolvimento Vegetal , Proteínas Repressoras , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Mutação , Fitocromo A/metabolismo , Fitocromo B/genética , Desenvolvimento Vegetal/genética , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Plântula/genética
10.
J Exp Bot ; 71(3): 970-985, 2020 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-31639820

RESUMO

Brassinosteroids (BRs) are a group of steroid hormones regulating plant growth and development. Since BRs do not undergo transport among plant tissues, their metabolism is tightly regulated by transcription factors (TFs) and feedback loops. BAS1 (CYP734A1, formerly CYP72B1) and SOB7 (CYP72C1) are two BR-inactivating cytochrome P450s identified in Arabidopsis thaliana. We previously found that a TF ATAF2 (ANAC081) suppresses BAS1 and SOB7 expression by binding to the Evening Element (EE) and CIRCADIAN CLOCK ASSOCIATED 1 (CCA1)-binding site (CBS) on their promoters. Both the EE and CBS are known binding targets of the circadian regulatory protein CCA1. Here, we confirm that CCA1 binds the EE and CBS motifs on BAS1 and SOB7 promoters, respectively. Elevated accumulations of BAS1 and SOB7 transcripts in the CCA1 null mutant cca1-1 indicate that CCA1 is a repressor of their expression. When compared with either cca1-1 or the ATAF2 null mutant ataf2-2, the cca1-1 ataf2-2 double mutant shows higher SOB7 transcript accumulations and a stronger BR-insensitive phenotype of hypocotyl elongation in white light. CCA1 interacts with ATAF2 at both DNA-protein and protein-protein levels. ATAF2, BAS1, and SOB7 are all circadian regulated with distinct expression patterns. These results demonstrate that CCA1 and ATAF2 differentially suppress BAS1- and SOB7-mediated BR inactivation.


Assuntos
Proteínas de Arabidopsis/metabolismo , Brassinosteroides/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Peroxirredoxinas/metabolismo , Proteínas Repressoras/metabolismo , Fatores de Transcrição/metabolismo , Arabidopsis
11.
New Phytol ; 224(4): 1685-1696, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31411748

RESUMO

Endogenous (˜24 circadian) rhythms control an enormously diverse range of processes in plants and are, increasingly, the target of studies aimed at understanding plant performance. Although in the previous few decades most plant circadian research has focused on Arabidopsis, there is a pressing need for low-cost, high-throughput tools for analyzing rhythms in a wider variety of species. The present contribution investigates using circadian temperature oscillations as a novel marker for assaying plant circadian rhythms. A thermal imaging platform was set up to measure diel and circadian rhythms in different plant species, in wild-type and circadian mutant plants, and in leaves and flowers. Results from the thermal imaging technique were compared with those from other established circadian assay techniques. All of the dicot and monocot species examined showed robust circadian rhythms of leaf surface temperature; the effects of circadian mutations on thermocycles were similar to those reported using other techniques. In Petunia × atkinsiana plants circadian oscillations were observed in both leaves and flowers. Thermal imaging is an extremely useful technique for analyzing circadian rhythms in plants. It is predicted that the ability to make very high temporal resolution measurements may facilitate the discovery of novel aspects of circadian control.


Assuntos
Ritmo Circadiano/fisiologia , Folhas de Planta/fisiologia , Termografia/métodos , Arabidopsis/fisiologia , Flores/fisiologia , Regulação da Expressão Gênica de Plantas , Hordeum/fisiologia , Solanum lycopersicum/fisiologia , Mutação , Petunia/fisiologia , Estômatos de Plantas/fisiologia , Temperatura
12.
Biochem Biophys Res Commun ; 507(1-4): 324-329, 2018 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-30448057

RESUMO

MYB transcription factors play important roles in the regulation of phenylpropanoid biosynthesis. However, the knowledge regarding the roles of CCA1-like MYBs in phenylpropanoid pathway is limited in plants. Previously, we identified 54 CCA1-like proteins in soybean. In the study, a CCA1-like MYB (GmMYB133) was functionally characterized as a positive regulator in isoflavonoid synthesis. GmMYB133 encodes a 330 aa protein featured with one CCA1 conserved motif. Further analysis indicated that the expression pattern of GmMYB133 was near-perfectly correlated with isoflavonoid accumulation as soybean embryos develop. GmMYB133 over-expression promoted the expression of two key isoflavonoid biosynthetic genes (GmCHS8 and GmIFS2) and increased total isoflavonoid content in hairy roots. Protein-protein interaction assays indicated that GmMYB133 might form hetero- and homodimers with an isoflavonoid regulator GmMYB176 and itself, respectively, while the subcellular localization of GmMYB133 can be altered by its interaction with 14-3-3 protein. These findings provided new insights into the functional roles of CCA1-like MYB proteins in the regulation of phenylpropanoid pathway, and will contribute to the future genetic engineering in the improvement of soybean seed quality.


Assuntos
Vias Biossintéticas , Glycine max/metabolismo , Isoflavonas/biossíntese , Proteínas de Plantas/metabolismo , Fatores de Transcrição/metabolismo , Regulação da Expressão Gênica de Plantas , Filogenia , Proteínas de Plantas/genética , Raízes de Plantas/metabolismo , Mapas de Interação de Proteínas , Glycine max/embriologia , Glycine max/genética
13.
Plant Cell Environ ; 40(10): 2426-2436, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28771755

RESUMO

Temperature is a major signal that governs plant distribution and shapes plant growth. High ambient temperature promotes plant thermomorphogenesis without significant induction of heat-stress responses. Although much progress of warm temperature-mediated plant growth has been made during recent years, the thermomorphogenic signalling pathway is not well understood. We previously revealed that PICKLE (PKL), an ATP-dependent chromatin remodelling factor, negatively controls photomorphogenesis in Arabidopsis thaliana. Here, we show that mutations in PKL lead to reduced sensitivity in hypocotyl elongation to warm temperature (28 °C). We demonstrate that CIRCADIAN CLOCK-ASSOCIATED 1 (CCA1) directly binds to the specific promoter regions of PKL and its expression is reduced in the cca1 mutants. We find that the cca1 seedlings are also less sensitive to temperature-mediated growth than the wild-type plants. Furthermore, PKL affects the level of trimethylation of histone H3 Lys 27 associated with INDOLE-3-ACETIC ACID INDUCIBLE 19 (IAA19) and IAA29 and regulates their expression. We also identify 6 additional transcription factors as the upstream regulators of PKL. Our study thus reveals PKL and CCA1 as 2 novel factors in controlling plant growth in response to the elevated temperature environment and provides new insight into the integration of light and temperature signals through chromatin regulation.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Montagem e Desmontagem da Cromatina , DNA Helicases/metabolismo , Hipocótilo/crescimento & desenvolvimento , Temperatura , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Montagem e Desmontagem da Cromatina/efeitos dos fármacos , Montagem e Desmontagem da Cromatina/genética , DNA Helicases/genética , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Hipocótilo/efeitos dos fármacos , Ácidos Indolacéticos/farmacologia , Morfogênese/efeitos dos fármacos , Mutação/genética , Regiões Promotoras Genéticas/genética , Ligação Proteica/efeitos dos fármacos , Fatores de Transcrição/metabolismo , Transcrição Gênica/efeitos dos fármacos
14.
Genome ; 60(5): 402-413, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28177832

RESUMO

Flowering time is a very important agronomic trait and the development of molecular markers associated with this trait can facilitate crop breeding. CIRCADIAN CLOCK ASSOCIATED 1 (CCA1), a core oscillator component of circadian rhythms that affect metabolic pathways in plants, has been implicated in flowering time control in species of Brassica. CCA1 gene sequences from three Brassica rapa inbred lines, showing either early flowering or late flowering phenotypes, were analyzed and a high level of sequence variation was identified, especially within the fourth intron. Using this information, three PCR primer sets were designed and tested using various inbred lines of B. rapa. The usage of InDel markers was further validated by evaluation of flowering time and high resolution melting (HRM) analysis. Both methods, PCR and HRM, validated the use of newly developed markers. Additional sequence analyses of Brassica plants with diploid (AA, BB, or CC) and allotetraploid genomes further confirmed a large number of sequence polymorphisms in the CCA1 gene, including insertions/deletions in the fourth intron. Our results demonstrated that sequence variations in CCA1 can be used to develop valuable trait-related molecular markers for Brassica crop breeding.


Assuntos
Brassica rapa/genética , Peptídeos e Proteínas de Sinalização do Ritmo Circadiano/genética , Flores/genética , Variação Genética , Proteínas de Plantas/genética , Brassica rapa/classificação , DNA de Plantas/química , DNA de Plantas/genética , Diploide , Genoma de Planta/genética , Mutação INDEL , Fenótipo , Filogenia , Melhoramento Vegetal/métodos , Análise de Sequência de DNA , Tetraploidia , Fatores de Tempo
15.
Int J Mol Sci ; 18(10)2017 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-28937654

RESUMO

Plant CIRCADIAN CLOCK ASSOCIATED1 (CCA1)-like proteins are a class of single-repeat MYELOBLASTOSIS ONCOGENE (MYB) transcription factors generally featured by a highly conserved motif SHAQK(Y/F)F, which play important roles in multiple biological processes. Soybean is an important grain legume for seed protein and edible vegetable oil. However, essential understandings regarding CCA1-like proteins are very limited in soybean. In this study, 54 CCA1-like proteins were identified by data mining of soybean genome. Phylogenetic analysis indicated that soybean CCA1-like subfamily showed evolutionary conservation and diversification. These CCA1-like genes displayed tissue-specific expression patterns, and analysis of genomic organization and evolution revealed 23 duplicated gene pairs. Among them, GmMYB138a was chosen for further investigation. Our protein-protein interaction studies revealed that GmMYB138a, but not its alternatively spliced isoform, interacts with a 14-3-3 protein (GmSGF14l). Although GmMYB138a was predominately localized in nucleus, the resulting complex of GmMYB138a and GmSGF14l was almost evenly distributed in nucleus and cytoplasm, supporting that 14-3-3s interact with their clients to alter their subcellular localization. Additionally, qPCR analysis suggested that GmMYB138a and GmSGF14l synergistically or antagonistically respond to drought, cold and salt stresses. Our findings will contribute to future research in regard to functions of soybean CCA1-like subfamily, especially regulatory mechanisms of GmMYB138a in response to abiotic stresses.


Assuntos
Glycine max/metabolismo , Proteínas de Plantas/metabolismo , Proteínas 14-3-3/genética , Proteínas 14-3-3/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Estudo de Associação Genômica Ampla/métodos , Proteínas de Plantas/genética , Ligação Proteica/genética , Ligação Proteica/fisiologia , Glycine max/genética
16.
Plant Direct ; 7(10): e533, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37811362

RESUMO

The functions of closely related Myb-like repressor and Myb-like activator proteins within the plant circadian oscillator have been well-studied as separate groups, but the genetic interactions between them are less clear. We hypothesized that these repressors and activators would interact additively to regulate both circadian and growth phenotypes. We used CRISPR-Cas9 to generate new mutant alleles and performed physiological and molecular characterization of plant mutants for five of these core Myb-like clock factors compared with a repressor mutant and an activator mutant. We first examined circadian clock function in plants likely null for both the repressor proteins, CIRCADIAN CLOCK ASSOCIATED 1 (CCA1) and LATE ELONGATED HYPOCOTYL (LHY), and the activator proteins, REVEILLE 4 (RVE4), REVEILLE (RVE6), and REVEILLE (RVE8). The rve468 triple mutant has a long period and flowers late, while cca1 lhy rve468 quintuple mutants, similarly to cca1 lhy mutants, have poor circadian rhythms and flower early. This suggests that CCA1 and LHY are epistatic to RVE4, RVE6, and RVE8 for circadian clock and flowering time function. We next examined hypocotyl elongation and rosette leaf size in these mutants. The cca1 lhy rve468 mutants have growth phenotypes intermediate between cca1 lhy and rve468 mutants, suggesting that CCA1, LHY, RVE4, RVE6, and RVE8 interact additively to regulate growth. Together, our data suggest that these five Myb-like factors interact differently in regulation of the circadian clock versus growth. More generally, the near-norm al seedling phenotypes observed in the largely arrhythmic quintuple mutant demonstrate that circadian-regulated output processes, like control of hypocotyl elongation, do not always depend upon rhythmic oscillator function.

17.
Cell Rep ; 42(12): 113483, 2023 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-37995186

RESUMO

The circadian clock regulates temporal metabolic activities, but how it affects lipid metabolism is poorly understood. Here, we show that the central clock regulators LATE ELONGATED HYPOCOTYL (LHY) and CIRCADIAN CLOCK ASSOCIATED 1 (CCA1) regulate the initial step of fatty acid (FA) biosynthesis in Arabidopsis. Triacylglycerol (TAG) accumulation in seeds was increased in LHY-overexpressing (LHY-OE) and decreased in lhycca1 plants. Metabolic tracking of lipids in developing seeds indicated that LHY enhanced FA synthesis. Transcript analysis revealed that the expression of genes involved in FA synthesis, including the one encoding ß-ketoacyl-ACP synthase III (KASIII), was oppositely changed in developing seeds of LHY/CCA1-OEs and lhycca1. Chromatin immunoprecipitation, electrophoretic mobility shift, and transactivation assays indicated that LHY bound and activated the promoter of KASIII. Furthermore, phosphatidic acid, a metabolic precursor to TAG, inhibited LHY binding to KASIII promoter elements. Our data show a regulatory mechanism for plant lipid biosynthesis by the molecular clock.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Relógios Circadianos , Arabidopsis/metabolismo , Relógios Circadianos/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Ácidos Graxos/metabolismo , Ritmo Circadiano/genética
18.
Epigenetics ; 17(1): 41-58, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-33406971

RESUMO

Plant somatic cells can be reprogrammed into pluripotent cell mass, called callus, through a two-step in vitro tissue culture method. Incubation on callus-inducing medium triggers active cell proliferation to form a pluripotent callus. Notably, DNA methylation is implicated during callus formation, but a detailed molecular process regulated by DNA methylation remains to be fully elucidated. Here, we compared genome-wide DNA methylation profiles between leaf and callus tissues in Arabidopsis using whole-genome bisulphite-sequencing. Global distribution of DNA methylation showed that CHG methylation was increased, whereas CHH methylation was reduced especially around transposable element (TE) regions during the leaf-to-callus transition. We further analysed differentially expressed genes around differentially methylated TEs (DMTEs) during the leaf-to-callus transition and found that genes involved in cell cycle regulation were enriched and also constituted a coexpression gene network along with pluripotency regulators. In addition, a conserved DNA sequence analysis for upstream cis-elements led us to find a putative transcription factor associated with cell fate transition. CIRCADIAN CLOCK-ASSOCIATED 1 (CCA1) was newly identified as a regulator of plant regeneration, and consistently, the cca1lhy mutant displayed altered phenotypes in callus proliferation. Overall, these results suggest that DNA methylation coordinates cell cycle regulation during callus formation, and CCA1 may act as a key upstream coordinator at least in part in the processes.


Assuntos
Arabidopsis , Arabidopsis/genética , Proliferação de Células , Metilação de DNA , Elementos de DNA Transponíveis/genética , Folhas de Planta/genética , Folhas de Planta/metabolismo
19.
Front Plant Sci ; 13: 946213, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35923880

RESUMO

The biological functions of the circadian clock on growth and development have been well elucidated in model plants, while its regulatory roles in crop species, especially the roles on yield-related traits, are poorly understood. In this study, we characterized the core clock gene CIRCADIAN CLOCK-ASSOCIATED 1 (CCA1) homoeologs in wheat and studied their biological functions in seedling growth and spike development. TaCCA1 homoeologs exhibit typical diurnal expression patterns, which are positively regulated by rhythmic histone modifications including histone H3 lysine 4 trimethylation (H3K4me3), histone H3 lysine 9 acetylation (H3K9Ac), and histone H3 lysine 36 trimethylation (H3K36me3). TaCCA1s are preferentially located in the nucleus and tend to form both homo- and heterodimers. TaCCA1 overexpression (TaCCA1-OE) transgenic wheat plants show disrupted circadian rhythmicity coupling with reduced chlorophyll and starch content, as well as biomass at seedling stage, also decreased spike length, grain number per spike, and grain size at the ripening stage. Further studies using DNA affinity purification followed by deep sequencing [DNA affinity purification and sequencing (DAP-seq)] indicated that TaCCA1 preferentially binds to sequences similarly to "evening elements" (EE) motif in the wheat genome, particularly genes associated with photosynthesis, carbon utilization, and auxin homeostasis, and decreased transcriptional levels of these target genes are observed in TaCCA1-OE transgenic wheat plants. Collectively, our study provides novel insights into a circadian-mediated mechanism of gene regulation to coordinate photosynthetic and metabolic activities in wheat, which is important for optimal plant growth and crop yield formation.

20.
FEBS Lett ; 596(15): 1871-1880, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35644867

RESUMO

Environmental stresses restrict plant growth and development and decrease crop yield. The circadian clock is associated with the ability of a plant to adapt to daily environmental fluctuations and the production and consumption of energy. Here, we investigated the role of Arabidopsis Universal Stress Protein (USP; At3g53990) in the circadian regulation of nuclear clock genes. The Arabidopsis usp knockout mutant line exhibited critically diminished circadian amplitude of the central oscillator CIRCADIAN CLOCK ASSOCIATED 1 (CCA1) but enhanced the amplitude of TIMING OF CAB EXPRESSION 1 (TOC1). However, the expression of USP under the control of its own promoter restored the circadian timing of both genes, suggesting that USP regulates the circadian rhythm of Arabidopsis central clock genes, CCA1 and TOC1.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Relógios Circadianos , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Relógios Circadianos/genética , Ritmo Circadiano/genética , Regulação da Expressão Gênica de Plantas , Proteínas de Choque Térmico/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA