Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 783
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-39013470

RESUMO

Allogeneic chimeric antigen receptor (CAR)-T cells hold great promise for expanding the accessibility of CAR-T therapy, whereas the risks of allograft rejection have hampered its application. Here, we genetically engineered healthy-donor-derived, CD19-targeting CAR-T cells using CRISPR-Cas9 to address the issue of immune rejection and treated one patient with refractory immune-mediated necrotizing myopathy and two patients with diffuse cutaneous systemic sclerosis with these cells. This study was registered at ClinicalTrials.gov (NCT05859997). The infused cells persisted for over 3 months, achieving complete B cell depletion within 2 weeks of treatment. During the 6-month follow-up, we observed deep remission without cytokine release syndrome or other serious adverse events in all three patients, primarily shown by the significant improvement in the clinical response index scores for the two diseases, respectively, and supported by the observations of reversal of inflammation and fibrosis. Our results demonstrate the high safety and promising immune modulatory effect of the off-the-shelf CAR-T cells in treating severe refractory autoimmune diseases.

2.
Cell ; 167(4): 1041-1051.e11, 2016 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-27881302

RESUMO

Tetraspanins comprise a diverse family of four-pass transmembrane proteins that play critical roles in the immune, reproductive, genitourinary, and auditory systems. Despite their pervasive roles in human physiology, little is known about the structure of tetraspanins or the molecular mechanisms underlying their various functions. Here, we report the crystal structure of human CD81, a full-length tetraspanin. The transmembrane segments of CD81 pack as two largely separated pairs of helices, capped by the large extracellular loop (EC2) at the outer membrane leaflet. The two pairs of helices converge at the inner leaflet to create an intramembrane pocket with additional electron density corresponding to a bound cholesterol molecule within the cavity. Molecular dynamics simulations identify an additional conformation in which EC2 separates substantially from the transmembrane domain. Cholesterol binding appears to modulate CD81 activity in cells, suggesting a potential mechanism for regulation of tetraspanin function.


Assuntos
Colesterol/metabolismo , Simulação de Dinâmica Molecular , Tetraspanina 28/química , Tetraspanina 28/metabolismo , Sítios de Ligação , Cristalografia por Raios X , Humanos , Modelos Químicos
3.
Immunity ; 50(3): 738-750.e7, 2019 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-30770248

RESUMO

Systemic immunosuppression greatly affects the chemotherapeutic antitumor effect. Here, we showed that CD19+ extracellular vesicles (EVs) from B cells through CD39 and CD73 vesicle-incorporated proteins hydrolyzed ATP from chemotherapy-treated tumor cells into adenosine, thus impairing CD8+ T cell responses. Serum CD19+ EVs were increased in tumor-bearing mice and patients. Patients with fewer serum CD19+ EVs had a better prognosis after chemotherapy. Upregulated hypoxia-inducible factor-1α (HIF-1α) promoted B cells to release CD19+ EVs by inducing Rab27a mRNA transcription. Rab27a or HIF-1α deficiency in B cells inhibited CD19+ EV production and improved the chemotherapeutic antitumor effect. Silencing of Rab27a in B cells by inactivated Epstein-Barr viruses carrying Rab27a siRNA greatly improved chemotherapeutic efficacy in humanized immunocompromised NOD PrkdcscidIl2rg-/- mice. Thus, decreasing CD19+ EVs holds high potential to improve the chemotherapeutic antitumor effect.


Assuntos
Linfócitos B/imunologia , Linfócitos T CD8-Positivos/imunologia , Vesículas Extracelulares/imunologia , Animais , Antígenos CD19/imunologia , Linhagem Celular , Linhagem Celular Tumoral , Feminino , Células HEK293 , Herpesvirus Humano 4/imunologia , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Células NIH 3T3 , RNA Mensageiro/imunologia , Transcrição Gênica/imunologia , Proteínas rab27 de Ligação ao GTP/imunologia
4.
Mol Ther ; 32(7): 2357-2372, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38751112

RESUMO

Natural killer (NK) cells have high intrinsic cytotoxic capacity, and clinical trials have demonstrated their safety and efficacy for adoptive cancer therapy. Expression of chimeric antigen receptors (CARs) enhances NK cell target specificity, with these cells applicable as off-the-shelf products generated from allogeneic donors. Here, we present for the first time an innovative approach for CAR NK cell engineering employing a non-viral Sleeping Beauty (SB) transposon/transposase-based system and minimized DNA vectors termed minicircles. SB-modified peripheral blood-derived primary NK cells displayed high and stable CAR expression and more frequent vector integration into genomic safe harbors than lentiviral vectors. Importantly, SB-generated CAR NK cells demonstrated enhanced cytotoxicity compared with non-transfected NK cells. A strong antileukemic potential was confirmed using established acute lymphocytic leukemia cells and patient-derived primary acute B cell leukemia and lymphoma samples as targets in vitro and in vivo in a xenograft leukemia mouse model. Our data suggest that the SB-transposon system is an efficient, safe, and cost-effective approach to non-viral engineering of highly functional CAR NK cells, which may be suitable for cancer immunotherapy of leukemia as well as many other malignancies.


Assuntos
Vetores Genéticos , Imunoterapia Adotiva , Células Matadoras Naturais , Receptores de Antígenos Quiméricos , Humanos , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Animais , Camundongos , Vetores Genéticos/genética , Receptores de Antígenos Quiméricos/genética , Receptores de Antígenos Quiméricos/imunologia , Receptores de Antígenos Quiméricos/metabolismo , Imunoterapia Adotiva/métodos , Ensaios Antitumorais Modelo de Xenoenxerto , Transposases/genética , Transposases/metabolismo , Linhagem Celular Tumoral , Elementos de DNA Transponíveis , Citotoxicidade Imunológica , Leucemia-Linfoma Linfoblástico de Células Precursoras/terapia , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/imunologia , Engenharia Celular/métodos
5.
Cancer ; 130(15): 2660-2669, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38578977

RESUMO

BACKGROUND: Tocilizumab is commonly used for the management of chimeric antigen receptor (CAR) T-cell therapy-associated cytokine release syndrome (CRS). However, it remains unknown whether tocilizumab or its dosage affects the efficacy and safety of CAR T-cell therapy. The objective of this multicenter retrospective study was to explore the impact of tocilizumab on CAR T-cell therapy. METHODS: In total, 93 patients with B-cell acute lymphoblastic leukemia (B-ALL) receiving humanized anti-CD19 CAR T cells were recruited from May 2016 to November 2022. Forty-five patients received tocilizumab (tocilizumab group), whereas 48 patients did not (nontocilizumab group). Thirteen patients received >1 dose of tocilizumab. The primary end point was the effect of tocilizumab on the efficacy and safety of CAR T cells. Additionally, proliferation, killing, and cytokine assays of CAR T cells were performed in vitro in the presence of tocilizumab. RESULTS: The median age of the patients was 33 years, with 47 males and 46 females. Patients in the tocilizumab group showed similar complete response (CR) rate, overall survival (OS), and event-free survival (EFS) compared with the nontocilizumab group. Compared with patients who received ≤1 dose of tocilizumab, receiving >1 dose of tocilizumab did not affect their CR rate, OS, or EFS. In the tocilizumab group, all patients experienced CRS and 26.7% experienced immune effector cell-associated neurotoxicity syndrome (ICANS). In the nontocilizumab group, 64.6% of patients experienced CRS and 8.3% experienced ICANS. Up to 75% of ICANS and 87.5% of grade ≥3 ICANS occurred in the tocilizumab group. In vitro, tocilizumab did not impair the proliferation and killing effects of CAR T cells. CONCLUSIONS: Tocilizumab does not affect the efficacy of CAR T cells but may increase the likelihood of ICANS.


Assuntos
Anticorpos Monoclonais Humanizados , Antígenos CD19 , Síndrome da Liberação de Citocina , Imunoterapia Adotiva , Receptores de Antígenos Quiméricos , Humanos , Anticorpos Monoclonais Humanizados/uso terapêutico , Anticorpos Monoclonais Humanizados/efeitos adversos , Masculino , Feminino , Imunoterapia Adotiva/efeitos adversos , Imunoterapia Adotiva/métodos , Adulto , Antígenos CD19/imunologia , Estudos Retrospectivos , Pessoa de Meia-Idade , Adolescente , Adulto Jovem , Síndrome da Liberação de Citocina/etiologia , Receptores de Antígenos Quiméricos/imunologia , Criança , Leucemia-Linfoma Linfoblástico de Células Precursoras B/terapia , Leucemia-Linfoma Linfoblástico de Células Precursoras B/imunologia , Leucemia-Linfoma Linfoblástico de Células Precursoras B/tratamento farmacológico
6.
EMBO J ; 39(18): e105246, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32974937

RESUMO

Tetraspanins, including CD53 and CD81, regulate a multitude of cellular processes through organizing an interaction network on cell membranes. Here, we report the crystal structure of CD53 in an open conformation poised for partner interaction. The large extracellular domain (EC2) of CD53 protrudes away from the membrane surface and exposes a variable region, which is identified by hydrogen-deuterium exchange as the common interface for CD53 and CD81 to bind partners. The EC2 orientation in CD53 is supported by an extracellular loop (EC1). At the closed conformation of CD81, however, EC2 disengages from EC1 and rotates toward the membrane, thereby preventing partner interaction. Structural simulation shows that EC1-EC2 interaction also supports the open conformation of CD81. Disrupting this interaction in CD81 impairs the accurate glycosylation of its CD19 partner, the target for leukemia immunotherapies. Moreover, EC1 mutations in CD53 prevent the chemotaxis of pre-B cells toward a chemokine that supports B-cell trafficking and homing within the bone marrow, a major CD53 function identified here. Overall, an open conformation is required for tetraspanin-partner interactions to support myriad cellular processes.


Assuntos
Movimento Celular , Células Precursoras de Linfócitos B/metabolismo , Tetraspanina 25 , Tetraspanina 28 , Animais , Antígenos CD19/química , Antígenos CD19/genética , Antígenos CD19/metabolismo , Humanos , Camundongos , Camundongos Knockout , Domínios Proteicos , Tetraspanina 25/química , Tetraspanina 25/genética , Tetraspanina 25/metabolismo , Tetraspanina 28/química , Tetraspanina 28/genética , Tetraspanina 28/metabolismo
7.
Br J Haematol ; 204(2): 525-533, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37905734

RESUMO

Varnimcabtagene autoleucel (var-cel) is an academic anti-CD19 chimeric antigen receptor (CAR) product used for the treatment of non-Hodgkin lymphoma (NHL) in the CART19-BE-01 trial. Here we report updated outcomes of patients with NHL treated with var-cel. B-cell recovery was compared with patients with acute lymphoblastic leukaemia (ALL). Forty-five patients with NHL were treated. Cytokine release syndrome (any grade) occurred in 84% of patients (4% grade ≥3) and neurotoxicity in 7% (2% grade ≥3). The objective response rate was 73% at Day +100, and the 3-year duration of response was 56%. The 3-year progression-free and overall survival were 40% and 52% respectively. High lactate dehydrogenase was the only covariate with an impact on progression-free survival. The 3-year incidence of B-cell recovery was lower in patients with NHL compared to ALL (25% vs. 60%). In conclusion, in patients with NHL, the toxicity of var-cel was manageable, while B-cell recovery was significantly prolonged compared to ALL. This trial was registered as NCT03144583.


Assuntos
Linfoma de Células B , Linfoma não Hodgkin , Leucemia-Linfoma Linfoblástico de Células Precursoras , Receptores de Antígenos Quiméricos , Humanos , Sistemas Automatizados de Assistência Junto ao Leito , Linfoma de Células B/terapia , Linfoma não Hodgkin/terapia , Imunoterapia Adotiva/efeitos adversos , Anticorpos , Antígenos CD19 , Leucemia-Linfoma Linfoblástico de Células Precursoras/terapia , Linfócitos T
8.
Br J Haematol ; 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38960449

RESUMO

Chimeric antigen receptor T cell (CAR-T) therapy has shown remarkable efficacy in treating advanced B-cell malignancies by targeting CD19, but antigen-negative relapses and immune responses triggered by murine-derived antibodies remain significant challenges, necessitating the development of novel humanized multitarget CAR-T therapies. Here, we engineered a second-generation 4-1BB-CD3ζ-based CAR construct incorporating humanized CD19 single-chain variable fragments (scFvs) and BAFFR single-variable domains on heavy chains (VHHs), also known as nanobodies. The resultant CAR-T cells, with different constructs, were functionally compared both in vitro and in vivo. We found that the optimal tandem and bicistronic (BI) structures retained respective antigen-binding abilities, and both demonstrated specific activation when stimulated with target cells. At the same time, BI CAR-T cells (BI CARs) exhibited stronger tumour-killing ability and better secretion of interleukin-2 and tumour necrosis factor-alpha than single-target CAR-T cells. Additionally, BI CARs showed less exhaustion phenotype upon repeated antigen stimulation and demonstrated more potent and persistent antitumor effects in mouse xenograft models. Overall, we developed a novel humanized CD19/BAFFR bicistronic CAR (BI CAR) based on a combination of scFv and VHH, which showed potent and sustained antitumor ability both in vitro and in vivo, including against tumours with CD19 or BAFFR deficiencies.

9.
Br J Haematol ; 204(5): 1649-1659, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38362778

RESUMO

Several products containing chimeric antigen receptor T cells targeting CD19 (CART19) have been approved for the treatment of patients with relapsed/refractory non-Hodgkin's lymphoma (NHL) and acute lymphoblastic leukaemia (ALL). Despite very impressive response rates, a significant percentage of patients experience disease relapse and die of progressive disease. A major cause of CART19 failure is loss or downregulation of CD19 expression in tumour cells, which has prompted a myriad of novel strategies aimed at targeting more than one antigen (e.g. CD19 and CD20 or CD22). Dual targeting can the accomplished through co-administration of two separate products, co-transduction with two different vectors, bicistronic cassettes or tandem receptors. In this manuscript, we review the pros and cons of each strategy and the clinical results obtained so far.


Assuntos
Antígenos CD19 , Imunoterapia Adotiva , Receptores de Antígenos Quiméricos , Humanos , Receptores de Antígenos Quiméricos/imunologia , Imunoterapia Adotiva/métodos , Antígenos CD19/imunologia , Linfoma de Células B/terapia , Linfoma de Células B/imunologia , Receptores de Antígenos de Linfócitos T/genética , Linfócitos T/imunologia , Linfócitos T/metabolismo , Antígenos CD20/imunologia , Leucemia-Linfoma Linfoblástico de Células Precursoras/terapia , Leucemia-Linfoma Linfoblástico de Células Precursoras/imunologia , Antígenos de Neoplasias/imunologia , Lectina 2 Semelhante a Ig de Ligação ao Ácido Siálico/imunologia
10.
J Transl Med ; 22(1): 679, 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39054481

RESUMO

BACKGROUND: The immunogenicity of the antigen-recognition domains of chimeric antigen receptor (CAR)-T cells leads to immune responses that may compromise the antitumor effects of the adoptively transferred T cells. Herein, we attempt to humanize a CD19-specific VHH (named H85) using in silico techniques and investigate the impact of antigen-recognition domain humanization on CAR expression and density, cytokine secretion, and cytolytic reactivity of CAR-T cells based on the humanized VHH. METHODS: H85 was humanized (named HuH85), and then HuH85 was compared with H85 in terms of conformational structure, physicochemical properties, antigenicity and immunogenicity, solubility, flexibility, stability, and CD19-binding capacity using in silico techniques. Next, H85CAR-T cells and HuH85CAR-T cells were developed and CAR expression and surface density were assessed via flow cytometry. Ultimately, the antitumor reactivity and secreted levels of IFN-γ, IL-2, and TNF-α were assessed following the co-cultivation of the CAR-T cells with Ramos, Namalwa, and K562 cells. RESULTS: In silico findings demonstrated no negative impacts on HuH85 as a result of humanization. Ultimately, H85CAR and HuH85CAR could be surface-expressed on transduced T cells at comparable levels as assessed via mean fluorescence intensity. Moreover, H85CAR-T cells and HuH85CAR-T cells mediated comparable antitumor effects against Ramos and Namalwa cells and secreted comparable levels of IFN-γ, IL-2, and TNF-α following co-cultivation. CONCLUSION: HuH85 can be used to develop immunotherapeutics against CD19-associated hematologic malignancies. Moreover, HuH85CAR-T cells must be further investigated in vitro and in preclinical xenograft models of CD19+ leukemias and lymphomas before advancing into clinical trials.


Assuntos
Antígenos CD19 , Citocinas , Receptores de Antígenos Quiméricos , Anticorpos de Domínio Único , Humanos , Anticorpos de Domínio Único/imunologia , Citocinas/metabolismo , Receptores de Antígenos Quiméricos/metabolismo , Receptores de Antígenos Quiméricos/imunologia , Antígenos CD19/metabolismo , Antígenos CD19/imunologia , Linhagem Celular Tumoral , Ligação Proteica , Imunoterapia Adotiva/métodos , Células K562 , Linfócitos T/imunologia , Domínios Proteicos
11.
J Transl Med ; 22(1): 273, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38475830

RESUMO

BACKGROUND: Chimeric antigen receptor (CAR) T cell therapy is associated with high risk of adverse events. Glucocorticoids (GCs) are cornerstone in the management of high-grade cytokine release syndrome (CRS) and immune effector cell-associated neurotoxicity syndrome (ICANS). Given the potentially deleterious effects of GCs on CAR T cells anti-tumor activity, increasing our understanding of GCs impact on CAR T cells is crucial. METHODS: Using several CAR T cells i.e., CD19, mesothelin (MSLN)-CD28 and MSLN-41BB CAR T cells (M28z and MBBz), we compared phenotypical, functional, changes and anti-tumor activity between i) transduced CD19 CAR T cells with untransduced T cells, ii) M28z with MBBz CAR T cells induced by Dexamethasone (Dx) or Methylprednisolone (MP) exposures. RESULTS: Higher levels of GC receptor were found in less differentiated CAR T cells. Overall, Dx and MP showed a similar impact on CAR T cells. Compared to untreated condition, GCs exposure increased the expression of PD-1 and TIM-3 and reduced the expression of LAG3 and function of T cells and CAR T cells. GC exposures induced more exhausted (LAG3 + PD1 + TIM3 +) and dysfunctional (CD107a-INFγ-TNF-IL2-) untransduced T cells in comparison to CD19 CAR T cells. GC exposure impaired more CD4 + than CD8 + CD19 CAR T cells. GC exposures increased more PD-1 expression associated with reduced proliferative capacity and function of M28z as compared to MBBz CAR T cells. CAR T cells anti-tumor activity was greatly affected by repeated GC exposure but partly recovered within 48h after GCs withdrawal. CONCLUSIONS: In summary, GCs impacted phenotype and function of untransduced and CAR T cell with different magnitude. The nature of the CAR costimulatory domain influenced the magnitude of CAR T cell response to GCs.


Assuntos
Receptores de Antígenos Quiméricos , Linfócitos T , Receptores de Antígenos Quiméricos/metabolismo , Glucocorticoides , Receptor de Morte Celular Programada 1/metabolismo , Imunoterapia Adotiva , Fenótipo , Antígenos CD19/metabolismo
12.
J Transl Med ; 22(1): 482, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38773607

RESUMO

BACKGROUND: Cellular immunotherapy, represented by the chimeric antigen receptor T cell (CAR-T), has exhibited high response rates, durable remission, and safety in vitro and in clinical trials. Unfortunately, anti-CD19 CAR-T (CART-19) treatment alone is prone to relapse and has a particularly poor prognosis in relapsed/refractory (r/r) B-ALL patients. To date, addressing or reducing relapse remains one of the research priorities to achieve broad clinical application. METHODS: We manufactured second generation CART-19 cells and validated their efficacy and safety in vitro and in vivo. Through co-culture of Nalm-6 cells with short-term cultured CART-19 cells, CD19-negative Nalm-6 cells were detected by flow cytometry, and further investigation of the relapsed cells and their resistance mechanisms was evaluated in vitro. RESULTS: In this study, we demonstrated that CART-19 cells had enhanced and specific antileukemic activities, and the survival of B-ALL mouse models after CART-19 treatment was significantly prolonged. We then shortened the culture time and applied the serum-free culture to expand CAR-T cells, followed by co-culturing CART-19 cells with Nalm-6 cells. Surprisingly, we observed the proliferation of CD19-negative Nalm-6 cells around 28 days. Identification of potential resistance mechanisms showed that the relapsed cells express truncated CD19 proteins with decreased levels and, more importantly, CAR expression was detected on the relapsed cell surface, which may ultimately keep them antigen-negative. Furthermore, it was validated that CART-22 and tandem CART-22/19 cells could effectively kill the relapsed cells, but neither could completely eradicate them. CONCLUSIONS: We successfully generated CART-19 cells and obtained a CD19-negative refractory relapsed B-ALL cell line, providing new insights into the underlying mechanisms of resistance and a new in vitro model for the treatment of r/r B-ALL patients with low antigen density.


Assuntos
Antígenos CD19 , Receptores de Antígenos Quiméricos , Antígenos CD19/metabolismo , Antígenos CD19/imunologia , Animais , Humanos , Receptores de Antígenos Quiméricos/metabolismo , Receptores de Antígenos Quiméricos/imunologia , Linhagem Celular Tumoral , Imunoterapia Adotiva/métodos , Resistencia a Medicamentos Antineoplásicos , Camundongos , Técnicas de Cocultura , Ensaios Antitumorais Modelo de Xenoenxerto , Leucemia-Linfoma Linfoblástico de Células Precursoras B/terapia , Leucemia-Linfoma Linfoblástico de Células Precursoras B/imunologia
13.
J Transl Med ; 22(1): 58, 2024 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-38221609

RESUMO

BACKGROUND: Chimeric antigen receptor CAR-T cell therapies have ushered in a new era of treatment for specific blood cancers, offering unparalleled efficacy in cases of treatment resistance or relapse. However, the emergence of cytokine release syndrome (CRS) as a side effect poses a challenge to the widespread application of CAR-T cell therapies. Melatonin, a natural hormone produced by the pineal gland known for its antioxidant and anti-inflammatory properties, has been explored for its potential immunomodulatory effects. Despite this, its specific role in mitigating CAR-T cell-induced CRS remains poorly understood. METHODS: In this study, our aim was to investigate the potential of melatonin as an immunomodulatory agent in the context of CD19-targeting CAR-T cell therapy and its impact on associated side effects. Using a mouse model, we evaluated the effects of melatonin on CAR-T cell-induced CRS and overall survival. Additionally, we assessed whether melatonin administration had any detrimental effects on the antitumor efficacy and persistence of CD19 CAR-T cells. RESULTS: Our findings demonstrate that melatonin effectively mitigated the severity of CAR-T cell-induced CRS in the mouse model, leading to improved overall survival outcomes. Remarkably, melatonin administration did not compromise the antitumor effectiveness or persistence of CD19 CAR-T cells, indicating its compatibility with therapeutic goals. These results suggest melatonin's potential as an immunomodulatory compound to alleviate CRS without compromising the therapeutic benefits of CAR-T cell therapy. CONCLUSION: The study's outcomes shed light on melatonin's promise as a valuable addition to the existing treatment protocols for CAR-T cell therapies. By attenuating CAR-T cell-induced CRS while preserving the therapeutic impact of CAR-T cells, melatonin offers a potential strategy for optimizing and refining the safety and efficacy profile of CAR-T cell therapy. This research contributes to the evolving understanding of how to harness immunomodulatory agents to enhance the clinical application of innovative cancer treatments.


Assuntos
Síndrome da Liberação de Citocina , Imunoterapia Adotiva , Melatonina , Antígenos CD19 , Terapia Baseada em Transplante de Células e Tecidos , Síndrome da Liberação de Citocina/terapia , Fatores Imunológicos/farmacologia , Imunoterapia Adotiva/efeitos adversos , Melatonina/farmacologia , Recidiva Local de Neoplasia , Receptores de Antígenos de Linfócitos T , Receptores de Antígenos Quiméricos , Animais , Camundongos
14.
J Med Virol ; 96(2): e29440, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38299675

RESUMO

Post-transplant lymphoproliferative disorders (PTLDs) are associated with Epstein-Barr virus (EBV) infection in transplant recipients. Most of lymphoblastoid cell lines (LCLs) derived from EBV-immortalized B cells or PTLDs are sensitive to CD95-mediated apoptosis and cytotoxic T cell (CTL) killing. CD95 ligand (CD95L) exists as a transmembrane ligand (mCD95L) or a soluble form (sCD95L). Using recombinant mCD95L and sCD95L, we observed that sCD95L does not affect LCLs. While high expression of mCD95L in CTLs promotes apoptosis of LCLs, low expression induces clathrin-dependent CD19 internalization, caspase-dependent CD19 cleavage, and proteasomal/lysosomal-dependent CD19 degradation. The CD95L/CD95-mediated CD19 degradation impairs B cell receptor (BCR) signaling and inhibits BCR-mediated EBV activation. Interestingly, although inhibition of the caspase activity restores CD19 expression and CD19-mediated BCR activation, it fails to rescue BCR-mediated EBV lytic gene expression. EBV-specific CTLs engineered to overexpress mCD95L exhibit a stronger killing activity against LCLs. This study highlights that engineering EBV-specific CTLs to express a higher level of mCD95L could represent an attractive therapeutic approach to improve T cell immunotherapy for PTLDs.


Assuntos
Infecções por Vírus Epstein-Barr , Humanos , Proteína Ligante Fas , Herpesvirus Humano 4/fisiologia , Caspases , Receptores de Antígenos de Linfócitos B/metabolismo
15.
Cytotherapy ; 26(8): 832-841, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38625072

RESUMO

BACKGROUND AIMS: Chimeric antigen receptor-T (CAR-T) cells have exhibited remarkable efficacy in treating refractory or relapsed multiple myeloma (R/R MM). Although obesity has a favorable value in enhancing the response to immunotherapy, less is known about its predictive value regarding the efficacy and prognosis of CAR-T cell immunotherapy. METHODS: We conducted a retrospective study of 111 patients with R/R MM who underwent CAR-T cell treatment. Using the body mass index (BMI) classification, the patients were divided into a normal-weight group (73/111) and an overweight group (38/111). We investigated the effect of BMI on CAR-T cell therapy outcomes in patients with R/R MM. RESULTS: The objective remission rates after CAR-T cell infusion were 94.7% and 89.0% in the overweight and normal-weight groups, respectively. The duration of response and overall survival were not significant difference between BMI groups. Compared to normal-weight patients, overweight patients had an improved median progression-free survival. There was no significant difference in cytokine release syndrome and immune effector cell-associated neurotoxicity syndrome between the subgroups. In terms of hematological toxicity, the erythrocyte, hemoglobin, platelet, leukocyte and neutrophil recovery was accelerated in the overweight group. Fewer patients in the overweight group displayed moderate percent CD4 and CD4/CD8 ratios compared to the normal-weight group. Furthermore, the percent CD4 ratios were positively correlated with the levels of cytokines [interleukin-2 (IL-2) (day 14), interferon gamma (IFN-γ) (day 7) and tumor necrosis factor alpha (TNF-α) (days 14 and 21)] after cells infusion. On the other hand, BMI was positively associated with the levels of IFN-γ (day 7) and TNF-α (days 14 and 21) after CAR-T cells infusion. CONCLUSIONS: Overall, this study highlights the potential beneficial effect of a higher BMI on CAR-T cell therapy outcomes.


Assuntos
Índice de Massa Corporal , Imunoterapia Adotiva , Mieloma Múltiplo , Humanos , Mieloma Múltiplo/terapia , Mieloma Múltiplo/imunologia , Mieloma Múltiplo/mortalidade , Masculino , Feminino , Pessoa de Meia-Idade , Imunoterapia Adotiva/métodos , Idoso , Estudos Retrospectivos , Adulto , Receptores de Antígenos Quiméricos/imunologia , Resultado do Tratamento , Prognóstico
16.
Allergy ; 2024 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-39003594

RESUMO

BACKGROUND: SARS-CoV-2 has triggered a pandemic and contributes to long-lasting morbidity. Several studies have investigated immediate cellular and humoral immune responses during acute infection. However, little is known about long-term effects of COVID-19 on the immune system. METHODS: We performed a longitudinal investigation of cellular and humoral immune parameters in 106 non-vaccinated subjects ten weeks (10 w) and ten months (10 m) after their first SARS-CoV-2 infection. Peripheral blood immune cells were analyzed by multiparametric flow cytometry, serum cytokines were examined by multiplex technology. Antibodies specific for the Spike protein (S), the receptor-binding domain (RBD) and the nucleocapsid protein (NC) were determined. All parameters measured 10 w and 10 m after infection were compared with those of a matched, noninfected control group (n = 98). RESULTS: Whole blood flow cytometric analyses revealed that 10 m after COVID-19, convalescent patients compared to controls had reduced absolute granulocyte, monocyte, and lymphocyte counts, involving T, B, and NK cells, in particular CD3+CD45RA+CD62L+CD31+ recent thymic emigrant T cells and non-class-switched CD19+IgD+CD27+ memory B cells. Cellular changes were associated with a reversal from Th1- to Th2-dominated serum cytokine patterns. Strong declines of NC- and S-specific antibody levels were associated with younger age (by 10.3 years, p < .01) and fewer CD3-CD56+ NK and CD19+CD27+ B memory cells. Changes of T-cell subsets at 10 m such as normalization of effector and Treg numbers, decline of RTE, and increase of central memory T cell numbers were independent of antibody decline pattern. CONCLUSIONS: COVID-19 causes long-term reduction of innate and adaptive immune cells which is associated with a Th2 serum cytokine profile. This may provide an immunological mechanism for long-term sequelae after COVID-19.

17.
Hematol Oncol ; 42(1): e3237, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37937474

RESUMO

About one third of patients with diffuse large B-cell lymphoma (DLBCL) have a relapsing/refractory (R/R) disease after first line chemo-immunotherapy, with particularly poor outcomes observed in patients with primary refractory disease and early relapse. CD19 specific chimeric antigen receptor (CAR) T cell therapy is a game changer that results in durable and complete response rates in almost half of the patients with R/R DLBCL. Other emerging CD19-targeting therapies include monoclonal antibodies, bispecific antibodies and targeting antibody-drug conjugates, which also show encouraging results. However, the timing and sequencing of different anti-CD19-targeting agents and how they might interfere with subsequent CAR T cell treatment is still unclear. In this review, we summarize the results of the pivotal clinical trials as well as evidence from real-world series of the use of different CD19-targeting approved agents. We discuss the effect of various therapies on CD19 expression and its implications for treatment sequencing.


Assuntos
Linfoma Difuso de Grandes Células B , Linfoma não Hodgkin , Receptores de Antígenos Quiméricos , Humanos , Linfócitos T , Receptores de Antígenos Quiméricos/uso terapêutico , Recidiva Local de Neoplasia , Linfoma Difuso de Grandes Células B/tratamento farmacológico , Linfoma Difuso de Grandes Células B/patologia , Antígenos CD19
18.
Hematol Oncol ; 42(1): e3227, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37776326

RESUMO

Dual-targeted chimeric antigen receptor T (CAR-T) cell is an important strategy to improve the efficacy of CD19 CAR-T cell against refractory or relapsed B cell non-Hodgkin lymphoma (R/R B-NHL). However, durable responses are not achieved in most patients, in part owing CAR-T cell exhaustion caused by PD-1/PD-L1 pathway. We conducted a prospective, single-arm study of dual-targeted CD19/22 CAR-T cell combined with anti-PD-1 antibody, tislelizumab, in R/R B-NHL (NCT04539444). Tislelizumab was administrated on +1 day after patients received infusion of CD19/22 CAR-T cell. Responses, survival and safety were evaluated. From 1 August 2020 to 30 March 2023, 16 patients were enrolled. The median follow-up time is 16.0 (range: 5.0-32.0 months) months. Overall response was achieved in 14 of 16 (87.5%) patients, and the complete response (CR) was achieved in 11 of 16 (68.8%) patients. The 1-year progression-free survival and overall survival rates were 68.8% and 81.3%, respectively. Of the 14 patients responded, 9 patients maintained their response until the end of follow-up. Among the 15 out of 16 (93.8%) patients who had extranodal involvement, 14 (93.3%) patients achieved overall response rate with 11 (73.3%) patients achieving CR. Eight (50%) patients experienced cytokine release syndrome. No neurologic adverse events were reported. Gene Ontology-Biological Process enrichment analysis showed that immune response-related signaling pathways were enriched in CR patients. Our results suggest that CD19/22 CAR-T cell combined with tislelizumab elicit a safe and durable response in R/R B-NHL and may improve the prognosis of those patients.


Assuntos
Anticorpos Monoclonais Humanizados , Linfoma de Células B , Receptores de Antígenos Quiméricos , Humanos , Linfócitos T , Estudos Prospectivos , Linfoma de Células B/tratamento farmacológico
19.
Mult Scler ; 30(7): 857-867, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38767224

RESUMO

BACKGROUND: Ocrelizumab (OCR) is an anti-CD20 monoclonal antibody approved for the treatment of relapsing-remitting and primary-progressive multiple sclerosis (MS). We aimed to evaluate the effectiveness of an individualized OCR extended interval dosing (EID), after switching from standard interval dosing (SID). METHODS: This was a retrospective, observational, single-centre study including MS patients regularly followed at the Neurocenter of Southern Switzerland. After a cumulative OCR dose ⩾1200 mg, stable patients were switched to EID (OCR infusions following CD19+ 27+ memory B cell repopulation). RESULTS: A total of 128 patients were included in the study, and 113 (88.3%) were switched to EID with a median interval of 9.9 (8.8-11.8) months between infusions. No clinical relapses occurred; 2 (1.8%) patients experienced disability worsening. Three (2.7%) and 2 (1.8%) patients experienced new T2 brain and spinal lesions, respectively. There was a mild decrease in IgG and IgM concentrations during both SID and EID OCR regimens (ß = -0.23, p = 0.001 and ß = -0.07, p < 0.001, respectively). CONCLUSION: Switch to personalized dosing of OCR based on CD19+ 27+ memory B cell repopulation led to a great extension of the interval between infusions, with maintained clinical and radiological efficacy. Given the potential advantages in terms of safety and health costs, EID OCR regimens should be further investigated.


Assuntos
Anticorpos Monoclonais Humanizados , Células B de Memória , Humanos , Feminino , Anticorpos Monoclonais Humanizados/administração & dosagem , Anticorpos Monoclonais Humanizados/farmacologia , Masculino , Adulto , Estudos Retrospectivos , Pessoa de Meia-Idade , Células B de Memória/imunologia , Fatores Imunológicos/administração & dosagem , Esclerose Múltipla Recidivante-Remitente/tratamento farmacológico , Esclerose Múltipla Recidivante-Remitente/imunologia , Resultado do Tratamento , Esclerose Múltipla/tratamento farmacológico , Esclerose Múltipla/imunologia
20.
Biotechnol Bioeng ; 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38963234

RESUMO

Bringing effective cancer therapy in the form of chimeric antigen receptor technology to untapped markets faces numerous challenges, including a global shortage of therapeutic lentiviral or retroviral vectors on which all current clinical therapies using genetically modified T cells are based. Production of these lentiviral vectors in academic settings in principle opens the way to local production of therapeutic cells, which is the only economically viable approach to make this therapy available to patients in developing countries. The conditions for obtaining and concentrating lentiviral vectors have been optimized and described. The calcium phosphate precipitation method was found to be suitable for transfecting high cell-density cultures, a prerequisite for high titers. We describe protocols for gradually increasing production from 6-well plates to P100 plates, T-175 flasks, and 5-layer stacks while maintaining high titers, >108 transducing units. Concentration experiments using ultracentrifugation revealed the advantage of lower centrifugation speeds compared to competing protocols. The resulting batches of lentiviral vectors had a titer of 1010 infectious particles and were used to transduce primary human T lymphocytes generating chimeric antigen receptor T cells, the quality of which was checked and found potential applicability for treatment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA