Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 94
Filtrar
1.
Cytokine ; 173: 156435, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37950929

RESUMO

The excessive production of IL-10, an anti-inflammatory cytokine, by Leishmania antigen-activated T cells is supposed to be a key player in the onset and progression of visceral leishmaniasis (VL). The IL-10-producing sources in VL remain unidentified and uncharacterized. In this study, we reveal that antigen-activated CD4+ T cells, i.e., CD44+CD4+ T cells expressing CD200R receptors, are the prime IL-10-producing phenotypes in Leishmania donovani infection-induced pathogenesis. These phenotypes are separate from CD25+Foxp3+CD4+ T regulatory cells, which are classical IL-10-producing phenotypes. In order to ascertain the role of CD200R and CD25 receptors in IL-10 overexpression-associated VL pathogenesis, we abrogated CD200R and CD25 receptor-mediated signaling in the infected mice. The splenic load of parasites and the size of the liver and spleen were significantly reduced in CD200-blocked mice as compared to CD25-blocked mice. Further, the CD200 blocking polarized CD4+ T cells to pro-inflammatory cytokines-producing phenotypes, as we observed a higher frequency of IFN-γ, TNF-α, and IL-12 positive cells as compared to controls including the CD25 blocking. Our findings suggest that in L. donovani infection-induced pathogenesis the expression of CD200R on antigen-activated T cells helps them to acquire IL-10-producing abilities as part of its one of the survival strategies. However, more studies would be warranted to better understand CD200R receptors role in VL pathogenesis and to develop the next generation of therapeutic and prophylactic control measures.


Assuntos
Leishmania donovani , Leishmaniose Visceral , Animais , Camundongos , Interleucina-10/metabolismo , Citocinas/metabolismo , Linfócitos T Reguladores , Fenótipo
2.
Int J Mol Sci ; 25(2)2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38255930

RESUMO

We comprehensively evaluated the expression of therapeutically targetable immune checkpoint molecules involved in celiac disease (CD). We have focused on the alteration of the CD200/CD200R pathway and Elafin expression in celiac disease and discussed their roles in regulating the immune response. There are limited data related to the expression or function of these molecules in celiac disease. This finding could significantly contribute to the understanding of the clinical manifestation of CD. CD200, CD200R and Elafin distributions were determined by ELISA and immunohistochemistry analyses in serum and biopsies of CD patients. Analyses of Th1 and Th17 cytokines were determined. PCR amplification of a fragment of the PI3 gene was carried out using genomic DNA isolated from whole blood samples of the study subjects. Different aliquots of the PCR reaction product were subjected to RFLP analysis for SNP genotyping and detection. We characterized the expression and function of the CD200-CD200R axis and PI3 in celiac disease. A significantly higher level of soluble CD200 and CD200R and lower expression of PI3 in serum of CD patients was observed compared to healthy controls. Consistent with our results, CD200 expression is regulated by IFN-gamma. Interaction of CD200/CD200R leads to production of type-Th1 and -Th17 cytokines. Regarding the PI3 genotype, the CT genotype proportion SNP rs1733103 and the GG genotype SNP rs41282752 were predominant in CD patients. SNP rs1733103 showed a significant association between the SNP variables and CD. In celiac disease the immune checkpoint is compromised or dysregulated, which can contribute to inflammation and the autoimmunity process. The study of these checkpoint points will lead to the development of targeted therapies aimed at restoring immunological balance in CD. Specific coding regions of the PI3 gene-splice variants predispose the Elafin protein, both at the transcriptional and post-translational levels, to modify its expression and function, resulting in reduced differential functional protein levels in patients with active celiac disease.


Assuntos
Doença Celíaca , Proteínas de Checkpoint Imunológico , Humanos , Elafina , Doença Celíaca/genética , Genótipo , Citocinas/genética
3.
J Biol Chem ; 298(1): 101521, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34952004

RESUMO

CD200R1 is an inhibitory surface receptor expressed in microglia and blood macrophages. Microglial CD200R1 is known to control neuroinflammation by keeping the microglia in resting state, and therefore, tight regulation of its expression is important. CCAAT/enhancer-binding protein ß (CEBPß) is the known regulator of CD200R1 transcription. In the present study, our specific intention was to find a possible posttranscriptional regulatory mechanism of CD200R1 expression. Here we investigated a novel regulatory mechanism of CD200R1 expression following exposure to an environmental stressor, arsenic, combining in silico analysis, in vitro, and in vivo experiments, as well as validation in human samples. The in silico analysis and in vitro studies with primary neonatal microglia and BV2 microglia revealed that arsenic demethylates the promoter of a microRNA, miR-129-5p, thereby increasing its expression, which subsequently represses CD200R1 by binding to its 3'-untranslated region and shuttling the CD200R1 mRNA to the cytoplasmic-processing body in mouse microglia. The role of miR-129-5p was further validated in BALB/c mouse by stereotaxically injecting anti-miR-129. We found that anti-miR-129 reversed the expression of CD200R1, as well as levels of inflammatory molecules IL-6 and TNF-α. Experiments with a CD200R1 siRNA-induced loss-of-function mouse model confirmed an miR-129-5p→CD200R1→IL-6/TNF-α signaling axis. These main findings were replicated in a human cell line and validated in human samples. Taken together, our study revealed miR-129-5p as a novel posttranscriptional regulator of CD200R1 expression with potential implications in neuroinflammation and related complications.


Assuntos
Arsênio , MicroRNAs , Doenças Neuroinflamatórias , Receptores de Orexina , Regiões 3' não Traduzidas , Animais , Antagomirs/metabolismo , Interleucina-6/metabolismo , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , Microglia/metabolismo , Doenças Neuroinflamatórias/metabolismo , Receptores de Orexina/genética , Receptores de Orexina/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
4.
Inflamm Res ; 72(12): 2127-2144, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37902837

RESUMO

BACKGROUND: Postoperative cognitive dysfunction (POCD) is a neurological complication occurring after anesthesia and surgery. Neuroinflammation plays a critical role in the pathogenesis of POCD, and the activation of the cluster of differentiation 200 (CD200)/CD200R1 axis improves neurological recovery in various neurological disorders by modulating inflammation. The aim of this study was to investigate the impact and underlying mechanism of CD200/CD200R1 axis on POCD in aged mice. METHODS: The model of POCD was established in aged mice. To assess the learning and memory abilities of model mice, the Morris water maze test was implemented. CD200Fc (CD200 fusion protein), CD200R1 Ab (anti-CD200R1 antibody), and 740Y-P (a specific PI3K activator) were used to evaluate the effects of the CD200/CD200R1/PI3K/Akt/NF-κB signaling pathway on hippocampal microglial polarization, neuroinflammation, synaptic activity, and cognition in mice. RESULTS: It was observed that anesthesia/surgery induced cognitive decline in aged mice, increased the levels of tumor necrosis factor alpha (TNF-α), interleukin (IL)-6, IL-1 ß and decreased the levels of postsynaptic density protein 95 (PSD-95), synaptophysin (SYN) in the hippocampus. Moreover, CD200Fc and 740Y-P attenuated neuroinflammation and synaptic deficits and reversed cognitive impairment via the phosphatidylinositol 3-kinase (PI3K)/ protein kinase B (Akt)/nuclear factor-kappa B (NF-κB) signaling pathway, whereas CD200R1 Ab administration exerted the opposite effects. Our results further show that the CD200/CD200R1 axis modulates M1/M2 polarization in hippocampal microglia via the PI3K/Akt/NF-κB signaling pathway. CONCLUSIONS: Our findings indicate that the activation of the CD200/CD200R1 axis reduces neuroinflammation, synaptic deficits, and cognitive impairment in the hippocampus of aged mice by regulating microglial M1/M2 polarization via the PI3K/Akt/NF-κB signaling pathway.


Assuntos
NF-kappa B , Complicações Cognitivas Pós-Operatórias , Animais , Camundongos , Interleucina-6/metabolismo , Microglia/metabolismo , Doenças Neuroinflamatórias , NF-kappa B/metabolismo , Fosfatidilinositol 3-Quinase , Fosfatidilinositol 3-Quinases/metabolismo , Complicações Cognitivas Pós-Operatórias/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais
5.
Brain Behav Immun ; 101: 231-245, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34990747

RESUMO

The subgranular zone of the dentate gyrus is an adult neurogenic niche where new neurons are continuously generated. A dramatic hippocampal neurogenesis decline occurs with increasing age, contributing to cognitive deficits. The process of neurogenesis is intimately regulated by the microenvironment, with inflammation being considered a strong negative factor for this process. Thus, we hypothesize that the reduction of new neurons in the aged brain could be attributed to the age-related microenvironmental changes towards a pro-inflammatory status. In this work, we evaluated whether an anti-inflammatory microenvironment could counteract the negative effect of age on promoting new hippocampal neurons. Surprisingly, our results show that transgenic animals chronically overexpressing IL-10 by astrocytes present a decreased hippocampal neurogenesis in adulthood. This results from an impairment in the survival of neural newborn cells without differences in cell proliferation. In parallel, hippocampal-dependent spatial learning and memory processes were affected by IL-10 overproduction as assessed by the Morris water maze test. Microglial cells, which are key players in the neurogenesis process, presented a different phenotype in transgenic animals characterized by high activation together with alterations in receptors involved in neuronal communication, such as CD200R and CX3CR1. Interestingly, the changes described in adult transgenic animals were similar to those observed by the effect of normal aging. Thus, our data suggest that chronic IL-10 overproduction mimics the physiological age-related disruption of the microglia-neuron dialogue, resulting in hippocampal neurogenesis decrease and spatial memory impairment.


Assuntos
Microglia , Memória Espacial , Animais , Hipocampo/fisiologia , Interleucina-10/farmacologia , Neurogênese/fisiologia , Neurônios
6.
Bull Math Biol ; 84(8): 82, 2022 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-35792958

RESUMO

CD200 is a cell membrane protein that binds to its receptor, CD200 receptor (CD200R). The CD200 positive tumor cells inhibit the cellular functions of M1 and M2 macrophages and dendritic cells (DCs) through the CD200-CD200R complex, resulting in downregulation of Interleukin-10 and Interleukin-12 productions and affecting the activation of cytotoxic T lymphocytes. In this work, we provide two ordinary differential equation models, one complete model and one simplified model, to investigate how the binding affinities of CD200R and the populations of M1 and M2 macrophages affect the functions of the CD200-CD200R complex in tumor growth. Our simulations demonstrate that (i) the impact of the CD200-CD200R complex on tumor promotion or inhibition highly depends on the binding affinity of the CD200R on M2 macrophages and DCs to the CD200 on tumor cells, and (ii) a stronger binding affinity of the CD200R on M1 macrophages or DCs to the CD200 on tumor cells induces a higher tumor cell density in the CD200 positive tumor. Thus, the CD200 blockade would be an efficient treatment method in this case. Moreover, the simplified model shows that the binding affinity of CD200R on macrophages is the major factor to determine the treatment efficacy of CD200 blockade when the binding affinities of CD200R on M1 and M2 macrophages are significantly different to each other. On the other hand, both the binding affinity of CD200R and the population of macrophages are the major factors to determine the treatment efficacy of CD200 blockade when the binding affinities of CD200R on M1 and M2 macrophages are close to each other. We also analyze the simplified model to investigate the dynamics of the positive and trivial equilibria of the CD200 positive tumor case and the CD200 deficient tumor case. The bifurcation diagrams show that when M1 macrophages dominate the population, the tumor cell density of the CD200 positive tumor is higher than the one of CD200 deficient tumor. Moreover, the dynamics of tumor cell density change from tumor elimination to tumor persistence to oscillation, as the maximal proliferation rate of tumor cells increases.


Assuntos
Conceitos Matemáticos , Neoplasias , Transformação Celular Neoplásica , Humanos , Macrófagos/metabolismo , Modelos Biológicos , Neoplasias/metabolismo , Neoplasias/terapia
7.
J Neuroinflammation ; 18(1): 88, 2021 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-33823877

RESUMO

BACKGROUND: It is suggested that neuroinflammation, in which activated microglial cells play a relevant role, contributes to the development of Parkinson's disease (PD). Consequently, the modulation of microglial activation is a potential therapeutic target to be taken into account to act against the dopaminergic neurodegeneration occurring in this neurological disorder. Several soluble and membrane-associated inhibitory mechanisms contribute to maintaining microglial cells in a quiescent/surveillant phenotype in physiological conditions. However, the presence of activated microglial cells in the brain in PD patients suggests that these mechanisms have been somehow overloaded. We focused our interest on one of the membrane-associated mechanisms, the CD200-CD200R1 ligand-receptor pair. METHODS: The acute MPTP experimental mouse model of PD was used to study the temporal pattern of mRNA expression of CD200 and CD200R1 in the context of MPTP-induced dopaminergic neurodegeneration and neuroinflammation. Dopaminergic damage was assessed by tyrosine hydroxylase (TH) immunoreactivity, and neuroinflammation was evaluated by the mRNA expression of inflammatory markers and IBA1 and GFAP immunohistochemistry. The effect of the modulation of the CD200-CD200R1 system on MPTP-induced damage was determined by using a CD200R1 agonist or CD200 KO mice. RESULTS: MPTP administration resulted in a progressive decrease in TH-positive fibres in the striatum and TH-positive neurons in the substantia nigra pars compacta, which were accompanied by transient astrogliosis, microgliosis and expression of pro- and anti-inflammatory markers. CD200 mRNA levels rapidly decreased in the ventral midbrain after MPTP treatment, while a transient decrease of CD200R1 mRNA expression was repeatedly observed in this brain area at earlier and later phases. By contrast, a transient increase in CD200R1 expression was observed in striatum. The administration of a CD200R1 agonist resulted in the inhibition of MPTP-induced dopaminergic neurodegeneration, while microglial cells showed signs of earlier activation in CD200-deficient mice. CONCLUSIONS: Collectively, these findings provide evidence for a correlation between CD200-CD200R1 alterations, glial activation and neuronal loss. CD200R1 stimulation reduces MPTP-induced loss of dopaminergic neurons, and CD200 deficiency results in earlier microglial activation, suggesting that the potentiation of CD200R1 signalling is a possible approach to controlling neuroinflammation and neuronal death in PD.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Microglia/metabolismo , Receptores de Orexina/deficiência , Transtornos Parkinsonianos/tratamento farmacológico , Transtornos Parkinsonianos/metabolismo , Animais , Feminino , Imunoglobulina G/administração & dosagem , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microglia/efeitos dos fármacos , Receptores de Orexina/agonistas , Receptores de Orexina/genética , Transtornos Parkinsonianos/induzido quimicamente
8.
Neurochem Res ; 46(12): 3190-3199, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34392443

RESUMO

Perioperative neurocognitive disorder (PND) is the mild cognitive impairment associated with surgery and anesthesia. It is a common surgical complication in the elderly. An important mechanism of PND is the surgically induced neuroinflammation. The interaction between the neuronal surface protein CD200 and its receptor in microglia, CD200R1, is an important regulatory pathway to control neuroinflammation. However, the potential role of the CD200-CD200R1 pathway in the acute period of PND has not been fully investigated. In this study, in a PND mouse model, we first measured the protein expression level of CD200, CD200R1, and the related pro- and anti-inflammatory cytokines in the hippocampus. Then, we investigated cognitive function, neuroinflammation and postsynaptic density protein 95 (PSD-95) expression after the injection of CD200-Fc (agonist), CD200R1-Fc (antagonist) or IgG1-Fc (vehicle) into lateral ventricle in PND models. Compared with the control group, the expression of CD200 was up-regulated at day 1 after surgery in PND models. The injection of the CD200-Fc into the lateral ventricle could mitigate primed neuroinflammation and cognitive decline, increase the expression of PSD-95 at day 1 after surgery in PND models. In conclusion, we have demonstrated that CD200-CD200R1 signaling was involved in the acute inflammatory process of PND, and activating CD200R1 can inhibit neuroinflammation and attenuate PND. Thus, the CD200-CD200R1 axis is a potential novel target for PND prevention and treatment.


Assuntos
Antígenos CD/metabolismo , Fígado/cirurgia , Transtornos Neurocognitivos/prevenção & controle , Doenças Neuroinflamatórias/prevenção & controle , Receptores de Orexina/metabolismo , Assistência Perioperatória , Procedimentos Cirúrgicos Operatórios/efeitos adversos , Animais , Antígenos CD/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Transtornos Neurocognitivos/etiologia , Transtornos Neurocognitivos/metabolismo , Transtornos Neurocognitivos/patologia , Doenças Neuroinflamatórias/etiologia , Doenças Neuroinflamatórias/metabolismo , Doenças Neuroinflamatórias/patologia , Receptores de Orexina/genética
9.
Pathobiology ; 88(3): 218-227, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33321503

RESUMO

INTRODUCTION: CD200R has been reported to be the receptor for the immune checkpoint molecule CD200 and can transduce immune-suppressive signals. In this study, we mainly focused on the expression level of CD200R in T cells in pulmonary artery (PA) blood and non-small-cell lung cancer (NSCLC) tumor tissue. METHODS: Immune cells were isolated from dissected tumor samples and PA blood of NSCLC patients and analyzed with multiparameter flow cytometry. The co-expression of CD200R with other immune checkpoints, including programmed cell death protein 1 (PD-1), cytotoxic T-lymphocyte-associated protein 4 (CTLA-4), and T cell immunoglobulin and mucin domain-containing protein 3 (TIM-3), was also investigated. RESULTS: CD200R expression was observed on the surface of approximately 75% of T cells among tumor-infiltrating leukocytes (TILs). Compared to T cells extracted from TILs, only 55% of T cells extracted from PA blood exhibited CD200R expression. Moreover, with higher expression of CD200R, the expression of other immune checkpoints, including PD-1, CTLA-4, and TIM-3, was also increased in tumor-infiltrating T cells compared to T cells in PA blood. CONCLUSIONS: Our results showed that those tumors were dominated by T cells expressing CD200R together with other checkpoints, which suggests a phenotypic change after T cell infiltration into the tumor, such as T cell exhaustion.


Assuntos
Antígeno CTLA-4/genética , Carcinoma Pulmonar de Células não Pequenas/genética , Receptor Celular 2 do Vírus da Hepatite A/genética , Neoplasias Pulmonares/genética , Receptores de Orexina/genética , Receptor de Morte Celular Programada 1/genética , Biomarcadores Tumorais/genética , Carcinoma Pulmonar de Células não Pequenas/imunologia , Humanos , Neoplasias Pulmonares/imunologia , Linfócitos do Interstício Tumoral , Regulação para Cima
10.
Int J Mol Sci ; 22(4)2021 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-33562512

RESUMO

The molecule CD200, described many years ago as a naturally occurring immunomodulatory agent, capable of regulating inflammation and transplant rejection, has attracted additional interest over the past years with the realization that it may also serve as an important marker for progressive malignancy. A large body of evidence also supports the hypothesis that this molecule can contribute to immunoregulation of, among other diseases, infection, autoimmune disease and allergy. New data have also come to light to characterize the receptors for CD200 (CD200R) and their potential mechanism(s) of action at the biochemical level, as well as the description of a novel natural antagonist of CD200, lacking the NH2-terminal region of the full-length molecule. Significant controversies exist concerning the relative importance of CD200 as a ligand for all reported CD200Rs. Nevertheless, some progress has been made in the identification of the structural constraints determining the interaction between CD200 and CD200R, and this information has in turn proved of use in developing novel small molecule agonists/antagonists of the interaction. The review below highlights many of these newer findings, and attempts to place them in the broad context of our understanding of the role of CD200-CD200R interactions in a variety of human diseases.


Assuntos
Antígenos CD/metabolismo , Imunomodulação , Glicoproteínas de Membrana/metabolismo , Receptores de Orexina/metabolismo , Animais , Antígenos CD/genética , Antígenos CD/imunologia , Doenças Autoimunes/imunologia , Regulação da Expressão Gênica , Sobrevivência de Enxerto , Humanos , Sistema Imunitário/citologia , Sistema Imunitário/metabolismo , Imunomodulação/genética , Infecções/imunologia , Inflamação/imunologia , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/imunologia , Camundongos , Células Mieloides/imunologia , Células Mieloides/metabolismo , Neoplasias/imunologia , Receptores de Orexina/genética , Receptores de Orexina/imunologia , Domínios e Motivos de Interação entre Proteínas
11.
Int J Mol Sci ; 22(10)2021 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-34069671

RESUMO

Inflammatory bowel disease is characterized by the infiltration of immune cells and chronic inflammation. The immune inhibitory receptor, CD200R, is involved in the downregulation of the activation of immune cells to prevent excessive inflammation. We aimed to define the role of CD200R ligand-CD200 in the experimental model of intestinal inflammation in conventionally-reared mice. Mice were given a dextran sodium sulfate solution in drinking water. Bodyweight loss was monitored daily and the disease activity index was calculated, and a histological evaluation of the colon was performed. TNF-α production was measured in the culture of small fragments of the distal colon or bone marrow-derived macrophages (BMDMs) cocultured with CD200+ cells. We found that Cd200-/- mice displayed diminished severity of colitis when compared to WT mice. Inflammation significantly diminished CD200 expression in WT mice, particularly on vascular endothelial cells and immune cells. The co-culture of BMDMs with CD200+ cells inhibited TNF-α secretion. In vivo, acute colitis induced by DSS significantly increased TNF-α secretion in colon tissue in comparison to untreated controls. However, Cd200-/- mice secreted a similar level of TNF-α to WT mice in vivo. CD200 regulates the severity of DSS-induced colitis in conventionally-reared mice. The presence of CD200+ cells decreases TNF-α production by macrophages in vitro. However, during DDS-induced intestinal inflammation secretion of TNF-α is independent of CD200 expression.


Assuntos
Antígenos CD/genética , Inflamação/imunologia , Fator de Necrose Tumoral alfa/metabolismo , Animais , Antígenos CD/metabolismo , Colite/patologia , Colo/patologia , Citocinas/metabolismo , Células Endoteliais/metabolismo , Feminino , Expressão Gênica/genética , Regulação da Expressão Gênica/genética , Inflamação/genética , Doenças Inflamatórias Intestinais/metabolismo , Doenças Inflamatórias Intestinais/fisiopatologia , Macrófagos/metabolismo , Masculino , Glicoproteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores Imunológicos/metabolismo , Fator de Necrose Tumoral alfa/imunologia
12.
Int J Mol Sci ; 22(4)2021 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-33557113

RESUMO

Multiple lines of evidence support the pathogenic role of maternal immune activation (MIA) in the occurrence of the schizophrenia-like disturbances in offspring. While in the brain the homeostatic role of neuron-microglia protein systems is well documented, the participation of the CX3CL1-CX3CR1 and CD200-CD200R dyads in the adverse impact of MIA often goes under-recognized. Therefore, in the present study, we examined the effect of MIA induced by polyinosinic:polycytidylic acid (Poly I:C) on the CX3CL1-CX3CR1 and CD200-CD200R axes, microglial trajectory (MhcII, Cd40, iNos, Il-1ß, Tnf-α, Il-6, Arg1, Igf-1, Tgf-ß and Il-4), and schizophrenia-like behaviour in adult male offspring of Sprague-Dawley rats. Additionally, according to the "two-hit" hypothesis of schizophrenia, we evaluated the influence of acute challenge with Poly I:C in adult prenatally MIA-exposed animals on the above parameters. In the present study, MIA evoked by Poly I:C injection in the late period of gestation led to the appearance of schizophrenia-like disturbances in adult offspring. Our results revealed the deficits manifested as a diminished number of aggressive interactions, presence of depressive-like episodes, and increase of exploratory activity, as well as a dichotomy in the sensorimotor gating in the prepulse inhibition (PPI) test expressed as two behavioural phenotypes (MIAPPI-low and MIAPPI-high). Furthermore, in the offspring rats subjected to a prenatal challenge (i.e., MIA) we noticed the lack of modulation of behavioural changes after the additional acute immune stimulus (Poly I:C) in adulthood. The important finding reported in this article is that MIA affects the expression and levels of the neuron-microglia proteins in the frontal cortex and hippocampus of adult offspring. We found that the changes in the CX3CL1-CX3CR1 axis could affect microglial trajectory, including decreased hippocampal mRNA level of MhcII and elevated cortical expression of Igf-1 in the MIAPPI-high animals and/or could cause the up-regulation of an inflammatory response (Il-6, Tnf-α, iNos) after the "second hit" in both examined brain regions and, at least in part, might differentiate behavioural disturbances in adult offspring. Consequently, the future effort to identify the biological background of these interactions in the Poly I:C-induced MIA model in Sprague-Dawley rats is desirable to unequivocally clarify this issue.


Assuntos
Imunomodulação/efeitos dos fármacos , Microglia/efeitos dos fármacos , Microglia/imunologia , Poli I-C/farmacologia , Esquizofrenia/etiologia , Animais , Comportamento Animal , Biomarcadores , Modelos Animais de Doenças , Suscetibilidade a Doenças , Hipocampo/efeitos dos fármacos , Hipocampo/imunologia , Hipocampo/metabolismo , Masculino , Microglia/metabolismo , Microglia/patologia , Transtornos do Neurodesenvolvimento/etiologia , Transtornos do Neurodesenvolvimento/metabolismo , Fotoperíodo , RNA Mensageiro/genética , Ratos , Receptores CXCR3/metabolismo , Esquizofrenia/metabolismo , Comportamento Social
13.
Eur J Immunol ; 49(9): 1380-1390, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31365119

RESUMO

CD200 receptor 1(CD200R1) signalling limits myeloid cell responses and reduces autoimmunity, alloimmunity and viral-mediated immunopathology, but has never been examined in the context of eosinophilic inflammation. Susceptibility to lung fungal infection is associated with T-helper 2 (Th2) cytokine dominated responses and strong eosinophilic pathology. Blockade of CD200R1 enhances type I cytokine responses in many infectious and non-infectious settings and so may promote a more protective response to fungal infection. By contrast, we demonstrate that, rather than promoting type I cytokine responses, CD200R1 blockade enhanced eosinophilia in a mouse model of Cryptococcus neoformans infection, whereas CD200R1 agonism reduced lung eosinophilia - with neither strategy completely altering fungal burden. Thus, we reveal a surprising disconnect between pulmonary eosinophilia and cryptococcal burden and dissemination. This research has 2 important implications. Firstly, a lack of CD200R1 signalling enhances immune responses regardless of cytokine polarisation, and secondly reducing eosinophils does not allow protective immunity to develop in susceptible fungal system. Therefore, agonists of CD200R1 may be beneficial for eosinophilic pathologies.


Assuntos
Pneumopatias Fúngicas/imunologia , Receptores de Orexina/imunologia , Eosinofilia Pulmonar/imunologia , Animais , Criptococose/imunologia , Criptococose/microbiologia , Cryptococcus neoformans/imunologia , Citocinas/imunologia , Modelos Animais de Doenças , Inflamação/imunologia , Inflamação/microbiologia , Pulmão , Pneumopatias Fúngicas/microbiologia , Camundongos , Células Mieloides/imunologia , Células Mieloides/microbiologia , Eosinofilia Pulmonar/microbiologia , Células Th2/imunologia , Células Th2/microbiologia
14.
Cancer Immunol Immunother ; 69(11): 2333-2343, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32514618

RESUMO

Patients with pediatric cancers such as neuroblastoma (NB) are often unresponsive to checkpoint blockade immunotherapy. One major factor in pediatric tumor resistance to immunotherapy is considered to be the low mutation rate of pediatric tumors. Another factor may be the overexpression of additional inhibitory pathways. While analyzing the RNA-sequencing database TARGET, we found that human NB tumors overexpress immune checkpoint molecule CD200. To determine its significance and impact on tumor immune microenvironment, we analyzed 49 cases of previously untreated, surgically removed NB tumors using immunohistochemistry and multi-color flow cytometry (FACS). We found that CD200 is overexpressed in more than 90% of NB tumors. In the tumor microenvironment of NB, CD200 is mainly overexpressed in CD45- NB tumor cells, while its cognate receptor (CD200R) is mainly expressed in HLA-DR+CD14+ myeloid cells and CD11c+ dendritic cells. Low-level expression of CD200R is also observed in tumor-infiltrating CD4+ and CD8+ T cells. In NB tumors with higher CD200 expression (CD200high), we observed lower numbers of HLA-DR+CD14+ myeloid cells and less tumor-infiltrating CD4+ and CD8+ T cells. Moreover, we found that CD4+ and CD8+ T cells produced less IFN-γ and/or TNF-α in CD200high NB tumors. Thus, CD200-CD200R pathway appears to downregulate anti-tumor immunity in the tumor microenvironment of NB tumors, and blockade of this pathway may be beneficial for NB patients.


Assuntos
Antígenos CD/imunologia , Linfócitos do Interstício Tumoral/imunologia , Neuroblastoma/imunologia , Microambiente Tumoral/imunologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Pré-Escolar , Feminino , Humanos , Lactente , Masculino , Receptores de Orexina/imunologia , Evasão Tumoral/imunologia
15.
J Neuroinflammation ; 17(1): 171, 2020 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-32473633

RESUMO

BACKGROUND: Spontaneous functional recovery occurs during the acute phase after stroke onset, but this intrinsic recovery remains limited. Therefore, exploring the mechanism underlying spontaneous recovery and identifying potential strategies to promote functional rehabilitation after stroke are very important. The CD200/CD200R signaling pathway plays an important role in neurological recovery by modulating synaptic plasticity during multiple brain disorders. However, the effect and mechanism of action of the CD200/CD200R pathway in spontaneous functional recovery after stroke are unclear. METHODS: In this study, we used a transient middle cerebral artery occlusion (MCAO) model in rats to investigate the function of CD200/CD200R signaling in spontaneous functional recovery after stroke. We performed a battery of behavioral tests (Longa test, adhesive removal test, limb-use asymmetry test, and the modified grip-traction test) to evaluate sensorimotor function after intracerebroventricular (i.c.v.) injection with CD200 fusion protein (CD200Fc) or CD200R blocking antibody (CD200R Ab) post-stroke. Density and morphology of dendritic spines were analyzed by Golgi staining. Microglia activation was evaluated by immunofluorescence staining. Western blot was used to detect the levels of protein and the levels of mRNA were measured by qPCR. RESULTS: Our study demonstrated that sensorimotor function, synaptic proteins, and structures were gradually recovered and CD200R was transiently upregulated in ipsilateral cortex after stroke. Synapse-related proteins and dendritic spines were preserved, accompanied by sensorimotor functional recovery, after stereotaxic CD200Fc injection post-stroke. In addition, CD200Fc restrained microglia activation and pro-inflammatory factor release (such as Il-1, Tnf-α, and Il-6) after MCAO. On the contrary, CD200R Ab aggravated sensory function recovery in adhesive removal test and further promoted microglia activation and pro-inflammatory factor release (such as Il-1) after MCAO. The immune-modulatory effect of CD200/CD200R signaling might be exerted partly by its inhibition of the MAPK pathway. CONCLUSIONS: This study provides evidence that the CD200/CD200R signaling pathway contributes to spontaneous functional recovery by enhancing synaptic plasticity via inhibition of microglia activation and inflammatory factor release.


Assuntos
Plasticidade Neuronal/fisiologia , Receptores Imunológicos/metabolismo , Recuperação de Função Fisiológica/fisiologia , Transdução de Sinais/fisiologia , Acidente Vascular Cerebral , Animais , Encéfalo/metabolismo , Masculino , Receptores de Orexina/metabolismo , Ratos , Ratos Sprague-Dawley
16.
J Neuroinflammation ; 17(1): 247, 2020 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-32829711

RESUMO

BACKGROUND: The bidirectional communication between neurons and microglia is fundamental for the homeostasis and biological function of the central nervous system. Maternal immune activation (MIA) is considered to be one of the factors affecting these interactions. Accordingly, MIA has been suggested to be involved in several neuropsychiatric diseases, including schizophrenia. The crucial regulatory systems for neuron-microglia crosstalk are the CX3CL1-CX3CR1 and CD200-CD200R axes. METHODS: We aimed to clarify the impact of MIA on CX3CL1-CX3CR1 and CD200-CD200R signalling pathways in the brains of male Wistar rats in early and adult life by employing two neurodevelopmental models of schizophrenia based on the prenatal challenge with lipopolysaccharide (LPS) and polyinosinic:polycytidylic acid (Poly I:C). We also examined the effect of MIA on the expression of microglial markers and the profile of cytokines released in the brains of young offspring, as well as the behaviour of adult animals. Moreover, we visualized the localization of ligand-receptor systems in the hippocampal regions (CA1, CA3 and DG) and the frontal cortex of young rats exposed to MIA. The differences between groups were analysed using Student's t test. RESULTS: We observed that MIA altered developmental trajectories in neuron-microglia communication in the brains of young offspring, as evidenced by the disruption of CX3CL1-CX3CR1 and/or CD200-CD200R axes. Our data demonstrated the presence of abnormalities after LPS-induced MIA in levels of Cd40, Il-1ß, Tnf-α, Arg1, Tgf-ß and Il-10, as well as IBA1, IL-1ß and IL-4, while after Poly I:C-generated MIA in levels of Cd40, iNos, Il-6, Tgf-ß, Il-10, and IBA1, IL-1ß, TNF-α, IL-6, TGF-ß and IL-4 early in the life of male animals. In adult male rats that experienced prenatal exposure to MIA, we observed behavioural changes resembling a schizophrenia-like phenotype. CONCLUSIONS: Our study provides evidence that altered CX3CL1-CX3CR1 and/or CD200-CD200R pathways, emerging after prenatal immune challenge with LPS and Poly I:C, might be involved in the aetiology of schizophrenia.


Assuntos
Encéfalo/efeitos dos fármacos , Lipopolissacarídeos/farmacologia , Poli I-C/farmacologia , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Transdução de Sinais/efeitos dos fármacos , Animais , Antígenos CD/metabolismo , Encéfalo/metabolismo , Receptor 1 de Quimiocina CX3C/metabolismo , Quimiocina CX3CL1/metabolismo , Feminino , Masculino , Gravidez , Ratos , Ratos Wistar , Receptores Imunológicos/metabolismo , Esquizofrenia/metabolismo
17.
Eur J Neurol ; 27(7): 1224-1230, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32190938

RESUMO

BACKGROUND AND PURPOSE: Neuroinflammation is known to be involved in the pathogenesis of Parkinson's disease (PD). Abnormal activation of microglia plays a key role in this pathological process. CD200R1 is a membrane glycoprotein that is expressed primarily on myeloid cells including microglia and is involved in the maintenance of microglia in a stationary state. Our previous study reported that the regulation of CD200R1 expression is altered in PD patients. Such alteration will lead to neuroinflammation and is related to the pathogenesis of PD. The possible role of promoter polymorphisms for abnormal CD200R1 expression in PD was examined in this study. METHOD: The UCSC database and dual-luciferase assays were used to confirm the promoter region of CD200R1. The promoter of CD200R1 was sequenced in 457 PD patients and 520 matched healthy controls from the Chinese Han population. Dual-luciferase assays were conducted to examine the promoter activity of CD200R1. RESULTS: It was confirmed that the promoter of CD200R1 is located in the region 876-146 bp upstream of the coding DNA sequence. The frequencies of rs144721913 (P = 0.001) and rs72952157 (P = 0.022) in the promoter were significantly different between the PD group and control group. rs144721913 increases the risk of PD by approximately 14-fold and rs72952157 by 2.6-fold. The dual-luciferase assay indicated that the rs144721913 T allele and the rs72952157 G allele reduced the transcriptional activity of the CD200R1 promoter. CONCLUSIONS: For the first time the promoter region of CD200R1 has been defined and two potential risk polymorphisms (rs144721913 and rs72952157) in the region for PD in Chinese Han populations have been reported.


Assuntos
Doença de Parkinson , Polimorfismo Genético , Alelos , Povo Asiático/genética , Predisposição Genética para Doença , Humanos , Receptores de Orexina , Doença de Parkinson/genética , Polimorfismo de Nucleotídeo Único , Regiões Promotoras Genéticas
18.
Int J Mol Sci ; 21(24)2020 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-33317034

RESUMO

Among the causes of global death and disability, ischemic stroke (also known as cerebral ischemia) plays a pivotal role, by determining the highest number of worldwide mortality, behind cardiomyopathies, affecting 30 million people. The etiopathogenetic burden of a cerebrovascular accident could be brain ischemia (~80%) or intracranial hemorrhage (~20%). The most common site when ischemia occurs is the one is perfused by middle cerebral arteries. Worse prognosis and disablement consequent to brain damage occur in elderly patients or affected by neurological impairment, hypertension, dyslipidemia, and diabetes. Since, in the coming years, estimates predict an exponential increase of people who have diabetes, the disease mentioned above constitutes together with stroke a severe social and economic burden. In diabetic patients after an ischemic stroke, an exorbitant activation of inflammatory molecular pathways and ongoing inflammation is responsible for more severe brain injury and impairment, promoting the advancement of ischemic stroke and diabetes. Considering that the ominous prognosis of ischemic brain damage could by partially clarified by way of already known risk factors the auspice would be modifying poor outcome in the post-stroke phase detecting novel biomolecules associated with poor prognosis and targeting them for revolutionary therapeutic strategies.


Assuntos
Aterosclerose/imunologia , AVC Isquêmico/imunologia , Animais , Aterosclerose/complicações , Aterosclerose/genética , Barreira Hematoencefálica/metabolismo , Humanos , Imunidade Inata , Inflamassomos/genética , Inflamassomos/metabolismo , AVC Isquêmico/etiologia , AVC Isquêmico/genética , MicroRNAs/genética , MicroRNAs/metabolismo
19.
J Neuroinflammation ; 16(1): 40, 2019 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-30777093

RESUMO

BACKGROUND: Ischemic stroke results in a robust inflammatory response within the central nervous system. As the immune-inhibitory CD200-CD200 receptor 1 (CD200R1) signaling axis is a known regulator of immune homeostasis, we hypothesized that it may play a role in post-stroke immune suppression after stroke. METHODS: In this study, we investigated the role of CD200R1-mediated signaling in stroke using CD200 receptor 1-deficient mice. Mice were subjected to a 60-min middle cerebral artery occlusion and evaluated at days 3 and 7, representing the respective peak and early resolution stages of neuroinflammation in this model of ischemic stroke. Infarct size and behavioral deficits were assessed at both time points. Central and peripheral cellular immune responses were measured using flow cytometry. Bacterial colonization was determined in lung tissue homogenates both after acute stroke and in an LPS model of systemic inflammation. RESULTS: In wild-type (WT) animals, CD200R1 was expressed on infiltrating monocytes and lymphocytes after stroke but was absent on microglia. Early after ischemia (72 h), CD200R1-knockout (KO) mice had significantly poorer survival rates and an enhanced susceptibility to spontaneous bacterial colonization of the respiratory tract compared to wild-type (WT) controls, despite no difference in infarct or neurological deficits. While the CNS inflammation was resolved by day 7 post-stroke in WT mice, brain-resident microglia and monocyte activation persisted in CD200R1-KO mice, accompanied by a delayed, augmented lymphocyte response. At this time point, CD200R1-KO mice displayed greater weight loss, more severe neurological deficits, and impaired motor function compared to WT. Systemically, CD200R1-KO mice exhibited signs of persistent infection including lymphopenia, T cell activation and memory conversion, and narrowing of the TCR repertoire. These findings were confirmed in a second model of acute neuroinflammation induced by systemic endotoxin challenge. CONCLUSION: This study defines an essential role of CD200-CD200R1 signaling in stroke. Loss of CD200R1 led to high mortality, increased rates of post-stroke infection, and enhanced entry of peripheral leukocytes into the brain after ischemia, with no increase in infarct size. This suggests that the loss of CD200 receptor leads to enhanced peripheral inflammation that is triggered by brain injury.


Assuntos
Antígenos CD/metabolismo , Infecções Bacterianas/etiologia , Encefalite/etiologia , Infarto da Artéria Cerebral Média/fisiopatologia , Receptores de Orexina/metabolismo , Recuperação de Função Fisiológica/fisiologia , Transdução de Sinais/fisiologia , Animais , Encéfalo/metabolismo , Citocinas/metabolismo , Modelos Animais de Doenças , Regulação da Expressão Gênica/genética , Regulação da Expressão Gênica/fisiologia , Comportamento de Doença/efeitos dos fármacos , Comportamento de Doença/fisiologia , Pulmão/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Atividade Motora/fisiologia , Comportamento de Nidação/fisiologia , Receptores de Orexina/genética , Fagocitose/fisiologia , Transtornos Psicomotores/etiologia , Recuperação de Função Fisiológica/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos
20.
Brain Behav Immun ; 82: 354-371, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31513876

RESUMO

Stroke is a leading cause of long-term disability worldwide; survivors often show sensorimotor and cognitive deficits. Therapeutic exercise is the most common treatment strategy for rehabilitating patients with stroke via augmentation of neurogenesis, angiogenesis, neurotrophic factors expression, and synaptogenesis. Neurogenesis plays important roles in sensorimotor and cognitive functional recovery, and can be promoted by exercise; however, the mechanism underlying this phenomenon remains unclear. In this study, we explored the effects of treadmill exercise on sensorimotor and cognitive functional recovery, as well as the potential molecular mechanisms underlying the promotion of neurogenesis in a rat model of transient middle cerebral artery occlusion (tMCAO). We found that treadmill exercise facilitated sensorimotor and cognitive functional recovery after tMCAO, and that neural stem/progenitor cell proliferation, differentiation, and migration were enhanced in the ipsilateral subventricular and subgranular zones after tMCAO. Meanwhile, the newborn neurons induced by treadmill exercise after tMCAO had the similar function with pre-existing neurons. Treadmill exercise significantly increased CD200 and CD200 receptor (CD200R) levels in the ipsilateral hippocampus and cortex. Further study revealed that treadmill exercise-induced neurogenesis and functional recovery were clearly inhibited, while Il-ß and Tnf-α expression were upregulated, following lentivirus (LV)-induced suppression of post-stroke CD200R expression. Consistent with the effect of treadmill exercise, CD200Fc (a CD200R agonist) markedly promoted neurogenesis and functional recovery after stroke. In addition, CD200Fc could further enhance the functional recovery induced by treadmill exercise after stroke. Our results demonstrate the beneficial role of treadmill exercise in promoting neurogenesis and functional recovery via activating the CD200/CD200R signaling pathway and improving the inflammatory environment after stroke. Thus, the CD200/CD200R signaling pathway is a potential therapeutic target for functional recovery after stroke.


Assuntos
Neurogênese/fisiologia , Condicionamento Físico Animal/fisiologia , Receptores Imunológicos/metabolismo , Animais , Antígenos CD/metabolismo , Diferenciação Celular/fisiologia , Proliferação de Células/fisiologia , Teste de Esforço , Hipocampo/metabolismo , Infarto da Artéria Cerebral Média/metabolismo , Masculino , Células-Tronco Neurais/metabolismo , Neurônios/metabolismo , Esforço Físico/fisiologia , Ratos , Ratos Sprague-Dawley , Receptores Imunológicos/fisiologia , Recuperação de Função Fisiológica/fisiologia , Transdução de Sinais/fisiologia , Acidente Vascular Cerebral/metabolismo , Reabilitação do Acidente Vascular Cerebral/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA