Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 22(1)2020 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-33375121

RESUMO

Regulatory T cells (Tregs) prevent excessive immune responses and limit immune pathology upon infections. To fulfill this role in different immune environments elicited by different types of pathogens, Tregs undergo functional specialization into distinct subsets. During acute type 1 immune responses, type 1 Tregs are induced and recruited to the site of ongoing Th1 responses to efficiently control Th1 responses. However, whether a similar specialization process also takes place following chronic infections is still unknown. In this study, we investigated Treg specialization in persistent viral infections using lymphocytic choriomeningitis virus (LCMV) and murine cytomegalovirus (MCMV) infection as models for chronic and latent infections, respectively. We identify CD85k as a Th1-specific co-inhibitory receptor with sustained expression in persistent viral infections and show that recombinant CD85k inhibits LCMV-specific effector T cells. Furthermore, expression of the CD85k ligand ALCAM is induced on LCMV-specific and exhausted T cells during chronic LCMV infection. Finally, we demonstrate that type 1 Tregs arising during chronic LCMV infection suppress Th1 effector cells in an ALCAM-dependent manner. These results extend the current knowledge of Treg specialization from acute to persistent viral infections and reveal an important functional role of CD85k in Treg-mediated suppression of type 1 immunity.


Assuntos
Vírus da Coriomeningite Linfocítica/imunologia , Glicoproteínas de Membrana/imunologia , Muromegalovirus/imunologia , Receptores Imunológicos/imunologia , Linfócitos T Reguladores/imunologia , Animais , Antígenos CD/imunologia , Antígenos CD/metabolismo , Moléculas de Adesão Celular Neuronais/imunologia , Moléculas de Adesão Celular Neuronais/metabolismo , Linhagem Celular , Células Cultivadas , Infecções por Herpesviridae/imunologia , Infecções por Herpesviridae/metabolismo , Infecções por Herpesviridae/virologia , Coriomeningite Linfocítica/imunologia , Coriomeningite Linfocítica/metabolismo , Coriomeningite Linfocítica/virologia , Vírus da Coriomeningite Linfocítica/fisiologia , Glicoproteínas de Membrana/metabolismo , Camundongos Endogâmicos C57BL , Muromegalovirus/fisiologia , Receptores Imunológicos/metabolismo , Linfócitos T Reguladores/metabolismo , Linfócitos T Reguladores/virologia , Células Th1/imunologia , Células Th1/metabolismo
2.
Front Immunol ; 9: 1344, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29951069

RESUMO

CD4+Foxp3+ Treg cells are essential for maintaining self-tolerance and preventing excessive immune responses. In the context of Th1 immune responses, co-expression of the Th1 transcription factor T-bet with Foxp3 is essential for Treg cells to control Th1 responses. T-bet-dependent expression of CXCR3 directs Treg cells to the site of inflammation. However, the suppressive mediators enabling effective control of Th1 responses at this site are unknown. In this study, we determined the signature of CXCR3+ Treg cells arising in Th1 settings and defined universal features of Treg cells in this context using multiple Th1-dominated infection models. Our analysis defined a set of Th1-specific co-inhibitory receptors and cytotoxic molecules that are specifically expressed in Treg cells during Th1 immune responses in mice and humans. Among these, we identified the novel co-inhibitory receptor CD85k as a functional predictor for Treg-mediated suppression specifically of Th1 responses, which could be explored therapeutically for selective immune suppression in autoimmunity.

3.
Oncoimmunology ; 4(7): e1014242, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26140237

RESUMO

Myeloid-derived suppressor cells (MDSCs) play an important role in immune suppression and accumulate under pathologic conditions such as cancer and chronic inflammation. They comprise a heterogeneous population of immature myeloid cells that exert their immunosuppressive function via a variety of mechanisms. Immunoglobulin-like transcript 3 (ILT3) is a receptor containing immunoreceptor tyrosine-based inhibition motifs (ITIMs) that can be expressed on antigen-presenting cells and is an important regulator of dendritic cell tolerance. ILT3 exists in a membrane-bound and a soluble form and can interact with a yet unidentified ligand on T cells and thereby induce T-cell anergy, regulatory T cells, or T suppressor cells. In this study, we analyzed freshly isolated peripheral blood mononuclear cells (PBMCs) of 105 patients with non-small cell lung cancer and 20 healthy controls and demonstrated for the first time that ILT3 is expressed on MDSCs. We show that increased levels of circulating MDSCs correlate with reduced survival. On the basis of ILT3 cell surface expression, an ILT3low and ILT3high population of polymorphonuclear (PMN)-MDSCs could be distinguished. Interestingly, in line with the immunosuppressive function of ILT3 on dendritic cells, patients with an increased proportion of PMN-MDSCs and an increased fraction of the ILT3high subset had a shorter median survival than patients with elevated PMN-MDSC and a smaller ILT3high fraction. No correlation between the ILT3high subset and other immune variables was found. ILT3 expressed on MDSCs might reflect a previously unknown mechanism by which this cell population induces immune suppression and could therefore be an attractive target for immune intervention.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA