Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.811
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 186(12): 2628-2643.e21, 2023 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-37267950

RESUMO

CDK2 is a core cell-cycle kinase that phosphorylates many substrates to drive progression through the cell cycle. CDK2 is hyperactivated in multiple cancers and is therefore an attractive therapeutic target. Here, we use several CDK2 inhibitors in clinical development to interrogate CDK2 substrate phosphorylation, cell-cycle progression, and drug adaptation in preclinical models. Whereas CDK1 is known to compensate for loss of CDK2 in Cdk2-/- mice, this is not true of acute inhibition of CDK2. Upon CDK2 inhibition, cells exhibit a rapid loss of substrate phosphorylation that rebounds within several hours. CDK4/6 activity backstops inhibition of CDK2 and sustains the proliferative program by maintaining Rb1 hyperphosphorylation, active E2F transcription, and cyclin A2 expression, enabling re-activation of CDK2 in the presence of drug. Our results augment our understanding of CDK plasticity and indicate that co-inhibition of CDK2 and CDK4/6 may be required to suppress adaptation to CDK2 inhibitors currently under clinical assessment.


Assuntos
Proteínas de Ciclo Celular , Quinases Ciclina-Dependentes , Animais , Camundongos , Quinases Ciclina-Dependentes/metabolismo , Ciclo Celular/fisiologia , Quinase 2 Dependente de Ciclina/genética , Quinase 2 Dependente de Ciclina/metabolismo , Proteínas de Ciclo Celular/metabolismo , Fosforilação , Divisão Celular
2.
Cell ; 186(21): 4694-4709.e16, 2023 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-37832525

RESUMO

Cytoplasmic divisions are thought to rely on nuclear divisions and mitotic signals. We demonstrate in Drosophila embryos that cytoplasm can divide repeatedly without nuclei and mitotic CDK/cyclin complexes. Cdk1 normally slows an otherwise faster cytoplasmic division cycle, coupling it with nuclear divisions, and when uncoupled, cytoplasm starts dividing before mitosis. In developing embryos where CDK/cyclin activity can license mitotic microtubule (MT) organizers like the spindle, cytoplasmic divisions can occur without the centrosome, a principal organizer of interphase MTs. However, centrosomes become essential in the absence of CDK/cyclin activity, implying that the cytoplasm can employ either the centrosome-based interphase or CDK/cyclin-dependent mitotic MTs to facilitate its divisions. Finally, we present evidence that autonomous cytoplasmic divisions occur during unperturbed fly embryogenesis and that they may help extrude mitotically stalled nuclei during blastoderm formation. We postulate that cytoplasmic divisions occur in cycles governed by a yet-to-be-uncovered clock mechanism autonomous from CDK/cyclin complexes.


Assuntos
Citocinese , Embrião não Mamífero , Animais , Núcleo Celular , Centrossomo , Ciclinas/metabolismo , Drosophila , Mitose , Fuso Acromático/metabolismo , Embrião não Mamífero/citologia , Embrião não Mamífero/metabolismo
3.
Cell ; 184(22): 5541-5558.e22, 2021 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-34644528

RESUMO

Retrotransposons mediate gene regulation in important developmental and pathological processes. Here, we characterized the transient retrotransposon induction during preimplantation development of eight mammals. Induced retrotransposons exhibit similar preimplantation profiles across species, conferring gene regulatory activities, particularly through long terminal repeat (LTR) retrotransposon promoters. A mouse-specific MT2B2 retrotransposon promoter generates an N-terminally truncated Cdk2ap1ΔN that peaks in preimplantation embryos and promotes proliferation. In contrast, the canonical Cdk2ap1 peaks in mid-gestation and represses cell proliferation. This MT2B2 promoter, whose deletion abolishes Cdk2ap1ΔN production, reduces cell proliferation and impairs embryo implantation, is developmentally essential. Intriguingly, Cdk2ap1ΔN is evolutionarily conserved in sequence and function yet is driven by different promoters across mammals. The distinct preimplantation Cdk2ap1ΔN expression in each mammalian species correlates with the duration of its preimplantation development. Hence, species-specific transposon promoters can yield evolutionarily conserved, alternative protein isoforms, bestowing them with new functions and species-specific expression to govern essential biological divergence.


Assuntos
Sequência Conservada , Desenvolvimento Embrionário/genética , Proteínas Quinases/metabolismo , Retroelementos/genética , Proteínas Supressoras de Tumor/metabolismo , Animais , Sequência de Bases , Blastocisto/metabolismo , Proliferação de Células , Evolução Molecular , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Células-Tronco Embrionárias Humanas/metabolismo , Humanos , Mamíferos/genética , Camundongos Endogâmicos C57BL , Camundongos Knockout , Modelos Biológicos , Regiões Promotoras Genéticas , Isoformas de Proteínas/metabolismo
4.
Cell ; 184(12): 3143-3162.e32, 2021 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-34004147

RESUMO

Gene expression by RNA polymerase II (RNAPII) is tightly controlled by cyclin-dependent kinases (CDKs) at discrete checkpoints during the transcription cycle. The pausing checkpoint following transcription initiation is primarily controlled by CDK9. We discovered that CDK9-mediated, RNAPII-driven transcription is functionally opposed by a protein phosphatase 2A (PP2A) complex that is recruited to transcription sites by the Integrator complex subunit INTS6. PP2A dynamically antagonizes phosphorylation of key CDK9 substrates including DSIF and RNAPII-CTD. Loss of INTS6 results in resistance to tumor cell death mediated by CDK9 inhibition, decreased turnover of CDK9 phospho-substrates, and amplification of acute oncogenic transcriptional responses. Pharmacological PP2A activation synergizes with CDK9 inhibition to kill both leukemic and solid tumor cells, providing therapeutic benefit in vivo. These data demonstrate that fine control of gene expression relies on the balance between kinase and phosphatase activity throughout the transcription cycle, a process dysregulated in cancer that can be exploited therapeutically.


Assuntos
Quinase 9 Dependente de Ciclina/metabolismo , Terapia de Alvo Molecular , Neoplasias/tratamento farmacológico , Neoplasias/genética , Proteína Fosfatase 2/metabolismo , Proteínas de Ligação a RNA/metabolismo , Transcrição Gênica , Proteínas Supressoras de Tumor/metabolismo , Animais , Linhagem Celular Tumoral , Quinase 9 Dependente de Ciclina/antagonistas & inibidores , Resistencia a Medicamentos Antineoplásicos/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Camundongos Endogâmicos NOD , Fosforilação , Ligação Proteica , RNA Polimerase II/química , RNA Polimerase II/metabolismo , Especificidade por Substrato
5.
Cell ; 182(3): 685-712.e19, 2020 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-32645325

RESUMO

The causative agent of the coronavirus disease 2019 (COVID-19) pandemic, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has infected millions and killed hundreds of thousands of people worldwide, highlighting an urgent need to develop antiviral therapies. Here we present a quantitative mass spectrometry-based phosphoproteomics survey of SARS-CoV-2 infection in Vero E6 cells, revealing dramatic rewiring of phosphorylation on host and viral proteins. SARS-CoV-2 infection promoted casein kinase II (CK2) and p38 MAPK activation, production of diverse cytokines, and shutdown of mitotic kinases, resulting in cell cycle arrest. Infection also stimulated a marked induction of CK2-containing filopodial protrusions possessing budding viral particles. Eighty-seven drugs and compounds were identified by mapping global phosphorylation profiles to dysregulated kinases and pathways. We found pharmacologic inhibition of the p38, CK2, CDK, AXL, and PIKFYVE kinases to possess antiviral efficacy, representing potential COVID-19 therapies.


Assuntos
Betacoronavirus/metabolismo , Infecções por Coronavirus/metabolismo , Avaliação Pré-Clínica de Medicamentos/métodos , Pneumonia Viral/metabolismo , Proteômica/métodos , Células A549 , Enzima de Conversão de Angiotensina 2 , Animais , Antivirais/farmacologia , COVID-19 , Células CACO-2 , Caseína Quinase II/antagonistas & inibidores , Caseína Quinase II/metabolismo , Chlorocebus aethiops , Infecções por Coronavirus/virologia , Quinases Ciclina-Dependentes/antagonistas & inibidores , Quinases Ciclina-Dependentes/metabolismo , Células HEK293 , Interações Hospedeiro-Patógeno , Humanos , Pandemias , Peptidil Dipeptidase A/genética , Peptidil Dipeptidase A/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase/farmacologia , Fosforilação , Pneumonia Viral/virologia , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Proteínas Proto-Oncogênicas/metabolismo , Receptores Proteína Tirosina Quinases/antagonistas & inibidores , Receptores Proteína Tirosina Quinases/metabolismo , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/metabolismo , Células Vero , Proteínas Quinases p38 Ativadas por Mitógeno/antagonistas & inibidores , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Receptor Tirosina Quinase Axl
6.
Cell ; 183(5): 1436-1456.e31, 2020 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-33212010

RESUMO

The integration of mass spectrometry-based proteomics with next-generation DNA and RNA sequencing profiles tumors more comprehensively. Here this "proteogenomics" approach was applied to 122 treatment-naive primary breast cancers accrued to preserve post-translational modifications, including protein phosphorylation and acetylation. Proteogenomics challenged standard breast cancer diagnoses, provided detailed analysis of the ERBB2 amplicon, defined tumor subsets that could benefit from immune checkpoint therapy, and allowed more accurate assessment of Rb status for prediction of CDK4/6 inhibitor responsiveness. Phosphoproteomics profiles uncovered novel associations between tumor suppressor loss and targetable kinases. Acetylproteome analysis highlighted acetylation on key nuclear proteins involved in the DNA damage response and revealed cross-talk between cytoplasmic and mitochondrial acetylation and metabolism. Our results underscore the potential of proteogenomics for clinical investigation of breast cancer through more accurate annotation of targetable pathways and biological features of this remarkably heterogeneous malignancy.


Assuntos
Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Carcinogênese/genética , Carcinogênese/patologia , Terapia de Alvo Molecular , Proteogenômica , Desaminases APOBEC/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Neoplasias da Mama/imunologia , Neoplasias da Mama/terapia , Estudos de Coortes , Dano ao DNA , Reparo do DNA , Feminino , Humanos , Imunoterapia , Metabolômica , Pessoa de Meia-Idade , Mutagênese/genética , Fosforilação , Inibidores de Proteínas Quinases/farmacologia , Proteínas Quinases/metabolismo , Receptor ErbB-2/metabolismo , Proteína do Retinoblastoma/metabolismo , Microambiente Tumoral/imunologia
7.
Cell ; 178(4): 835-849.e21, 2019 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-31327527

RESUMO

Diverse genetic, epigenetic, and developmental programs drive glioblastoma, an incurable and poorly understood tumor, but their precise characterization remains challenging. Here, we use an integrative approach spanning single-cell RNA-sequencing of 28 tumors, bulk genetic and expression analysis of 401 specimens from the The Cancer Genome Atlas (TCGA), functional approaches, and single-cell lineage tracing to derive a unified model of cellular states and genetic diversity in glioblastoma. We find that malignant cells in glioblastoma exist in four main cellular states that recapitulate distinct neural cell types, are influenced by the tumor microenvironment, and exhibit plasticity. The relative frequency of cells in each state varies between glioblastoma samples and is influenced by copy number amplifications of the CDK4, EGFR, and PDGFRA loci and by mutations in the NF1 locus, which each favor a defined state. Our work provides a blueprint for glioblastoma, integrating the malignant cell programs, their plasticity, and their modulation by genetic drivers.


Assuntos
Neoplasias Encefálicas/genética , Plasticidade Celular/genética , Glioblastoma/genética , Adolescente , Idoso , Animais , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Linhagem da Célula/genética , Criança , Estudos de Coortes , Modelos Animais de Doenças , Feminino , Heterogeneidade Genética , Glioblastoma/patologia , Xenoenxertos , Humanos , Lactente , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Pessoa de Meia-Idade , Mutação , RNA-Seq , Análise de Célula Única/métodos , Microambiente Tumoral/genética
8.
Cell ; 175(1): 171-185.e25, 2018 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-30146162

RESUMO

CKIα ablation induces p53 activation, and CKIα degradation underlies the therapeutic effect of lenalidomide in a pre-leukemia syndrome. Here we describe the development of CKIα inhibitors, which co-target the transcriptional kinases CDK7 and CDK9, thereby augmenting CKIα-induced p53 activation and its anti-leukemic activity. Oncogene-driving super-enhancers (SEs) are highly sensitive to CDK7/9 inhibition. We identified multiple newly gained SEs in primary mouse acute myeloid leukemia (AML) cells and demonstrate that the inhibitors abolish many SEs and preferentially suppress the transcription elongation of SE-driven oncogenes. We show that blocking CKIα together with CDK7 and/or CDK9 synergistically stabilize p53, deprive leukemia cells of survival and proliferation-maintaining SE-driven oncogenes, and induce apoptosis. Leukemia progenitors are selectively eliminated by the inhibitors, explaining their therapeutic efficacy with preserved hematopoiesis and leukemia cure potential; they eradicate leukemia in MLL-AF9 and Tet2-/-;Flt3ITD AML mouse models and in several patient-derived AML xenograft models, supporting their potential efficacy in curing human leukemia.


Assuntos
Caseína Quinase Ialfa/antagonistas & inibidores , Leucemia Mieloide Aguda/tratamento farmacológico , Animais , Apoptose/efeitos dos fármacos , Caseína Quinase Ialfa/fisiologia , Proliferação de Células/efeitos dos fármacos , Quinase 9 Dependente de Ciclina/antagonistas & inibidores , Quinase 9 Dependente de Ciclina/fisiologia , Quinases Ciclina-Dependentes/antagonistas & inibidores , Quinases Ciclina-Dependentes/fisiologia , Proteínas de Ligação a DNA , Modelos Animais de Doenças , Elementos Facilitadores Genéticos/genética , Hematopoese , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Proteínas de Fusão Oncogênica/metabolismo , Proteínas Serina-Treonina Quinases , Proteínas Proto-Oncogênicas , Proteína Supressora de Tumor p53/fisiologia , Ensaios Antitumorais Modelo de Xenoenxerto
9.
Cell ; 173(7): 1770-1782.e14, 2018 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-29906450

RESUMO

Using integrative genomic analysis of 360 metastatic castration-resistant prostate cancer (mCRPC) samples, we identified a novel subtype of prostate cancer typified by biallelic loss of CDK12 that is mutually exclusive with tumors driven by DNA repair deficiency, ETS fusions, and SPOP mutations. CDK12 loss is enriched in mCRPC relative to clinically localized disease and characterized by focal tandem duplications (FTDs) that lead to increased gene fusions and marked differential gene expression. FTDs associated with CDK12 loss result in highly recurrent gains at loci of genes involved in the cell cycle and DNA replication. CDK12 mutant cases are baseline diploid and do not exhibit DNA mutational signatures linked to defects in homologous recombination. CDK12 mutant cases are associated with elevated neoantigen burden ensuing from fusion-induced chimeric open reading frames and increased tumor T cell infiltration/clonal expansion. CDK12 inactivation thereby defines a distinct class of mCRPC that may benefit from immune checkpoint immunotherapy.


Assuntos
Quinases Ciclina-Dependentes/metabolismo , Neoplasias da Próstata/patologia , Anticorpos Monoclonais/uso terapêutico , Linhagem Celular Tumoral , Quimiocina CCL21/genética , Quimiocina CCL21/metabolismo , Quinases Ciclina-Dependentes/antagonistas & inibidores , Quinases Ciclina-Dependentes/genética , Reparo do DNA , Regulação Neoplásica da Expressão Gênica , Instabilidade Genômica , Humanos , Masculino , Mutação de Sentido Incorreto , Estadiamento de Neoplasias , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fenótipo , Receptor de Morte Celular Programada 1/imunologia , Próstata/diagnóstico por imagem , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/imunologia , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Linfócitos T/metabolismo , Linfócitos T/patologia , Tomografia Computadorizada por Raios X
10.
Cell ; 173(1): 104-116.e12, 2018 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-29502971

RESUMO

Human diseases are often caused by loss of somatic cells that are incapable of re-entering the cell cycle for regenerative repair. Here, we report a combination of cell-cycle regulators that induce stable cytokinesis in adult post-mitotic cells. We screened cell-cycle regulators expressed in proliferating fetal cardiomyocytes and found that overexpression of cyclin-dependent kinase 1 (CDK1), CDK4, cyclin B1, and cyclin D1 efficiently induced cell division in post-mitotic mouse, rat, and human cardiomyocytes. Overexpression of the cell-cycle regulators was self-limiting through proteasome-mediated degradation of the protein products. In vivo lineage tracing revealed that 15%-20% of adult cardiomyocytes expressing the four factors underwent stable cell division, with significant improvement in cardiac function after acute or subacute myocardial infarction. Chemical inhibition of Tgf-ß and Wee1 made CDK1 and cyclin B dispensable. These findings reveal a discrete combination of genes that can efficiently unlock the proliferative potential in cells that have terminally exited the cell cycle.


Assuntos
Coração/fisiologia , Miócitos Cardíacos/metabolismo , Animais , Proteína Quinase CDC2/genética , Proteína Quinase CDC2/metabolismo , Proteínas de Ciclo Celular/antagonistas & inibidores , Proteínas de Ciclo Celular/metabolismo , Proliferação de Células , Ciclina B1/genética , Ciclina B1/metabolismo , Ciclina D1/genética , Ciclina D1/metabolismo , Quinase 4 Dependente de Ciclina/genética , Quinase 4 Dependente de Ciclina/metabolismo , Citocinese , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Infarto do Miocárdio/veterinária , Miócitos Cardíacos/citologia , Cadeias Pesadas de Miosina/genética , Proteínas Nucleares/antagonistas & inibidores , Proteínas Nucleares/metabolismo , Proteínas Tirosina Quinases/antagonistas & inibidores , Proteínas Tirosina Quinases/metabolismo , Ratos , Regeneração , Fator de Crescimento Transformador beta/antagonistas & inibidores , Fator de Crescimento Transformador beta/metabolismo
11.
Cell ; 175(5): 1244-1258.e26, 2018 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-30454645

RESUMO

Cyclin-dependent kinase 9 (CDK9) promotes transcriptional elongation through RNAPII pause release. We now report that CDK9 is also essential for maintaining gene silencing at heterochromatic loci. Through a live cell drug screen with genetic confirmation, we discovered that CDK9 inhibition reactivates epigenetically silenced genes in cancer, leading to restored tumor suppressor gene expression, cell differentiation, and activation of endogenous retrovirus genes. CDK9 inhibition dephosphorylates the SWI/SNF protein BRG1, which contributes to gene reactivation. By optimization through gene expression, we developed a highly selective CDK9 inhibitor (MC180295, IC50 = 5 nM) that has broad anti-cancer activity in vitro and is effective in in vivo cancer models. Additionally, CDK9 inhibition sensitizes to the immune checkpoint inhibitor α-PD-1 in vivo, making it an excellent target for epigenetic therapy of cancer.


Assuntos
Quinase 9 Dependente de Ciclina/metabolismo , Animais , Linhagem Celular Tumoral , Quinase 9 Dependente de Ciclina/antagonistas & inibidores , Quinase 9 Dependente de Ciclina/genética , DNA Helicases/genética , DNA Helicases/metabolismo , Metilação de DNA , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Leucócitos Mononucleares/citologia , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-myc/metabolismo , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia , Relação Estrutura-Atividade , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
12.
Cell ; 174(2): 433-447.e19, 2018 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-29909985

RESUMO

Nearly all prostate cancer deaths are from metastatic castration-resistant prostate cancer (mCRPC), but there have been few whole-genome sequencing (WGS) studies of this disease state. We performed linked-read WGS on 23 mCRPC biopsy specimens and analyzed cell-free DNA sequencing data from 86 patients with mCRPC. In addition to frequent rearrangements affecting known prostate cancer genes, we observed complex rearrangements of the AR locus in most cases. Unexpectedly, these rearrangements include highly recurrent tandem duplications involving an upstream enhancer of AR in 70%-87% of cases compared with <2% of primary prostate cancers. A subset of cases displayed AR or MYC enhancer duplication in the context of a genome-wide tandem duplicator phenotype associated with CDK12 inactivation. Our findings highlight the complex genomic structure of mCRPC, nominate alterations that may inform prostate cancer treatment, and suggest that additional recurrent events in the non-coding mCRPC genome remain to be discovered.


Assuntos
Neoplasias de Próstata Resistentes à Castração/patologia , Receptores Androgênicos/genética , Sequenciamento Completo do Genoma , Idoso , Anilidas/uso terapêutico , Quinases Ciclina-Dependentes/genética , Quinases Ciclina-Dependentes/metabolismo , Elementos Facilitadores Genéticos/genética , Duplicação Gênica , Rearranjo Gênico , Genes myc , Loci Gênicos , Haplótipos , Humanos , Masculino , Pessoa de Meia-Idade , Metástase Neoplásica , PTEN Fosfo-Hidrolase/genética , Fenótipo , Antígeno Prostático Específico/sangue , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Neoplasias de Próstata Resistentes à Castração/genética , Inibidores de Proteínas Quinases/uso terapêutico , Piridinas/uso terapêutico
13.
Mol Cell ; 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38955181

RESUMO

The essential Mediator (MED) coactivator complex plays a well-understood role in regulation of basal transcription in all eukaryotes, but the mechanism underlying its role in activator-dependent transcription remains unknown. We investigated modulation of metazoan MED interaction with RNA polymerase II (RNA Pol II) by antagonistic effects of the MED26 subunit and the CDK8 kinase module (CKM). Biochemical analysis of CKM-MED showed that the CKM blocks binding of the RNA Pol II carboxy-terminal domain (CTD), preventing RNA Pol II interaction. This restriction is eliminated by nuclear receptor (NR) binding to CKM-MED, which enables CTD binding in a MED26-dependent manner. Cryoelectron microscopy (cryo-EM) and crosslinking-mass spectrometry (XL-MS) revealed that the structural basis for modulation of CTD interaction with MED relates to a large intrinsically disordered region (IDR) in CKM subunit MED13 that blocks MED26 and CTD interaction with MED but is repositioned upon NR binding. Hence, NRs can control transcription initiation by priming CKM-MED for MED26-dependent RNA Pol II interaction.

14.
Mol Cell ; 84(12): 2287-2303.e10, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38821049

RESUMO

Cyclin-dependent kinase 7 (CDK7), part of the general transcription factor TFIIH, promotes gene transcription by phosphorylating the C-terminal domain of RNA polymerase II (RNA Pol II). Here, we combine rapid CDK7 kinase inhibition with multi-omics analysis to unravel the direct functions of CDK7 in human cells. CDK7 inhibition causes RNA Pol II retention at promoters, leading to decreased RNA Pol II initiation and immediate global downregulation of transcript synthesis. Elongation, termination, and recruitment of co-transcriptional factors are not directly affected. Although RNA Pol II, initiation factors, and Mediator accumulate at promoters, RNA Pol II complexes can also proceed into gene bodies without promoter-proximal pausing while retaining initiation factors and Mediator. Further downstream, RNA Pol II phosphorylation increases and initiation factors and Mediator are released, allowing recruitment of elongation factors and an increase in RNA Pol II elongation velocity. Collectively, CDK7 kinase activity promotes the release of initiation factors and Mediator from RNA Pol II, facilitating RNA Pol II escape from the promoter.


Assuntos
Quinase Ativadora de Quinase Dependente de Ciclina , Quinases Ciclina-Dependentes , Regiões Promotoras Genéticas , RNA Polimerase II , Iniciação da Transcrição Genética , Humanos , Quinases Ciclina-Dependentes/metabolismo , Quinases Ciclina-Dependentes/genética , RNA Polimerase II/metabolismo , RNA Polimerase II/genética , Fosforilação , Inibidores de Proteínas Quinases/farmacologia , Complexo Mediador/metabolismo , Complexo Mediador/genética , Células HeLa , Fator de Transcrição TFIIH/metabolismo , Fator de Transcrição TFIIH/genética , Células HEK293
15.
Mol Cell ; 84(7): 1224-1242.e13, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38458201

RESUMO

Although mismatch repair (MMR) is essential for correcting DNA replication errors, it can also recognize other lesions, such as oxidized bases. In G0 and G1, MMR is kept in check through unknown mechanisms as it is error-prone during these cell cycle phases. We show that in mammalian cells, D-type cyclins are recruited to sites of oxidative DNA damage in a PCNA- and p21-dependent manner. D-type cyclins inhibit the proteasomal degradation of p21, which competes with MMR proteins for binding to PCNA, thereby inhibiting MMR. The ability of D-type cyclins to limit MMR is CDK4- and CDK6-independent and is conserved in G0 and G1. At the G1/S transition, the timely, cullin-RING ubiquitin ligase (CRL)-dependent degradation of D-type cyclins and p21 enables MMR activity to efficiently repair DNA replication errors. Persistent expression of D-type cyclins during S-phase inhibits the binding of MMR proteins to PCNA, increases the mutational burden, and promotes microsatellite instability.


Assuntos
Ciclinas , Reparo de Erro de Pareamento de DNA , Animais , Ciclinas/genética , Antígeno Nuclear de Célula em Proliferação/genética , Antígeno Nuclear de Célula em Proliferação/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/genética , Interfase , Mamíferos/metabolismo
16.
Cell ; 167(7): 1750-1761.e16, 2016 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-27984725

RESUMO

S phase and mitotic onset are brought about by the action of multiple different cyclin-CDK complexes. However, it has been suggested that changes in the total level of CDK kinase activity, rather than substrate specificity, drive the temporal ordering of S phase and mitosis. Here, we present a phosphoproteomics-based systems analysis of CDK substrates in fission yeast and demonstrate that the phosphorylation of different CDK substrates can be temporally ordered during the cell cycle by a single cyclin-CDK. This is achieved by rising CDK activity and the differential sensitivity of substrates to CDK activity over a wide dynamic range. This is combined with rapid phosphorylation turnover to generate clearly resolved substrate-specific activity thresholds, which in turn ensures the appropriate ordering of downstream cell-cycle events. Comparative analysis with wild-type cells expressing multiple cyclin-CDK complexes reveals how cyclin-substrate specificity works alongside activity thresholds to fine-tune the patterns of substrate phosphorylation.


Assuntos
Ciclo Celular , Quinases Ciclina-Dependentes/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/citologia , Schizosaccharomyces/metabolismo , Ciclinas/metabolismo , Mitose , Fosforilação
17.
Mol Cell ; 83(22): 4078-4092.e6, 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-37977119

RESUMO

Tumor growth is driven by continued cellular growth and proliferation. Cyclin-dependent kinase 7's (CDK7) role in activating mitotic CDKs and global gene expression makes it therefore an attractive target for cancer therapies. However, what makes cancer cells particularly sensitive to CDK7 inhibition (CDK7i) remains unclear. Here, we address this question. We show that CDK7i, by samuraciclib, induces a permanent cell-cycle exit, known as senescence, without promoting DNA damage signaling or cell death. A chemogenetic genome-wide CRISPR knockout screen identified that active mTOR (mammalian target of rapamycin) signaling promotes samuraciclib-induced senescence. mTOR inhibition decreases samuraciclib sensitivity, and increased mTOR-dependent growth signaling correlates with sensitivity in cancer cell lines. Reverting a growth-promoting mutation in PIK3CA to wild type decreases sensitivity to CDK7i. Our work establishes that enhanced growth alone promotes CDK7i sensitivity, providing an explanation for why some cancers are more sensitive to CDK inhibition than normally growing cells.


Assuntos
Quinases Ciclina-Dependentes , Neoplasias , Humanos , Quinases Ciclina-Dependentes/genética , Quinases Ciclina-Dependentes/metabolismo , Quinase Ativadora de Quinase Dependente de Ciclina , Transdução de Sinais , Ciclo Celular , Inibidores Enzimáticos , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/genética , Linhagem Celular Tumoral
18.
Mol Cell ; 83(3): 393-403, 2023 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-36599353

RESUMO

The positive transcription elongation factor b (P-TEFb) is composed of cyclins T1 or T2 and cyclin-dependent kinase 9 that regulate the elongation phase of transcription by RNA polymerase II. By antagonizing negative elongation factors and phosphorylating the C-terminal domain of RNA polymerase II, P-TEFb facilitates the elongation and co-transcriptional processing of nascent transcripts. This step is critical for the expression of most eukaryotic genes. In growing cells, P-TEFb is regulated negatively by its reversible associations with HEXIM1/2 in the 7SK snRNP and positively by a number of transcription factors, as well as the super elongation complex. In resting cells, P-TEFb falls apart, and cyclin T1 is degraded by the proteasome. This complex regulation of P-TEFb has evolved for the precise temporal and spatial regulation of gene expression in the organism. Its dysregulation contributes to inflammatory and neoplastic conditions.


Assuntos
Fator B de Elongação Transcricional Positiva , RNA Polimerase II , Humanos , Fator B de Elongação Transcricional Positiva/genética , Fator B de Elongação Transcricional Positiva/metabolismo , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Células HeLa , Quinase 9 Dependente de Ciclina/genética , Quinase 9 Dependente de Ciclina/metabolismo , Ciclina T/genética , Ciclina T/metabolismo , Transcrição Gênica , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
19.
Mol Cell ; 83(22): 4047-4061.e6, 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-37977117

RESUMO

CDK4/6 inhibitors are remarkable anti-cancer drugs that can arrest tumor cells in G1 and induce their senescence while causing only relatively mild toxicities in healthy tissues. How they achieve this mechanistically is unclear. We show here that tumor cells are specifically vulnerable to CDK4/6 inhibition because during the G1 arrest, oncogenic signals drive toxic cell overgrowth. This overgrowth causes permanent cell cycle withdrawal by either preventing progression from G1 or inducing genotoxic damage during the subsequent S-phase and mitosis. Inhibiting or reverting oncogenic signals that converge onto mTOR can rescue this excessive growth, DNA damage, and cell cycle exit in cancer cells. Conversely, inducing oncogenic signals in non-transformed cells can drive these toxic phenotypes and sensitize the cells to CDK4/6 inhibition. Together, this demonstrates that cell cycle arrest and oncogenic cell growth is a synthetic lethal combination that is exploited by CDK4/6 inhibitors to induce tumor-specific toxicity.


Assuntos
Antineoplásicos , Neoplasias , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Pontos de Checagem da Fase G1 do Ciclo Celular , Proteína Supressora de Tumor p53/genética , Ciclo Celular , Proteínas de Ciclo Celular/metabolismo , Antineoplásicos/farmacologia , Neoplasias/tratamento farmacológico , Neoplasias/genética
20.
Mol Cell ; 83(22): 3972-3999, 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-37922911

RESUMO

The elongation stage of transcription by RNA polymerase II (RNA Pol II) is central to the regulation of gene expression in response to developmental and environmental cues in metazoan. Dysregulated transcriptional elongation has been associated with developmental defects as well as disease and aging processes. Decades of genetic and biochemical studies have painstakingly identified and characterized an ensemble of factors that regulate RNA Pol II elongation. This review summarizes recent findings taking advantage of genetic engineering techniques that probe functions of elongation factors in vivo. We propose a revised model of elongation control in this accelerating field by reconciling contradictory results from the earlier biochemical evidence and the recent in vivo studies. We discuss how elongation factors regulate promoter-proximal RNA Pol II pause release, transcriptional elongation rate and processivity, RNA Pol II stability and RNA processing, and how perturbation of these processes is associated with developmental disorders, neurodegenerative disease, cancer, and aging.


Assuntos
Doenças Neurodegenerativas , RNA Polimerase II , Animais , Humanos , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , Fatores de Elongação da Transcrição/genética , Doenças Neurodegenerativas/genética , Transcrição Gênica , Regulação da Expressão Gênica , Envelhecimento/genética , Genes Controladores do Desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA