Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Bull Exp Biol Med ; 165(6): 786-789, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30353331

RESUMO

We performed comparative analysis of quantitative changes in the populations of bone marrow microenvironment cells in patients with chronic myeloid leukemia, multiple myeloma, and chronic lymphocytic leukemia in the debut, during response to chemotherapy, and during relapse/progression/loss of response. It was shown that in the active phase of hemoblastoses, the number of reticular cells and fibroblasts in trephine biopsy specimens was higher than in the phase of response to chemotherapy and than in the control group. In patients with relapse of multiple myeloma and loss of response in chronic myeloid leukemia, the percentage ratio of adipocytes in the bone marrow significantly (by 9-13-fold) increased. In addition, endotheliocytes appear in the active phase of all hemoblastoses in trephine biopsy specimens, while in the phase of response to chemotherapy and in the control group, these cells were absent. The revealed quantitative changes in bone marrow stromal cells can be taken into account during assessing the phase of hemoblastosis and effectiveness of chemotherapy.


Assuntos
Antineoplásicos/farmacologia , Medula Óssea/patologia , Leucemia Linfocítica Crônica de Células B/metabolismo , Leucemia Mielogênica Crônica BCR-ABL Positiva/metabolismo , Mieloma Múltiplo/metabolismo , Microambiente Tumoral , Biópsia , Medula Óssea/fisiologia , Proliferação de Células , Citocinas/metabolismo , Feminino , Fibroblastos/citologia , Humanos , Leucemia Linfocítica Crônica de Células B/tratamento farmacológico , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Masculino , Pessoa de Meia-Idade , Mieloma Múltiplo/tratamento farmacológico , Recidiva Local de Neoplasia
2.
J Bone Miner Res ; 39(4): 498-512, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38477756

RESUMO

Mutations in the Chromodomain helicase DNA-binding protein 7 - coding gene (CHD7) cause CHARGE syndrome (CS). Although craniofacial and skeletal abnormalities are major features of CS patients, the role of CHD7 in bone and cartilage development remain largely unexplored. Here, using a zebrafish (Danio rerio) CS model, we show that chd7-/- larvae display abnormal craniofacial cartilage development and spinal deformities. The craniofacial and spine defects are accompanied by a marked reduction of bone mineralization. At the molecular level, we show that these phenotypes are associated with significant reduction in the expression levels of osteoblast differentiation markers. Additionally, we detected a marked depletion of collagen 2α1 in the cartilage of craniofacial regions and vertebrae, along with significantly reduced number of chondrocytes. Chondrogenesis defects are at least in part due to downregulation of htr2b, which we found to be also dysregulated in human cells derived from an individual with CHD7 mutation-positive CS. Overall, this study thus unveils an essential role for CHD7 in cartilage and bone development, with potential clinical relevance for the craniofacial defects associated with CS.


Patients with CHARGE syndrome exhibit skeletal defects. CHARGE syndrome is primarily caused by mutations in the chromatin remodeler-coding gene CHD7. To investigate the poorly characterized role of CHD7 in cartilage and bone development, here, we examine the craniofacial and bone anomalies in a zebrafish chd7-/- mutant model. We find that zebrafish mutant larvae exhibit striking dysmorphism of craniofacial structures and spinal deformities. Notably, we find a significant reduction in osteoblast, chondrocyte, and collagen matrix markers. This work provides important insights to improve our understanding of the role of chd7 in skeletal development.


Assuntos
Cartilagem , DNA Helicases , Proteínas de Peixe-Zebra , Peixe-Zebra , Animais , Humanos , Cartilagem/metabolismo , Síndrome CHARGE/genética , Síndrome CHARGE/metabolismo , Síndrome CHARGE/patologia , Condrócitos/metabolismo , Condrogênese/genética , Colágeno Tipo II/metabolismo , Colágeno Tipo II/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Regulação da Expressão Gênica no Desenvolvimento , Crânio/metabolismo , Peixe-Zebra/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/embriologia , Proteínas de Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética
3.
J Bone Miner Res ; 39(8): 1188-1199, 2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-38995944

RESUMO

Calorie restriction (CR) can lead to weight loss and decreased substrate availability for bone cells. Ultimately, this can lead to impaired peak bone acquisition in children and adolescence and bone loss in adults. But the mechanisms that drive diet-induced bone loss in humans are not well characterized. To explore those in greater detail, we examined the impact of 30% CR for 4 and 8 wk in both male and female 8-wk-old C57BL/6 J mice. Body composition, areal bone mineral density (aBMD), skeletal microarchitecture by micro-CT, histomorphometric parameters, and in vitro trajectories of osteoblast and adipocyte differentiation were examined. After 8 wk, CR mice lost weight and exhibited lower femoral and whole-body aBMD vs ad libitum (AL) mice. By micro-CT, CR mice had lower cortical bone area fraction vs AL mice, but males had preserved trabecular bone parameters and females showed increased bone volume fraction compared to AL mice. Histomorphometric analysis revealed that CR mice had a profound suppression in trabecular as well as endocortical and periosteal bone formation in addition to reduced bone resorption compared to AL mice. Bone marrow adipose tissue was significantly increased in CR mice. In vitro, the pace of adipogenesis in bone marrow stem cells was greatly accelerated with higher markers of adipocyte differentiation and more oil red O staining, whereas osteogenic differentiation was reduced. qRT-PCR and western blotting suggested that the expression of Wnt16 and the canonical ß-catenin pathway was compromised during CR. In sum, CR causes impaired peak cortical bone mass due to a profound suppression in bone remodeling. The increase in marrow adipocytes in vitro and in vivo is related to both progenitor recruitment and adipogenesis in the face of nutrient insufficiency. Long-term CR may lead to lower bone mass principally in the cortical envelope, possibly due to impaired Wnt signaling.


Calorie restriction led to impaired bone mass and increased accumulation of bone marrow adipose tissue. During the development of bone-fat imbalance due to calorie restriction, bone remodeling was notably inhibited. Calorie restriction may shift the differentiation of bone marrow stem cells toward adipocytes instead of osteoblasts. This process involves a disruption in the canonical Wnt signaling pathway.


Assuntos
Densidade Óssea , Remodelação Óssea , Restrição Calórica , Osso Esponjoso , Osso Cortical , Animais , Osso Cortical/patologia , Osso Cortical/metabolismo , Osso Cortical/diagnóstico por imagem , Feminino , Osso Esponjoso/patologia , Osso Esponjoso/metabolismo , Osso Esponjoso/diagnóstico por imagem , Masculino , Camundongos Endogâmicos C57BL , Camundongos , Osteoblastos/metabolismo , Osteoblastos/patologia , Adipogenia , Adipócitos/metabolismo , Adipócitos/patologia , Osteogênese , Tamanho do Órgão , Diferenciação Celular , Via de Sinalização Wnt , Microtomografia por Raio-X
4.
J Bone Miner Res ; 39(3): 357-372, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38477738

RESUMO

Sphingosine-1-phosphate (S1P) plays multiple roles in bone metabolism and regeneration. Here, we have identified a novel S1P-regulated osteoanabolic mechanism functionally connecting osteoblasts (OBs) to the highly specialized bone vasculature. We demonstrate that S1P/S1PR3 signaling in OBs stimulates vascular endothelial growth factor a (VEGFa) expression and secretion to promote bone growth in an autocrine and boost osteogenic H-type differentiation of bone marrow endothelial cells in a paracrine manner. VEGFa-neutralizing antibodies and VEGF receptor inhibition by axitinib abrogated OB growth in vitro and bone formation in male C57BL/6J in vivo following S1P stimulation and S1P lyase inhibition, respectively. Pharmacological S1PR3 inhibition and genetic S1PR3 deficiency suppressed VEGFa production, OB growth in vitro, and inhibited H-type angiogenesis and bone growth in male mice in vivo. Together with previous work on the osteoanabolic functions of S1PR2 and S1PR3, our data suggest that S1P-dependent bone regeneration employs several nonredundant positive feedback loops between OBs and the bone vasculature. The identification of this yet unappreciated aspect of osteoanabolic S1P signaling may have implications for regular bone homeostasis as well as diseases where the bone microvasculature is affected such as age-related osteopenia and posttraumatic bone regeneration.


Sphingosine-1-phosphate (S1P) is a signaling lipid that regulates bone growth and regeneration. In the present study, a novel regenerative mechanism was connected to S1P signaling within the bone. Activation of its receptor S1PR3 in bone-forming osteoblasts led to secretion of vascular endothelial growth factor a (VEGFa), the most potent vessel-stimulating factor. This stimulated the development of specialized vessels of the bone marrow, the H-type vessels, that supported overall bone regeneration. These findings foster our understanding of regular bone metabolism and suggest that S1P-based drugs may help treat diseases such as age-related osteopenia and posttraumatic bone regeneration, conditions crucially dependent on functional bone microvasculature.


Assuntos
Lisofosfolipídeos , Receptores de Lisoesfingolipídeo , Esfingosina/análogos & derivados , Fator A de Crescimento do Endotélio Vascular , Masculino , Camundongos , Animais , Receptores de Lisoesfingolipídeo/metabolismo , Receptores de Esfingosina-1-Fosfato , Fator A de Crescimento do Endotélio Vascular/metabolismo , Osteogênese , Células Endoteliais/metabolismo , Camundongos Endogâmicos C57BL , Osteoblastos/metabolismo
5.
JBMR Plus ; 7(6): e10745, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37283656

RESUMO

Aging is a major risk factor for most chronic diseases, including osteoporosis, and is characterized by an accumulation of senescent cells in various tissues. MicroRNAs (miRNAs) are critical regulators of bone aging and cellular senescence. Here, we report that miR-19a-3p decreases with age in bone samples from mice as well as in posterior iliac crest bone biopsies of younger versus older healthy women. miR-19a-3p also decreased in mouse bone marrow stromal cells following induction of senescence using etoposide, H2O2, or serial passaging. To explore the transcriptomic effects of miR-19a-3p, we performed RNA sequencing of mouse calvarial osteoblasts transfected with control or miR-19a-3p mimics and found that miR-19a-3p overexpression significantly altered the expression of various senescence, senescence-associated secretory phenotype-related, and proliferation genes. Specifically, miR-19a-3p overexpression in nonsenescent osteoblasts significantly suppressed p16 Ink4a and p21 Cip1 gene expression and increased their proliferative capacity. Finally, we established a novel senotherapeutic role for this miRNA by treating miR-19a-3p expressing cells with H2O2 to induce senescence. Interestingly, these cells exhibited lower p16 Ink4a and p21 Cip1 expression, increased proliferation-related gene expression, and reduced SA-ß-Gal+ cells. Our results thus establish that miR-19a-3p is a senescence-associated miRNA that decreases with age in mouse and human bones and is a potential senotherapeutic target for age-related bone loss. © 2023 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.

6.
J Bone Miner Res ; 38(10): 1480-1496, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37537994

RESUMO

Adipose-derived stromal/stem cells (ASCs) have been extensively studied as cell sources for regenerative medicine for bone because of their excellent proliferative capacity and the ability to obtain a large number of cells with minimal donor morbidity. On the other hand, the differentiation potential of ASCs is generally lower than that of bone marrow-derived stromal/stem cells and varies greatly depending on donors. In this study, we mined a marker that can predict the osteogenic potential of ASC clones and also investigated the usefulness of the molecule as the enhancer of osteogenic differentiation of ASCs as well as its mechanism of action. Through RNA-seq gene analysis, we discovered that GSTT1 (Glutathione S-transferase theta-1) was the most distinguished gene marker between highly osteogenic and poorly osteogenic ASC clones. Knockdown of GSTT1 in high osteogenic ASCs by siGSTT1 treatment reduced mineralized matrix formation. On the other hand, GSTT1 overexpression by GSTT1 transfection or GSTT1 recombinant protein treatment enhanced osteogenic differentiation of low osteogenic ASCs. Metabolomic analysis confirmed significant changes of metabolites related to bone differentiation in ASCs transfected with GSTT1. A high total antioxidant capacity, low levels of cellular reactive oxygen species, and increased GSH/GSSG ratios were also detected in GSTT1-transfected ASCs. When the in vivo effect of GSTT1-transfected ASCs on bone regeneration was investigated with segmental long-bone defect model in rats, bone regeneration was significantly better after implantation of GSTT1-transfected ASCs compared with that of control vector-transfected ASCs. In conclusion, GSTT1 can be a useful marker to screen the highly osteogenic ASC clones and also a therapeutic factor to enhance the osteogenic differentiation of poorly osteogenic ASC clones. © 2023 American Society for Bone and Mineral Research (ASBMR).

7.
JBMR Plus ; 7(12): e10806, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38130760

RESUMO

Prior work demonstrated that Phlpp1 deficiency alters limb length and bone mass, but the cell types involved and requirement of Phlpp1 for this effect were unclear. To understand the function of Phlpp1 within bone-forming osteoblasts, we crossed Phlpp1 floxed mice with mice harboring type 1 collagen (Col1a12.3kb)-Cre. Mineralization of bone marrow stromal cell cultures derived from Phlpp1 cKOCol1a1 was unchanged, but levels of inflammatory genes (eg, Ifng, Il6, Ccl8) and receptor activator of NF-κB ligand/osteoprotegerin (RANKL/OPG) ratios were enhanced by either Phlpp1 ablation or chemical inhibition. Micro-computed tomography of the distal femur and L5 vertebral body of 12-week-old mice revealed no alteration in bone volume per total volume, but compromised femoral bone microarchitecture within Phlpp1 cKOCol1a1 conditional knockout females. Bone histomorphometry of the proximal tibia documented no changes in osteoblast or osteoclast number per bone surface but slight reductions in osteoclast surface per bone surface. Overall, our data show that deletion of Phlpp1 in type 1 collagen-expressing cells does not significantly alter attainment of peak bone mass of either males or females, but may enhance inflammatory gene expression and the ratio of RANKL/OPG. Future studies examining the role of Phlpp1 within models of advanced age, inflammation, or osteocytes, as well as functional redundancy with the related Phlpp2 isoform are warranted. © 2023 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.

8.
JBMR Plus ; 7(11): e10832, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38025042

RESUMO

Clinical studies indicate that microvascular disease (MVD) affects bone microstructure and decreases bone strength in type 2 diabetes mellitus (T2D). Osteocytes are housed in small voids within the bone matrix and lacunae and act as sensors of mechanical forces in bone. These cells regulate osteoclastic bone resorption and osteoblastic bone formation as well as osteocytic perilacunar remodeling. We hypothesized that MVD changes morphometric osteocyte lacunar parameters in individuals with T2D. We collected iliac crest bone biopsies from 35 individuals (10 female, 25 male) with T2D with MVD (15%) or without MVD (21%) with a median age of 67 years (interquartile range [IQR] 62-72 years). The participants were included based on c-peptide levels >700 pmol L-1, absence of anti-GAD65 antibodies, and glycated hemoglobin (HbA1c) levels between 40 and 82 mmol mol-1 or 5.8% and 9.7%, respectively. We assessed osteocyte lacunar morphometric parameters in trabecular and cortical bone regions using micro-computed tomography (micro-CT) at a nominal resolution of 1.2 µm voxel size. The cortical osteocyte lacunar volume (Lc.V) was 7.7% larger (p = 0.05) and more spherical (Lc.Sr, p < 0.01) in the T2D + MVD group. Using linear regression, we found that lacunar density (Lc.N/BV) in trabecular but not cortical bone was associated with HbA1c (p < 0.05, R 2 = 0.067) independently of MVD. Furthermore, Lc.V was larger and Lc.Sr higher in the center than in the periphery of the trabecular and cortical bone regions (p < 0.05). In conclusion, these data imply that MVD may impair skeletal integrity, possibly contributing to increased skeletal fragility in T2D complicated by MVD. © 2023 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.

9.
J Bone Miner Res ; 38(2): 288-299, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36459048

RESUMO

Neurofibromatosis type 1 (NF1) is a tumor predisposition syndrome caused by heterozygous NF1 gene mutations. Patients with NF1 present with pleiotropic somatic secondary manifestations, including development of bone pseudarthrosis after fracture. Somatic NF1 gene mutations were reproducibly identified in patient-derived pseudarthrosis specimens, suggesting a local mosaic cell population including somatic pathologic cells. The somatic cellular pathogenesis of NF1 pseudarthroses remains unclear, though defects in osteogenesis have been posited. Here, we applied time-series single-cell RNA-sequencing (scRNA-seq) to patient-matched control and pseudarthrosis-derived primary bone stromal cells (BSCs). We show that osteogenic specification to an osteoblast progenitor cell population was evident for control bone-derived cells and haploinsufficient pseudarthrosis-derived cells. Similar results were observed for somatic patient fracture-derived NF1-/- cells; however, expression of genetic pathways associated with skeletal mineralization were significantly reduced in NF1-/- cells compared with fracture-derived NF1+/- cells. In mice, we show that Nf1 expressed in bone marrow osteoprogenitors is required for the maintenance of the adult skeleton. Results from our study implicate impaired Clec11a-Itga11-Wnt signaling in the pathogenesis of NF1-associated skeletal disease. © 2022 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).


Assuntos
Fraturas Ósseas , Neurofibromatose 1 , Pseudoartrose , Camundongos , Animais , Neurofibromatose 1/complicações , Neurofibromatose 1/genética , Neurofibromatose 1/patologia , Pseudoartrose/genética , Pseudoartrose/metabolismo , Pseudoartrose/patologia , Fraturas Ósseas/patologia , Osteoblastos/metabolismo , Osteogênese/genética
10.
J Bone Miner Res ; 38(12): 1822-1833, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37823782

RESUMO

Cherubism is a rare autosomal dominant disease characterized by expansile osteolytic jawbone lesions. The effect and safety of off-label calcitonin treatment during the progressive phase of the disease are not well described. In this retrospective study, we present data on the radiological response and adverse effects of subcutaneously administered calcitonin in a cohort of nine cherubism children (three female, six male). Two of the nine patients underwent two separate treatment courses with a significant off-treatment interval in between; therefore, a total of 11 treatment courses with a mean duration of 17.9 months (range <1 to 35, SD 10.8) were studied. To measure the response, the cumulative volume of cherubism lesions was calculated from available three-dimensional imaging. The primary outcome was the change in the volume of lesions during calcitonin treatment and only assessed for the eight treatment courses with a minimal duration of 6 months. A statistically significant reduction in the mean cumulative volume of lesions was seen regardless of treatment duration. Average volume reduction was highest in the first half year of treatment, with a gradual, ongoing reduction thereafter. For the secondary outcome, the change in the cumulative volume of lesions after treatment cessation was assessed for the seven treatment courses with follow-up imaging available. After six of these seven treatment courses, the cumulative volume increased again but remained undoubtedly smaller than the initial volume at the start of therapy. Adverse effects were assessed for all 11 treatment courses and occurred in 73% of them. Most adverse effects were mild and low grade, with the most severe being one grade 3 symptomatic hypocalcemia requiring hospitalization and early treatment termination. Calcitonin treatment seems effective and tolerable in treating actively progressing cherubism in children. However, further research is required to better understand the pharmacological treatment of cherubism, including also other drugs, dosing, and protocols. © 2023 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).


Assuntos
Calcitonina , Querubismo , Criança , Humanos , Masculino , Feminino , Calcitonina/efeitos adversos , Estudos de Coortes , Querubismo/tratamento farmacológico , Estudos Retrospectivos , Minerais
11.
JBMR Plus ; 7(6): e10746, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37283651

RESUMO

The L-enantiomer of ß-aminoisobutyric acid (BAIBA) is secreted by contracted muscle in mice, and exercise increases serum levels in humans. In mice, L-BAIBA reduces bone loss with unloading, but whether it can have a positive effect with loading is unknown. Since synergism can be more easily observed with sub-optimal amounts of factors/stimulation, we sought to determine whether L-BAIBA could potentiate the effects of sub-optimal loading to enhance bone formation. L-BAIBA was provided in drinking water to C57Bl/6 male mice subjected to either 7 N or 8.25 N of sub-optimal unilateral tibial loading for 2 weeks. The combination of 8.25 N and L-BAIBA significantly increased the periosteal mineral apposition rate and bone formation rate compared to loading alone or BAIBA alone. Though L-BAIBA alone had no effect on bone formation, grip strength was increased, suggesting a positive effect on muscle function. Gene expression analysis of the osteocyte-enriched bone showed that the combination of L-BAIBA and 8.25 N induced the expression of loading-responsive genes such as Wnt1, Wnt10b, and the TGFb and BMP signaling pathways. One dramatic change was the downregulation of histone genes in response to sub-optimal loading and/or L-BAIBA. To determine early gene expression, the osteocyte fraction was harvested within 24 hours of loading. A dramatic effect was observed with L-BAIBA and 8.25 N loading as genes were enriched for pathways regulating the extracellular matrix (Chad, Acan, Col9a2), ion channel activity (Scn4b, Scn7a, Cacna1i), and lipid metabolism (Plin1, Plin4, Cidec). Few changes in gene expression were observed with sub-optimal loading or L-BAIBA alone after 24 hours. These results suggest that these signaling pathways are responsible for the synergistic effects between L-BAIBA and sub-optimal loading. Showing that a small muscle factor can enhance the effects of sub-optimal loading of bone may be of relevance for individuals unable to benefit from optimal exercise. © 2023 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.

12.
JBMR Plus ; 6(7): e10636, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35866149

RESUMO

Cyclic adenosine monophosphate (cAMP)-dependent phosphodiesterase (PDE) inhibitors such as pentoxifylline (PTX) suppress cAMP degradation and promote cAMP-dependent signal transduction. PDE inhibitors increase bone formation and bone mass in preclinical models and are used clinically to treat psoriatic arthritis by targeting inflammatory mediators including activated T cells. T cell activation requires two signals: antigen-dependent CD3-activation, which stimulates cAMP production; and CD28 co-stimulation, which downregulates cAMP-signaling, through PDE activation. PDE-inhibitors consequently suppress T cell activation by disrupting CD28 co-stimulation. Interestingly, we have reported that when CD8+ T cells are activated in the absence of CD28 co-stimulation, they secrete Wnt-10b, a bone anabolic Wnt ligand that promotes bone formation. In the present study, we investigated whether the bone anabolic activity of the PDE-inhibitor PTX, has an immunocentric basis, involving Wnt-10b production by CD8+ T cells. When wild-type (WT) mice were administered PTX, biochemical markers of both bone resorption and formation were significantly increased, with net bone gain in the axial skeleton, as quantified by micro-computed tomography (µCT). By contrast, PTX increased only bone resorption in T cell knockout (KO) mice, causing net bone loss. Reconstituting T cell-deficient mice with WT, but not Wnt-10b knockout (KO) CD8+ T cells, rescued bone formation and prevented bone loss. To study the role of cAMP signaling in Wnt-10b expression, reverse-transcription polymerase chain reaction (RT-PCR) and luciferase-reporter assays were performed using primary T cells. PDE inhibitors intensified Wnt-10b promoter activity and messenger RNA (mRNA) accumulation in CD3 and CD28 activated CD8+ T cells. In contrast, inhibiting the cAMP pathway mediators protein kinase A (PKA) and cAMP response element-binding protein (CREB), suppressed Wnt-10b expression by T cells activated in the absence of CD28 co-stimulation. In conclusion, the data demonstrate a key role for Wnt-10b production by CD8+ T cells in the bone anabolic response to PDE-inhibitors and reveal competing T cell-independent pro-resorptive properties of PTX, which dominate under T cell-deficient conditions. Selective targeting of CD8+ T cells by PDE inhibitors may be a beneficial approach for promoting bone regeneration in osteoporotic conditions. © 2022 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.

13.
JBMR Plus ; 6(3): e10593, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35309865

RESUMO

Previous work has shown that osteoprogenitor cells (Prx1+) and pre-osteoblasts (Osx+) contribute to mechanical loading-induced bone formation. However, the role of mature Dmp1-expressing osteoblasts has not been reported. In this study we assessed the contribution of osteoblast lineage cells to bone formation at an early time point following mechanical loading (day 8 from onset of loading). We labeled Osx-expressing and Dmp1-expressing cells in inducible Osx and Dmp1 reporter mice (iOsx-Ai9, iDmp1-Ai9), respectively, 3 weeks before loading. Mice were then loaded daily for 5 days (days 1-5) and were dosed with 5-ethynyl-2'-deoxyuridine (EdU) in their drinking water until euthanasia on day 8. Mice were loaded to lamellar and woven bone inducing stimulation (-7 N/1400 µÎµ, -10 N/2000 µÎµ) to assess differences in these processes. We found varied responses in males and females to the loading stimuli, inducing modest lamellar (females, -7 N), moderate lamellar (males, -10 N), and robust woven (females, -10 N) bone. Overall, we found that preexisting (ie, lineage positive) Osx-expressing and Dmp1-expressing cells contribute largely to the bone formation response, especially during modest bone formation, while our results stuggest that other (non-lineage-positive) cells support the sustained bone formation response during rapid bone formation. With moderate or robust levels of bone formation, a decrease in preexisting Osx-expressing and Dmp1-expressing cells at the bone surface occurred, with a near depletion of Dmp1-expressing cells from the surface in female mice loaded to -10 N (from 52% to 11%). These cells appeared to be replaced by lineage-negative cells from the periosteum. We also found a dose response in proliferation, with 17% to 18% of bone surface cells arising via proliferation in modest lamellar, 38% to 53% in moderate lamellar, and 59% to 81% in robust woven bone formation. In summary, our results show predominant contributions by preexisting Osx and Dmp1 lineage cells to loading-induced lamellar bone formation, whereas recruitment of earlier osteoprogenitors and increased cell proliferation support robust woven bone formation. © 2021 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.

14.
J Bone Miner Res ; 37(8): 1417-1434, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35773785

RESUMO

Disuse and aging are known risk factors associated with low bone mass and quality deterioration, resulting in increased fracture risk. Indeed, current and emerging evidence implicate a large number of shared skeletal manifestations between disuse and aging scenarios. This review provides a detailed overview of current preclinical models of musculoskeletal disuse and the clinical scenarios they seek to recapitulate. We also explore and summarize the major similarities between bone loss after extreme disuse and advanced aging at multiple length scales, including at the organ/tissue, cellular, and molecular level. Specifically, shared structural and material alterations of bone loss are presented between disuse and aging, including preferential loss of bone at cancellous sites, cortical thinning, and loss of bone strength due to enhanced fragility. At the cellular level bone loss is accompanied, during disuse and aging, by increased bone resorption, decreased formation, and enhanced adipogenesis due to altered gap junction intercellular communication, WNT/ß-catenin and RANKL/OPG signaling. Major differences between extreme short-term disuse and aging are discussed, including anatomical specificity, differences in bone turnover rates, periosteal modeling, and the influence of subject sex and genetic variability. The examination also identifies potential shared mechanisms underlying bone loss in aging and disuse that warrant further study such as collagen cross-linking, advanced glycation end products/receptor for advanced glycation end products (AGE-RAGE) signaling, reactive oxygen species (ROS) and nuclear factor κB (NF-κB) signaling, cellular senescence, and altered lacunar-canalicular connectivity (mechanosensation). Understanding the shared structural alterations, changes in bone cell function, and molecular mechanisms common to both extreme disuse and aging are paramount to discovering therapies to combat both age-related and disuse-induced osteoporosis. © 2022 American Society for Bone and Mineral Research (ASBMR).


Assuntos
Doenças Ósseas Metabólicas , Osteoporose , Adipogenia , Envelhecimento , Osso e Ossos , Humanos , Osteócitos
15.
JBMR Plus ; 6(3): e10596, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35309866

RESUMO

Currently, the cell of origin for osteosarcoma or other primary skeletal tumors is largely unknown. Recent reports identifying specific cell types comprising bone now newly enable investigation of this topic. Specifically, CXC motif chemokine 12 (CXCL12)-abundant reticular (CAR) cells are a specific skeletal stromal cell type that orchestrate the bone marrow microenvironment through cross-talk with hematopoietic and endothelial cells and a likely candidate cell of origin for at least a subset of primary skeletal tumors. Here, we analyze osteosarcomas via immunohistochemistry for known markers of CAR cells such as leptin receptor (LEPR), B-cell factor 3 (EBF3), CXCL12, and platelet-derived growth factor receptor alpha (PDGFRA). A large proportion of high-grade tumors expressed LEPR, PDGFRA, and EBF3 but not CXCL12. These data raise the hypothesis that CAR cells are the cell of origin of this osteoblastic osteosarcoma subset, a finding with implications for the cellular oncogenesis of primary osteosarcoma and the development of effective targeted therapies. © 2021 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.

16.
JBMR Plus ; 6(4): e10613, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35434449

RESUMO

Both LRF (Zbtb7a) and ThPOK (Zbtb7b) belong to the POK (BTB/POZ and Kruppel) family of transcription repressors that participate in development, differentiation, and oncogenesis. Although LRF mediates osteoclast differentiation by regulating NFATc1 expression, the principal established function of ThPOK is transcriptional control of T-cell lineage commitment. Whether ThPOK affects osteoclast formation or function is not known. We find that marrow macrophage ThPOK expression diminishes with exposure to receptor activator of NF-kB ligand (RANKL), but ThPOK deficiency does not affect osteoclast differentiation. On the other hand, enhanced ThPOK, in macrophages, substantially impairs osteoclastogenesis. Excess ThPOK binds the NFATc1 promoter and suppresses its transcription, suggesting a mechanism for its osteoclast inhibitory effect. Despite suppression of osteoclastogenesis by excess ThPOK being associated with diminished NFATc1, osteoclast formation is not rescued by NFATc1 overexpression. Thus, ThPOK appears to inhibit NFATc1 transcription and its osteoclastogenic capacity, while its depletion has no effect on the bone-resorptive cell. © 2022 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.

17.
JBMR Plus ; 5(11): e10561, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34761152

RESUMO

Circulating osteo progenitor (COP) cells are a heterogeneous population of cells that circulate within the peripheral blood with characteristics of the bone marrow mesenchymal stem and progenitor pool. Little is known about the behavior of this cell population in humans. The aim of this study was to identify whether a relationship exists between COP cells (as a percentage of the peripheral blood monocytic cells) and musculoskeletal morphometry and to identify if COP have potential clinical utility as a biomarker for osteoporosis. We recruited 57 older adults (median age: 69 years; IQR: 65, 75 years) living independently in the community and performed cross-sectional analysis to identify associations between the percentage of COP cells and body composition parameters, and through receiver operating characteristic analysis, we evaluated their ability to act as a biomarker of osteoporosis. COP cells were moderately associated with whole-body bone mineral density (BMD) (r = 0.323, p = 0.014) and bone mineral content (BMC) (r = 0.387, p = 0.003), neck of femur BMD (r = 0.473, p < 0.001), and BMC (r = 0.461, p < 0.001) as well as appendicular lean mass (ALM) (p = 0.038) and male sex (p = 0.044) in univariable analysis. In multivariable analysis controlling for age, gender, height, and weight, COP cells remained strongly associated with neck of femur BMD (p = 0.001) and content (p = 0.003). COP cells were also a good predictor of osteoporosis (dual-energy X-ray absorptiometry [DXA] T-score < -2.5) at the neck of femur (cutoff: 0.4%; sensitivity: 100%; specificity 79%) and total body (cutoff: 0.35%; sensitivity: 80%; specificity: 81%). This study shows strong relationships between bone parameters and COP cell number and male sex. They also have potential as a biomarker of osteoporosis, which may provide a new tool for advanced detection and screening in clinical settings. Future larger evaluation studies should verify the cutoffs for biomarker use, and further explore the relationship between COP cells and muscle. © 2021 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.

18.
J Bone Miner Res ; 36(1): 170-185, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32990984

RESUMO

Oxidized phospholipids containing phosphocholine (OxPL) are pro-inflammatory lipid peroxidation products that bind to scavenger receptors (SRs), such as Scarb1, and toll-like receptors (TLRs). Excessive OxPL, as found in oxidized low-density lipoprotein (OxLDL), overwhelm these defense mechanisms and become pathogenic in atherosclerosis, nonalcoholic steatohepatitis (NASH), and osteoporosis. We previously reported that the innate IgM natural antibody E06 binds to OxPL and neutralizes their deleterious effects; expression of the single-chain (scFv) form of the antigen-binding domain of E06 (E06-scFv) as a transgene increases trabecular bone in male mice. We show herein that E06-scFv increases trabecular and cortical bone in female and male mice by increasing bone formation and decreasing osteoblast apoptosis in vivo. Homozygous E06-scFv mice have higher bone mass than hemizygous, showing a dose effect of the transgene. To investigate how OxPL restrain bone formation under physiologic conditions, we measured the levels of SRs and TLRs that bind OxPL. We found that osteoblastic cells primarily express Scarb1. Moreover, OxLDL-induced apoptosis and reduced differentiation were prevented in bone marrow-derived or calvaria-derived osteoblasts from Scarb1 knockout mice. Because Scarb1-deficient mice are reported to have high bone mass, our results suggest that E06 may promote bone anabolism in healthy young mice, at least in part, by neutralizing OxPL, which in turn promote Scarb1-mediated apoptosis of osteoblasts or osteoblast precursors. © 2020 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR)..


Assuntos
Osteogênese , Fosfolipídeos , Animais , Anticorpos Neutralizantes , Feminino , Masculino , Camundongos , Camundongos Knockout , Oxirredução
19.
J Bone Miner Res ; 36(10): 2081-2095, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34101902

RESUMO

Runt-related transcription factor-2 (Runx2) is an essential transcription factor for osteoblast differentiation. However, its functions after the commitment into osteoblasts are controversial and remain to be clarified. We generated enhanced green fluorescent protein (EGFP)-Cre transgenic mice driven by the 2.3-kilobase (kb) Col1a1 promoter, and Runx2 was deleted in osteoblasts and odontoblasts in Runx2fl/flCre mice. The sutures and fontanelles were more widely opened in Runx2fl/flCre newborns than in Runx2fl/fl newborns. Runx2fl/flCre mice exhibited dwarfism with shorter incisors and 37% had irregularly aligned incisors. The volume of trabecular bone in femurs and vertebrae and their bone mineral density (BMD), in addition to the cortical thickness and BMD were reduced in Runx2fl/flCre mice compared with Runx2fl/fl mice in both sexes. The bone formation of both trabecular and cortical bone, osteoblast number, osteoclast surface, osteoblast proliferation, and the serum levels of procollagen type 1 N-terminal propeptide (P1NP), tartrate-resistant acid phosphatase 5b (TRAP5b), and C-terminal cross-linked telopeptide of type 1 collagen (CTX1) were reduced in Runx2fl/flCre mice. The expression of major bone matrix protein genes, including Col1a1, Col1a2, Spp1, Ibsp, and Bglap&Bglap2, and of Tnfsf11 was lower in Runx2fl/flCre mice than in Runx2fl/fl mice. The expression of Runx2 target genes, including Ihh, Fgfr1, Fgfr2, Fgfr3, Tcf7, Wnt10b, Pth1r, Sp7, and Dlx5, was also reduced. Osteoblasts in Runx2fl/fl mice were cuboidal and contained abundant type I collagen α1 (Col1a1), whereas those in Runx2fl/flCre mice were deflated and contained a small amount of Col1a1. Runx2 activated the reporter activity of the 2.3-kb Col1a1 promoter and bound the region around the Col1a1 transcription start site. The deletion of Runx2 by Cre-expressing adenovirus in Runx2fl/fl primary osteoblasts impaired osteoblast differentiation and the expression of genes encoding major bone matrix proteins, and osteoclastogenesis was inhibited due to the reduction of Tnfsf11 expression in the osteoblasts. This study demonstrated that Runx2 is required for the expression of the major bone matrix protein genes and Tnfsf11 after commitment into osteoblasts in mice. © 2021 American Society for Bone and Mineral Research (ASBMR).


Assuntos
Matriz Óssea , Subunidade alfa 1 de Fator de Ligação ao Core , Animais , Diferenciação Celular , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Feminino , Expressão Gênica , Masculino , Camundongos , Camundongos Transgênicos , Osteoblastos , Fatores de Transcrição
20.
JBMR Plus ; 5(9): e10539, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34532619

RESUMO

Osteoclasts are multinucleated cells that are characterized by their unique ability to resorb large quantities of bone. Therefore, they are frequently the target of therapeutic interventions to ameliorate bone loss. In an adult organism, osteoclasts derive from hematopoietic stem cells and differentiate into osteoclasts within a multistep process under the influence of macrophage colony-stimulating factor (M-CSF) and receptor activator of NF-κB ligand (RANKL). Historically, the osteoclast life cycle has been defined as linear, whereby lineage-committed mononuclear precursors fuse to generate multinucleated highly specialized and localized bone phagocytic cells, which then undergo apoptosis within weeks. Recent advances through lineage tracing, single cell RNA sequencing, parabiosis, and intravital imaging approaches have challenged this dogma, revealing they have greater longevity and the capacity to circulate and undergo cell recycling. Indeed, these new insights highlight that under homeostatic conditions very few incidences of osteoclast apoptosis occur. More importantly, as we revisit the formation and fate of the osteoclast, novel methods to target osteoclast biology in bone pathology and regeneration are emerging. This review briefly summarizes the historical life cycle of osteoclasts and highlights recent discoveries made through advanced methodologies, which have led to a paradigm shift in osteoclast biology. These findings are discussed in light of both existing and emerging bone targeted therapeutics, bone pathologies, and communication between osteoclasts and cells resident in bone or at distant sites. © 2021 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA