Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Prostate ; 82(8): 917-932, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35322879

RESUMO

BACKGROUND: The androgen receptor (AR) signaling pathway has been well demonstrated to play a crucial role in the development, progression, and drug resistance of prostate cancer. Although the current anti-androgen therapy could significantly benefit prostate cancer patients initially, the efficacy of the single drug usually lasts for a relatively short period, as drug resistance quickly emerges. METHODS: We have performed an unbiased bioinformatics analysis using the RNA-seq results in 22Rv1 cells to identify the cell response toward Dip G treatment. The RNA-seq results were validated by qRT-PCR. Protein levels were detected by western blot or staining. Cell viability was measured by Aquabluer and colony formation assay. RESULTS: Here, we identified that Diptoindonesin G (Dip G), a natural extracted compound, could promote the proteasome degradation of AR and polo-like kinase 1 (PLK1) through modulating the activation of CHIP E3 ligase. Administration of Dip G has shown a profound efficiency in the suppression of AR and PLK1, not only in androgen-dependent LNCaP cells but also in castration-resistant and enzalutamide-resistant cells in a CHIP-dependent manner. Through co-targeting the AR signaling, Dip G robustly improved the efficacy of HSP90 inhibitors and enzalutamide in both human prostate cancer cells and in vivo xenograft mouse model. CONCLUSIONS: Our results revealed that Dip G-mediated AR degradation would be a promising and valuable therapeutic strategy in the clinic.


Assuntos
Neoplasias de Próstata Resistentes à Castração , Antagonistas de Androgênios/farmacologia , Antagonistas de Androgênios/uso terapêutico , Animais , Benzofuranos , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Humanos , Masculino , Camundongos , Nitrilas/uso terapêutico , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Neoplasias de Próstata Resistentes à Castração/metabolismo , Receptores Androgênicos/metabolismo , Transdução de Sinais , Ensaios Antitumorais Modelo de Xenoenxerto
2.
Angew Chem Int Ed Engl ; 61(15): e202112374, 2022 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-35107860

RESUMO

The multi-site ubiquitination of Tau protein found in Alzheimer's disease filaments hints at the failed attempt of neurons to remove early toxic species. The ubiquitin-dependent degradation of Tau is regulated in vivo by the E3 ligase CHIP, a quality controller of the cell proteome dedicated to target misfolded proteins for degradation. In our study, by using site-resolved NMR, biochemical and computational methods, we elucidate the structural determinants underlying the molecular recognition between the ligase and its intrinsically disordered substrate. We reveal a multi-domain dynamic interaction that explains how CHIP can direct ubiquitination of Tau at multiple sites even in the absence of chaperones, including its typical partner Hsp70/Hsc70. Our findings thus provide mechanistic insight into the chaperone-independent engagement of a disordered protein by its E3 ligase.


Assuntos
Ubiquitina-Proteína Ligases , Proteínas tau , Chaperonas Moleculares/metabolismo , Ubiquitina/química , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação , Proteínas tau/metabolismo
3.
Angew Chem Int Ed Engl ; 59(16): 6607-6611, 2020 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-32022419

RESUMO

In the brain of individuals with Alzheimer's disease, the regulatory protein ubiquitin is found conjugated to different lysine residues of tau protein assembled into pathological paired helical filaments. To shed light on the hitherto unexplored ubiquitination-linked conformational transitions of tau, the availability of in vitro ubiquitin conjugation methods is of primary importance. In our work, we focused on the four-repeat domain of tau and assembled an enzymatic machinery formed by UBE1, Ubc13, and CHIP enzymes. The enzymatic reaction resulted in monoubiquitination at multiple sites, reminiscent of the ubiquitination pattern observed in vivo. We further exploited chemoselective disulfide coupling reactions to construct three tau regioisomers with site-specific monoubiquitination. Protein aggregation experiments revealed that the multiple enzyme-derived products were unable to convert into amyloid fibrils, while the semisynthetic conjugates exhibited diverse capability to form filaments. This study contributes novel insight into the effects of a key post-translational modification on aberrant protein self-assembly.


Assuntos
Peptídeos/metabolismo , Agregados Proteicos , Enzimas Ativadoras de Ubiquitina/metabolismo , Enzimas de Conjugação de Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Proteínas tau/química , Sequência de Aminoácidos , Amiloide/metabolismo , Humanos , Mutagênese Sítio-Dirigida , Peptídeos/química , Estereoisomerismo , Ubiquitinação , Proteínas tau/genética , Proteínas tau/metabolismo
4.
Cell Physiol Biochem ; 44(2): 515-531, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29145196

RESUMO

BACKGROUND/AIMS: AQP2 expression is mainly controlled by vasopressin-dependent changes in protein abundance which is in turn regulated by AQP2 ubiquitylation and degradation, however the proteins involved in these processes are largely unknown. Here, we investigated the potential role of the CHIP E3 ligase in AQP2 regulation. METHODS: MCD4 cells and kidney slices were used to study the involvement of the E3 ligase CHIP on AQP2 protein abundance by cell homogenization and immunoprecipitation followed by immunoblotting. RESULTS: We found that AQP2 complexes with CHIP in renal tissue. Expression of CHIP increased proteasomal degradation of AQP2 and HSP70 abundance, a molecular signature of HSP90 inhibition. Increased HSP70 level, secondary to CHIP expression, promoted ERK signaling resulting in increased AQP2 phosphorylation at S261. Phosphorylation of AQP2 at S256 and T269 were instead downregulated. Next, we investigated HSP70 interaction with AQP2, which is important for endocytosis. Compared with AQP2-wt, HSP70 binding decreased in AQP2-S256D and AQP2-S256D-S261D, while increased in AQP2-S256D-S261A. Surprisingly, expression of CHIP-delUbox, displaying a loss of E3 ligase activity, still induced AQP2 degradation, indicating that CHIP does not ubiquitylate and degrade AQP2 itself. Conversely, the AQP2 half-life was increased upon the expression of CHIP-delTPR a domain which binds Hsc70/HSP70 and HSP90. HSP70 has been reported to bind other E3 ligases such as MDM2. Notably, we found that co-expression of CHIP and MDM2 increased AQP2 degradation, whereas co-expression of CHIP with MDM2-delRING, an inactive form of MDM2, impaired AQP2 degradation. CONCLUSION: Our findings indicate CHIP as a master regulator of AQP2 degradation via HSP70 that has dual functions: (1) as chaperone for AQP2 and (2) as an anchoring protein for MDM2 E3 ligase, which is likely to be involved in AQP2 degradation.


Assuntos
Aquaporina 2/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Motivos de Aminoácidos , Animais , Aquaporina 2/genética , Benzoquinonas/farmacologia , Linhagem Celular , Cicloeximida/farmacologia , Regulação para Baixo/efeitos dos fármacos , Endocitose , Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Proteínas de Choque Térmico HSP90/metabolismo , Imunoprecipitação , Rim/metabolismo , Rim/patologia , Lactamas Macrocíclicas/farmacologia , Camundongos , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Mutagênese Sítio-Dirigida , Fosforilação/efeitos dos fármacos , Ligação Proteica , Proteínas Proto-Oncogênicas c-mdm2/genética , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Transdução de Sinais , Ubiquitina-Proteína Ligases/genética
5.
J Mol Cell Cardiol ; 86: 138-46, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26232501

RESUMO

Kv1.5 confers ultra-rapid delayed-rectifier potassium channel current (IKur) which contributes to repolarization of the atrial action potential. Kv1.5 proteins, degraded via the ubiquitin-proteasome pathway, decreased in some atrial fibrillation patients. Carboxyl-terminus heat shock cognate 70-interacting protein (CHIP), an E3 ubiquitin ligase, is known to ubiquitinate short-lived proteins. Here, we investigated the roles of CHIP in Kv1.5 degradation to provide insights into the mechanisms of Kv1.5 decreases and treatments targeting Kv1.5 for atrial fibrillation. Coexpression of CHIP with Kv1.5 in HEK293 cells increased Kv1.5 protein ubiquitination and decreased the protein level. Immunofluorescence revealed decreases of Kv1.5 proteins in the endoplasmic reticulum and on the cell membrane. A siRNA against CHIP suppressed Kv1.5 protein ubiquitination and increased its protein level. CHIP mutants, lacking either the N-terminal tetratricopeptide region domain or the C-terminal U-box domain, failed to exert these effects on Kv1.5 proteins. Immunoprecipitation showed that CHIP formed complexes with Kv1.5 proteins and heat shock cognate protein 70 (Hsc70). Effects of Hsc70 on Kv1.5 were similar to CHIP by altering interaction of CHIP with Kv1.5 protein. Coexpression of CHIP and Hsc70 with Kv1.5 additionally enhanced Kv1.5 ubiquitination. Kv1.5 currents were decreased by overexpression of CHIP or Hsc70 but were increased by knockdown of CHIP or Hsc70 in HEK 293 cells stably expressing Kv1.5. These effects of CHIP and Hsc70 were also observed on endogenous Kv1.5 in HL-1 mouse cardiomyocytes, decreasing IKur and prolonging action potential duration. These results indicate that CHIP decreases the Kv1.5 protein level and functional channel by facilitating its degradation in concert with chaperone Hsc70.


Assuntos
Fibrilação Atrial/genética , Proteínas de Choque Térmico HSC70/genética , Canal de Potássio Kv1.5/genética , Ubiquitina-Proteína Ligases/genética , Animais , Fibrilação Atrial/patologia , Regulação da Expressão Gênica , Células HEK293 , Proteínas de Choque Térmico HSC70/biossíntese , Proteínas de Choque Térmico HSC70/metabolismo , Humanos , Canal de Potássio Kv1.5/biossíntese , Canal de Potássio Kv1.5/metabolismo , Camundongos , Ligação Proteica , Estrutura Terciária de Proteína , RNA Interferente Pequeno , Transdução de Sinais , Ubiquitina-Proteína Ligases/biossíntese , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação/genética
6.
J Biol Chem ; 288(24): 17481-94, 2013 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-23629654

RESUMO

The receptor tyrosine kinase AXL is overexpressed in many cancer types including thyroid carcinomas and has well established roles in tumor formation and progression. Proper folding, maturation, and activity of several oncogenic receptor tyrosine kinases require HSP90 chaperoning. HSP90 inhibition by the antibiotic geldanamycin or its derivative 17-allylamino-17-demethoxygeldanamycin (17-AAG) causes destabilization of its client proteins. Here we show that AXL is a novel client protein of HSP90. 17-AAG induced a time- and dose-dependent down-regulation of endogenous or ectopically expressed AXL protein, thereby inhibiting AXL-mediated signaling and biological activity. 17-AAG-induced AXL down-regulation specifically affected fully glycosylated mature receptor present on cell membrane. By using biotin and [(35)S]methionine labeling, we showed that 17-AAG caused depletion of membrane-localized AXL by mediating its degradation in the intracellular compartment, thus restricting its exposure on the cell surface. 17-AAG induced AXL polyubiquitination and subsequent proteasomal degradation; under basal conditions, AXL co-immunoprecipitated with HSP90. Upon 17-AAG treatment, AXL associated with the co-chaperone HSP70 and the ubiquitin E3 ligase carboxyl terminus of HSC70-interacting protein (CHIP). Overexpression of CHIP, but not of the inactive mutant CHIP K30A, induced accumulation of AXL polyubiquitinated species upon 17-AAG treatment. The sensitivity of AXL to 17-AAG required its intracellular domain because an AXL intracellular domain-deleted mutant was insensitive to the compound. Active AXL and kinase-dead AXL were similarly sensitive to 17-AAG, implying that 17-AAG sensitivity does not require receptor phosphorylation. Overall our data elucidate the molecular basis of AXL down-regulation by HSP90 inhibitors and suggest that HSP90 inhibition in anticancer therapy can exert its effect through inhibition of multiple kinases including AXL.


Assuntos
Benzoquinonas/farmacologia , Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Lactamas Macrocíclicas/farmacologia , Proteólise/efeitos dos fármacos , Proteínas Proto-Oncogênicas/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Compostos de Anilina/farmacologia , Antineoplásicos/farmacologia , Domínio Catalítico , Membrana Celular/metabolismo , Glicosilação , Proteínas de Choque Térmico HSP90/metabolismo , Células HeLa , Humanos , Leupeptinas/farmacologia , Nitrilas/farmacologia , Inibidores de Proteassoma/farmacologia , Ligação Proteica , Isoformas de Proteínas/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Estabilidade Proteica , Transporte Proteico/efeitos dos fármacos , Proteínas Proto-Oncogênicas/química , Quinolinas/farmacologia , Receptores Proteína Tirosina Quinases/química , Transdução de Sinais , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação , Receptor Tirosina Quinase Axl
7.
Mol Oncol ; 12(10): 1753-1777, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30107089

RESUMO

Overexpression of oncoproteins is a major cause of treatment failure using current chemotherapeutic drugs. Drug-induced degradation of oncoproteins is feasible and can improve clinical outcomes in diverse types of cancers. Mortalin-2 (mot-2) is a dominant oncoprotein in several tumors, including colorectal cancer (CRC). In addition to inactivating the p53 tumor suppressor protein, mot-2 enhances tumor cell invasion and migration. Thus, mot-2 is considered a potential therapeutic target in several cancer types. The current study investigated the biological role of a ubiquitin-like protein called UBXN2A in the regulation of mot-2 turnover. An orthogonal ubiquitin transfer technology followed by immunoprecipitation, in vitro ubiquitination, and Magnetic Beads TUBE2 pull-down experiments revealed that UBXN2A promotes carboxyl terminus of the HSP70-interacting protein (CHIP)-dependent ubiquitination of mot-2. We subsequently showed that UBXN2A increases proteasomal degradation of mot-2. A subcellular compartmentalization experiment revealed that induced UBXN2A decreases the level of mot-2 and its chaperone partner, HSP60. Pharmacological upregulation of UBXN2A using a small molecule, veratridine (VTD), decreases the level of mot-2 in cancer cells. Consistent with the in vitro results, UBXN2A+/- mice exhibited selective elevation of mot-2 in colon tissues. An in vitro Anti-K48 TUBE isolation approach showed that recombinant UBXN2A enhances proteasomal degradation of mot-2 in mouse colon tissues. Finally, we observed enhanced association of CHIP with the UBXN2A-mot-2 complex in tumors in an azoxymethane/dextran sulfate sodium-induced mouse CRC model. The existence of a multiprotein complex containing UBXN2A, CHIP, and mot-2 suggests a synergistic tumor suppressor activity of UBXN2A and CHIP in mot-2-enriched tumors. This finding validates the UBXN2A-CHIP axis as a novel and potential therapeutic target in CRC.


Assuntos
Proteínas de Choque Térmico HSP70/metabolismo , Proteínas Mitocondriais/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteólise , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina/metabolismo , Ubiquitinas/metabolismo , Animais , Apoptose , Linhagem Celular Tumoral , Movimento Celular , Chaperonina 60/metabolismo , Colo/metabolismo , Colo/patologia , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Feminino , Haploinsuficiência/genética , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Complexos Multiproteicos/metabolismo , Fenótipo , Estabilidade Proteica , Especificidade por Substrato , Ubiquitinação
8.
Chem Biol ; 22(12): 1608-21, 2015 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-26670079

RESUMO

ERß is regarded as a "tumor suppressor" in breast cancer due to its anti-proliferative effects. However, unlike ERα, ERß has not been developed as a therapeutic target in breast cancer due to loss of ERß in aggressive cancers. In a small-molecule library screen for ERß stabilizers, we identified Diptoindonesin G (Dip G), which significantly increases ERß protein stability while decreasing ERα protein levels. Dip G enhances the transcription and anti-proliferative activities of ERß, while attenuating the transcription and proliferative effects of ERα. Further investigation revealed that instead of targeting ER, Dip G targets the CHIP E3 ubiquitin ligase shared by ERα and ERß. Thus, Dip G is a dual-functional moiety that reciprocally controls ERα and ERß protein stability and activities via an indirect mechanism. The ERß stabilization effects of Dip G may enable the development of ERß-targeted therapies for human breast cancers.


Assuntos
Benzofuranos/farmacologia , Receptor alfa de Estrogênio/efeitos dos fármacos , Receptor beta de Estrogênio/efeitos dos fármacos , Benzofuranos/química , Western Blotting , Neoplasias da Mama/terapia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/metabolismo , Receptor beta de Estrogênio/genética , Receptor beta de Estrogênio/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Simulação de Acoplamento Molecular , Estabilidade Proteica/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA