Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Biol Chem ; 300(3): 105700, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38307383

RESUMO

Selective retrograde transport from endosomes back to the trans-Golgi network (TGN) is important for maintaining protein homeostasis, recycling receptors, and returning molecules that were transported to the wrong compartments. Two important transmembrane proteins directed to this pathway are the Cation-Independent Mannose-6-phosphate receptor (CI-MPR) and the ATP7B copper transporter. Among CI-MPR functions is the delivery of acid hydrolases to lysosomes, while ATP7B facilitates the transport of cytosolic copper ions into organelles or the extracellular space. Precise subcellular localization of CI-MPR and ATP7B is essential for the proper functioning of these proteins. This study shows that both CI-MPR and ATP7B interact with a variant of the clathrin adaptor 1 (AP-1) complex that contains a specific isoform of the γ-adaptin subunit called γ2. Through synchronized anterograde trafficking and cell-surface uptake assays, we demonstrated that AP-1γ2 is dispensable for ATP7B and CI-MPR exit from the TGN while being critically required for ATP7B and CI-MPR retrieval from endosomes to the TGN. Moreover, AP-1γ2 depletion leads to the retention of endocytosed CI-MPR in endosomes enriched in retromer complex subunits. These data underscore the importance of AP-1γ2 as a key component in the sorting and trafficking machinery of CI-MPR and ATP7B, highlighting its essential role in the transport of proteins from endosomes.


Assuntos
Complexo 1 de Proteínas Adaptadoras , ATPases Transportadoras de Cobre , Endossomos , Transporte Proteico , Receptor IGF Tipo 2 , Rede trans-Golgi , Humanos , Endossomos/metabolismo , Células HeLa , Transporte Proteico/genética , Receptor IGF Tipo 2/genética , Receptor IGF Tipo 2/metabolismo , Rede trans-Golgi/genética , Rede trans-Golgi/metabolismo , ATPases Transportadoras de Cobre/genética , ATPases Transportadoras de Cobre/metabolismo , Complexo 1 de Proteínas Adaptadoras/genética , Complexo 1 de Proteínas Adaptadoras/metabolismo , Subunidades gama do Complexo de Proteínas Adaptadoras/metabolismo
2.
Semin Cell Dev Biol ; 107: 112-125, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32317144

RESUMO

In eukaryotic cells, protein sorting is a highly regulated mechanism important for many physiological events. After synthesis in the endoplasmic reticulum and trafficking to the Golgi apparatus, proteins sort to many different cellular destinations including the endolysosomal system and the extracellular space. Secreted proteins need to be delivered directly to the cell surface. Sorting of secreted proteins from the Golgi apparatus has been a topic of interest for over thirty years, yet there is still no clear understanding of the machinery that forms the post-Golgi carriers. Most evidence points to these post-Golgi carriers being tubular pleomorphic structures that bud from the trans-face of the Golgi. In this review, we present the background studies and highlight the key components of this pathway, we then discuss the machinery implicated in the formation of these carriers, their translocation across the cytosol, and their fusion at the plasma membrane.


Assuntos
Membrana Celular/metabolismo , Complexo de Golgi/metabolismo , Animais , Humanos , Metabolismo dos Lipídeos , Fusão de Membrana , Transporte Proteico , Via Secretória
3.
J Cell Sci ; 133(15)2020 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-32747499

RESUMO

Human retromer, a heterotrimer of VPS26 (VPS26A or VPS26B), VPS35 and VPS29, orchestrates the endosomal retrieval of internalised cargo and promotes their cell surface recycling, a prototypical cargo being the glucose transporter GLUT1 (also known as SLC2A1). The role of retromer in the retrograde sorting of the cation-independent mannose 6-phosphate receptor (CI-MPR, also known as IGF2R) from endosomes back to the trans-Golgi network remains controversial. Here, by applying knocksideways technology, we develop a method for acute retromer inactivation. While retromer knocksideways in HeLa and H4 human neuroglioma cells resulted in time-resolved defects in cell surface sorting of GLUT1, we failed to observe a quantifiable defect in CI-MPR sorting. In contrast, knocksideways of the ESCPE-1 complex - a key regulator of retrograde CI-MPR sorting - revealed time-resolved defects in CI-MPR sorting. Together, these data are consistent with a comparatively limited role for retromer in ESCPE-1-mediated CI-MPR retrograde sorting, and establish a methodology for acute retromer and ESCPE-1 inactivation that will aid the time-resolved dissection of their functional roles in endosomal cargo sorting.


Assuntos
Nexinas de Classificação , Proteínas de Transporte Vesicular , Endossomos/metabolismo , Células HeLa , Humanos , Transporte Proteico , Nexinas de Classificação/metabolismo , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo , Rede trans-Golgi/metabolismo
4.
Traffic ; 19(2): 150-152, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29135085

RESUMO

The retromer cargo-selective complex (CSC) comprising Vps35, Vps29 and Vps26 mediates the endosome-to-Golgi retrieval of the cation-independent mannose 6-phosphate receptor (CIMPR). Or does it? Recently published data have questioned the validity of this long-established theory. Here, the evidence for and against a role for the retromer CSC in CIMPR endosome-to-Golgi retrieval is examined in the light of the new data that the SNX-BAR dimer is actually responsible for CIMPR retrieval.


Assuntos
Endossomos/metabolismo , Complexo de Golgi/metabolismo , Transporte Proteico/fisiologia , Proteínas de Transporte Vesicular/metabolismo , Proteínas de Transporte/metabolismo , Humanos , Rede trans-Golgi/metabolismo
5.
Traffic ; 17(3): 211-29, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26663757

RESUMO

Rab9 is a small GTPase that localizes to the trans-Golgi Network (TGN) and late endosomes. Its main function has long been connected to the recycling of mannose-6-phosphate receptors (MPRs). However, recent studies link Rab9 also to autophagy and lysosome biogenesis. In this paper, using confocal imaging, we characterize for the first time the live dynamics of the Rab9 constitutively active mutant, Rab9Q66L. We find that it localizes predominantly to late endosomes and that its expression in HeLa cells disperses TGN46 and cation-independent (CI-MPR) away from the Golgi yet, has no effect on the retrograde transport of CI-MPR. We also show that CI-MPR and Rab9 enter the endosomal pathway together at the transition stage between early, Rab5-positive, and late, Rab7a-positive, endosomes. CI-MPR localizes transiently to separate domains on these endosomes, where vesicles carrying CI-MPR attach and detach within seconds. Taken together, our results demonstrate that Rab9 mediates the delivery of CI-MPR to the endosomal pathway, entering the maturing endosome at the early-to-late transition.


Assuntos
Endossomos/metabolismo , Receptor IGF Tipo 2/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , Animais , Cães , Endocitose , Células HeLa , Humanos , Células Madin Darby de Rim Canino , Glicoproteínas de Membrana/metabolismo , Mutação de Sentido Incorreto , Transporte Proteico , Proteínas rab de Ligação ao GTP/genética , Rede trans-Golgi/metabolismo
6.
Cell Mol Life Sci ; 73(4): 869-81, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26298293

RESUMO

Hepatitis C virus (HCV) has infected over 170 million people worldwide. Phosphatidylinositol 4-phosphate (PI4P) is the organelle-specific phosphoinositide enriched at sites of HCV replication. Whether retromer, a PI4P-related host transport machinery, unloads its cargo at HCV replication sites remains inconclusive. We sought to characterize the role of retromer in HCV replication. Here, we demonstrated the interaction between retromer subunit Vps35 and HCV NS5A protein by immunoprecipitation and GST pulldown. Vps35 colocalized with NS5A and PI4P in both OR6 replicon and JFH1 infected Huh 7.5.1 cells. HCV replication was inhibited upon silencing retromer subunits. CIMPR, a typical retromer cargo, participated in HCV replication. Our data suggest that retromer component Vps35 is recruited by NS5A to viral replication sites where PI4P unloads CIMPR. These findings demonstrate a dependence role of retromer in HCV replication and identify retromer as a potential therapeutic target against HCV.


Assuntos
Hepacivirus/fisiologia , Hepatite C/metabolismo , Hepatite C/virologia , Fosfatos de Fosfatidilinositol/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Proteínas não Estruturais Virais/metabolismo , Replicação Viral , Linhagem Celular , Humanos , Fosfatos de Fosfatidilinositol/análise , Proteínas de Transporte Vesicular/análise , Proteínas não Estruturais Virais/análise
7.
Traffic ; 15(12): 1390-405, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25216107

RESUMO

Mutations in the large BEACH domain-containing protein LYST causes Chediak-Higashi syndrome. The diagnostic hallmark is enlarged lysosomes and lysosome-related organelles in various cell types. Dysfunctional secretion of enlarged lysosome-related organelles has been observed in cells with mutations in LYST, but the capacity of the enlarged lysosomes to degrade endogenous proteins has not been studied. Here, we show for the first time that small interfering RNA-depletion of LYST in human cell lines recapitulates the LYST mutant phenotype of enlarged lysosomes. We found no evidence for an effect of LYST depletion on autophagy or endocytic degradation. Autophagosomes are formed in normal size and quantities and are able to fuse to the enlarged lysosomes, leading to normal rates of degradation. Degradation of the epidermal growth factor receptor (EGFR) was similarly not affected, indicating that the enlarged lysosomes are fully functional in degrading endogenous proteins. Retrograde trafficking of toxins as well as the localization of transporters of lysosomal proteins, adaptor protein-3 (AP-3) and cation-independent mannose-6-phosphate receptor (CI-MPR), were all found to be unaffected by LYST. Quantitative analysis of the enlarged lysosomes shows that LYST depletion causes a reduction in vesicle quantity per cell, while the total enzymatic content and vesicular pH are unaffected, supporting a role for LYST in lysosomal fission and/or fusion events.


Assuntos
Autofagia , Síndrome de Chediak-Higashi/metabolismo , Endocitose , Lisossomos/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Complexo 3 de Proteínas Adaptadoras/metabolismo , Linhagem Celular Tumoral , Células Cultivadas , Receptores ErbB/metabolismo , Humanos , Transporte Proteico , Proteólise , Receptor IGF Tipo 2/metabolismo , Proteínas de Transporte Vesicular/genética
8.
Exp Cell Res ; 320(2): 219-32, 2014 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-24275455

RESUMO

The ubiquitin proteasome system is central to the regulation of a number of intracellular sorting pathways in mammalian cells including quality control at the endoplasmic reticulum and the internalization and endosomal sorting of cell surface receptors. Here we describe that RNF126, an E3 ubiquitin ligase, is involved in the sorting of the cation-independent mannose 6-phosphate receptor (CI-MPR). In cells transiently depleted of RNF126, the CI-MPR is dispersed into Rab4 positive endosomes and the efficiency of retrograde sorting is delayed. Furthermore, the stable knockdown of RNF126 leads to the lysosomal degradation of CI-MPR and missorting of cathepsin D. RNF126 specifically regulates the sorting of the CI-MPR as other cargo that follow the retrograde sorting route including the cholera toxin, furin and TGN38 are unaffected in the absence of RNF126. Lastly we show that the RING finger domain of RNF126 is required to rescue the decrease in CI-MPR levels, suggesting that the ubiquitin ligase activity of RNF126 is required for CI-MPR sorting. Together, our data indicate that the ubiquitin ligase RNF126 has a role in the retrograde sorting of the CI-MPR.


Assuntos
Receptor IGF Tipo 2/metabolismo , Ubiquitina-Proteína Ligases/fisiologia , Toxina da Cólera/metabolismo , Endocitose/efeitos dos fármacos , Endocitose/genética , Endossomos/efeitos dos fármacos , Endossomos/metabolismo , Furina/metabolismo , Células HEK293 , Células HeLa , Humanos , Glicoproteínas de Membrana/metabolismo , Transporte Proteico/efeitos dos fármacos , Transporte Proteico/genética , RNA Interferente Pequeno/farmacologia , Ubiquitina-Proteína Ligases/antagonistas & inibidores
9.
Elife ; 122023 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-37158588

RESUMO

Sorting nexins (SNX) are a family of proteins containing the Phox homology domain, which shows a preferential endo-membrane association and regulates cargo sorting processes. Here, we established that SNX32, an SNX-BAR (Bin/Amphiphysin/Rvs) sub-family member associates with SNX4 via its BAR domain and the residues A226, Q259, E256, R366 of SNX32, and Y258, S448 of SNX4 that lie at the interface of these two SNX proteins mediate this association. SNX32, via its PX domain, interacts with the transferrin receptor (TfR) and Cation-Independent Mannose-6-Phosphate Receptor (CIMPR), and the conserved F131 in its PX domain is important in stabilizing these interactions. Silencing of SNX32 leads to a defect in intracellular trafficking of TfR and CIMPR. Further, using SILAC-based differential proteomics of the wild-type and the mutant SNX32, impaired in cargo binding, we identified Basigin (BSG), an immunoglobulin superfamily member, as a potential interactor of SNX32 in SHSY5Y cells. We then demonstrated that SNX32 binds to BSG through its PX domain and facilitates its trafficking to the cell surface. In neuroglial cell lines, silencing of SNX32 leads to defects in neuronal differentiation. Moreover, abrogation in lactate transport in the SNX32-depleted cells led us to propose that SNX32 may contribute to maintaining the neuroglial coordination via its role in BSG trafficking and the associated monocarboxylate transporter activity. Taken together, our study showed that SNX32 mediates the trafficking of specific cargo molecules along distinct pathways.


Assuntos
Endossomos , Crescimento Neuronal , Endossomos/metabolismo , Transporte Proteico , Membrana Celular/metabolismo , Nexinas de Classificação/metabolismo
10.
Front Cardiovasc Med ; 8: 796254, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35004909

RESUMO

Lysosomal dysfunction has been found in many pathological conditions, and methods to improve lysosomal function have been reported to be protective against infarcted hearts. However, the mechanisms underlying lysosomal dysfunction caused by ischemic injury are far less well-established. The retromer complex is implicated in the trafficking of cation-independent mannose 6-phosphate receptor (CI-MPR), which is an important protein tag for the proper transport of lysosomal contents and therefore is important for the maintenance of lysosomal function. In this study, we found that the function of retrograde transport in cardiomyocytes was impaired with ischemia/hypoxia (I/H) treatment, which resulted in a decrease in CI-MPR and an abnormal distribution of lysosomal cathepsins. I/H treatment caused a reduction in TBC1D5 and a blockade of the Rab7 membrane cycle, which impeded retromer binding to microtubules and motor proteins, resulting in an impairment of retrograde transport and a decrease in CI-MPR. We also established that TBC1D5 was an important regulator of the distribution of lysosomal cathepsins. Our findings shed light on the regulatory role of retromer in ischemic injury and uncover the regulatory mechanism of TBC1D5 over retromer.

11.
FEBS Open Bio ; 11(2): 367-374, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33206455

RESUMO

The Golgi-localized, gamma-ear containing, ADP-ribosylation factor-binding proteins (GGAs 1, 2, and 3) are multidomain proteins that bind mannose 6-phosphate receptors (MPRs) at the Golgi and play a role, along with adaptor protein complex 1 (AP-1), in the sorting of newly synthesized lysosomal hydrolases to the endolysosomal system. However, the relative importance of the two types of coat proteins in this process is still unclear. Here, we report that inactivation of all three GGA genes in HeLa cells decreased the sorting efficiency of cathepsin D from 97% to 73% relative to wild-type, with marked redistribution of the cation-independent MPR from peripheral punctae to the trans-Golgi network. In comparison, GNPTAB-/- HeLa cells with complete inactivation of the mannose 6-phosphate pathway sorted only 20% of the cathepsin D. We conclude that the residual sorting of cathepsin D in the GGA triple-knockout cells is mediated by AP-1.


Assuntos
Complexo 1 de Proteínas Adaptadoras/metabolismo , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Catepsina D/metabolismo , Proteínas Adaptadoras de Transporte Vesicular/genética , Técnicas de Inativação de Genes , Células HeLa , Humanos , Lisossomos/enzimologia , Transferases (Outros Grupos de Fosfato Substituídos)/genética , Transferases (Outros Grupos de Fosfato Substituídos)/metabolismo , Rede trans-Golgi/metabolismo
12.
Brain Sci ; 10(11)2020 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-33120894

RESUMO

Sequence variants in vacuolar protein sorting 35 (VPS35) have been reported to be associated with Parkinson's disease (PD). To investigate if the genetic variants in VPS35 contribute to Taiwanese PD, VPS35 cDNA fragments from 62 patients with PD were sequenced. A cohort of PD (n = 560) and ethnically matched controls (n = 506) were further examined for the identified mutation. The effects of the mutation on cation-independent mannose-6-phosphate receptor (CI-MPR) sorting and mitochondrial morphology were further examined in 293T cells expressing the mutant VPS35. Here, a novel heterozygous A320V in the VPS35 gene was identified in two late-onset PD (LOPD) patients, which was absent in 506 normal controls. Expression of the A320V mutant in 293T cells demonstrated increased colocalization of VPS35 with CI-MPR and decreased CI-MPR and lysosomal-associated membrane protein 2 (LAMP2) levels. Decreased CI-MPR manifested in missorting of cathepsin D and decreased proteolysis of α-synuclein. A320V mutation also increased mitochondrial E3 ubiquitin protein ligase 1 (MUL1) and thus led to mitofusin 2 (MFN2) degradation. The results suggest that the expression of VPS35 A320V leads to disrupted CI-MPR sorting and impaired mitochondrial morphology, which may partly explain its action in PD.

13.
Methods Mol Biol ; 2132: 267-276, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32306334

RESUMO

Cation-dependent mannose 6-phosphate receptor (CD-MPR) and cation-independent MPR (CI-MPR) belong to the P-type lectin family. Both intracellular and cell surface MPRs can recognize and bind with the terminal mannose 6-phospahte (M6P) residues of N-glycans attached to the mammalian lysosomal enzymes and the related co-factors. Domain9 (Dom9), which is one of the extracytoplasmic region of the CI-MPR, has relatively higher affinity for M6P residues. Here we describe the production of recombinant Dom9-His protein by Pichia pastris, purification, and application as a probe for lectin blotting.


Assuntos
Pichia/crescimento & desenvolvimento , Polissacarídeos/metabolismo , Receptor IGF Tipo 2/química , Receptor IGF Tipo 2/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Clonagem Molecular , Humanos , Lisossomos/metabolismo , Manosefosfatos/metabolismo , Pichia/genética , Pichia/metabolismo , Domínios Proteicos , Receptor IGF Tipo 2/genética
14.
Structure ; 28(12): 1300-1312.e5, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-32877646

RESUMO

The cation-independent mannose 6-phosphate (M6P)/Insulin-like growth factor-2 receptor (CI-MPR/IGF2R) is an ∼300 kDa transmembrane protein responsible for trafficking M6P-tagged lysosomal hydrolases and internalizing IGF2. The extracellular region of the CI-MPR has 15 homologous domains, including M6P-binding domains (D) 3, 5, 9, and 15 and IGF2-binding domain 11. We have focused on solving the first structures of human D7-10 within two multi-domain constructs, D9-10 and D7-11, and provide the first high-resolution description of the high-affinity M6P-binding D9. Moreover, D9 stabilizes a well-defined hub formed by D7-11 whereby two penta-domains intertwine to form a dimeric helical-type coil via an N-glycan bridge on D9. Remarkably the D7-11 structure matches an IGF2-bound state of the receptor, suggesting this may be an intrinsically stable conformation at neutral pH. Interdomain clusters of histidine and proline residues may impart receptor rigidity and play a role in structural transitions at low pH.


Assuntos
Receptor IGF Tipo 2/química , Sítios de Ligação , Humanos , Concentração de Íons de Hidrogênio , Manosefosfatos/química , Manosefosfatos/metabolismo , Simulação de Acoplamento Molecular , Ligação Proteica , Multimerização Proteica , Receptor IGF Tipo 2/metabolismo
15.
Cell Signal ; 63: 109375, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31356858

RESUMO

DRAM1 (DNA damage-regulated autophagy modulator 1) is a transmembrane protein that predominantly localizes to the lysosome but is also found in other membranous organelles; however, its function in these organelles remains largely unknown. We found that DRAM1 was partially located in the Golgi apparatus, and knockdown of DRAM1 caused fragmentation of the Golgi apparatus in cells. The phenomenon of fragmented Golgi was not related to microtubule organization, and there was no direct interaction between DRAM1 and Golgi structural proteins (ARF1, GM130, syntaxin 6 and GRASP55). Moreover, Golgi-targeting DRAM1 failed to rescue the fragmentation of Golgi in DRAM1-deficient cells. The transport of ts045-VSVG-GFP, an indicator of movement from the Golgi apparatus to the plasma membrane, was delayed in DRAM1-knockdown cells. Moreover, the trafficking of CI-MPR from the plasma membrane to the Golgi was also impeded in DRAM1-knockdown cells. These results indicated that DRAM1 regulated the structure of the Golgi apparatus and affected Golgi apparatus-associated vesicular transport.


Assuntos
Complexo de Golgi/metabolismo , Lisossomos/metabolismo , Glicoproteínas de Membrana/metabolismo , Proteínas de Membrana/metabolismo , Receptor IGF Tipo 2/metabolismo , Proteínas do Envelope Viral/metabolismo , Células HEK293 , Células HeLa , Humanos , Células MCF-7 , Proteínas de Membrana/genética , Transporte Proteico
16.
Mol Genet Metab Rep ; 20: 100475, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31193175

RESUMO

Enzyme replacement therapy (ERT) with rhGAA has improved clinical outcomes in infantile Pompe disease (IPD). A subset of CRIM-positive IPD patients develop high and sustained antibody titers (HSAT; ≥51,200) and/or sustained intermediate titer (SIT; ≥12,800 and <51,200), similar to CRIM-negative patients. To date there has been no systematic study to analyze the extent of IgG antibody response in CRIM-positive IPD. Such data would be critical and could serve as a comparator group for potential immune modulation approaches. A retrospective analysis of the dataset from the original rhGAA clinical trials final reports was conducted. CRIM-positive patients who received ERT monotherapy and had >6 months of antibody titer data available, were included in the study. Patients were classified based on their longitudinal antibody titers into HSAT, SIT, and low titer (LT; <12,800) groups. Of the 37 patients that met inclusion criteria, five (13%), seven (19%), and 25 (68%) developed HSAT, SIT, and LT, respectively. Median peak titers were 204,800 (51,200-409,600), 25,600 (12,800-51,200), and 800 (200-12,800) for HSAT, SIT, and LT groups, respectively. Median last titers were 102,400 (51,200-409,600), 1600 (200-25,600), and 400 (0-12,800) at median time since ERT initiation of 94 weeks (64-155 weeks), 104 weeks (86-144 weeks), and 130 weeks (38-182 weeks) for HSAT, SIT, and LT groups, respectively. 32% (12/37) of CRIM-positive IPD patients developed HSAT/SIT which may lead to limited ERT response and clinical decline. Further Studies are needed to identify CRIM-positive IPD patients at risk of developing HSAT/SIT, especially with the addition of Pompe disease to the newborn screening.

17.
Protein J ; 37(4): 361-368, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29882184

RESUMO

Acidic α-mannosidase is an important enzyme and is reported from many different plants and animals. Lysosomal α-mannosidase helps in the catabolism of glycoproteins in the lysosomes thereby playing a major role in cellular homeostasis. In the present study lysosomal α-mannosidase from the gonads of echinoderm Asterias rubens was isolated and purified. The crude protein sample from ammonium sulfate precipitate contained two isoforms of mannosidase as tested by the MAN2B1 antibody, which were separated by anion exchange chromatography. Enzyme with 75 kDa molecular weight was purified and biochemically characterized. Optimum pH of the enzyme was found to be in the range of 4.5-5 and optimum temperature was 37 °C. The activity of the enzyme was inhibited completely by swainsonine but not by 1-deoxymannojirimycin. Ligand blot assays showed that the enzyme can interact with both the lysosomal enzyme sorting receptors indicating the presence of mannose 6-phosphate in the glycan surface of the enzyme. This is the first report of lysosomal α-mannosidase in an active monomeric form. Its interaction with the receptors suggest that the lysosomal enzyme targeting in echinoderms might follow a mannose 6-phosphate mediated pathway similar to that in the vertebrates.


Assuntos
Lisossomos/enzimologia , Receptor IGF Tipo 2/metabolismo , Estrelas-do-Mar/enzimologia , alfa-Manosidase/metabolismo , Animais , Especificidade por Substrato
18.
Mol Cell Biol ; 38(8)2018 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-29378831

RESUMO

Palmitate attenuates insulin secretion and reduces the viability of insulin-producing cells. Previous studies identified the aberrant palmitoylation or mispalmitoylation of proteins as one mechanism by which palmitate causes ß-cell damage. In this report, we identify a role for lysosomal protein degradation as a mechanism by which ß cells defend themselves against excess palmitate. The cation-independent mannose 6-phosphate receptor (CI-MPR) is responsible for the trafficking of mannose 6-phosphate-tagged proteins to lysosomes via Golgi sorting and from extracellular locations through endocytosis. RINm5F cells, which are highly sensitive to palmitate, lack CI-MPR. The reconstitution of CI-MPR expression attenuates the induction of endoplasmic reticulum (ER) stress and the toxic effects of palmitate on RINm5F cell viability. INS832/13 cells express CI-MPR and are resistant to the palmitate-mediated loss of cell viability. The reduction of CI-MPR expression increases the sensitivity of INS832/13 cells to the toxic effects of palmitate treatment. The inhibition of lysosomal acid hydrolase activity by weak base treatment of islets under glucolipotoxic conditions causes islet degeneration that is prevented by the inhibition of protein palmitoylation. These findings indicate that defects in lysosomal function lead to the enhanced sensitivity of insulin-producing cells to palmitate and support a role for normal lysosomal function in the protection of ß cells from excess palmitate.


Assuntos
Cátions/metabolismo , Células Secretoras de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/metabolismo , Manosefosfatos/metabolismo , Palmitatos/farmacologia , Animais , Bovinos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Endocitose/efeitos dos fármacos , Retículo Endoplasmático/efeitos dos fármacos , Retículo Endoplasmático/metabolismo , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Complexo de Golgi/efeitos dos fármacos , Complexo de Golgi/metabolismo , Células HEK293 , Humanos , Insulina/metabolismo , Lipoilação/efeitos dos fármacos , Lisossomos/efeitos dos fármacos , Lisossomos/metabolismo , Masculino , Transporte Proteico/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley
19.
Cell Rep ; 19(13): 2823-2835, 2017 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-28658628

RESUMO

Proper intracellular cholesterol trafficking is critical for cellular function. Two lysosome-resident proteins, NPC1 and NPC2, mediate the egress of low-density lipoprotein-derived cholesterol from lysosomes. However, other proteins involved in this process remain largely unknown. Through amphotericin B-based selection, we isolated two cholesterol transport-defective cell lines. Subsequent whole-transcriptome-sequencing analysis revealed two cell lines bearing the same mutation in the vacuolar protein sorting 53 (Vps53) gene. Depletion of VPS53 or other subunits of the Golgi-associated retrograde protein (GARP) complex impaired NPC2 sorting to lysosomes and caused cholesterol accumulation. GARP deficiency blocked the retrieval of the cation-independent mannose 6-phosphate receptor (CI-MPR) to the trans-Golgi network. Further, Vps54 mutant mice displayed reduced cellular NPC2 protein levels and increased cholesterol accumulation, underscoring the physiological role of the GARP complex in cholesterol transport. We conclude that the GARP complex contributes to intracellular cholesterol transport by targeting NPC2 to lysosomes in a CI-MPR-dependent manner.


Assuntos
Colesterol/metabolismo , Lisossomos/metabolismo , Proteínas de Membrana/genética , Proteínas de Transporte Vesicular/metabolismo , Animais , Transporte Biológico , Humanos , Proteínas de Membrana/metabolismo , Camundongos
20.
Mol Genet Metab Rep ; 11: 31-35, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28480166

RESUMO

BACKGROUND: Early initiation of enzyme replacement therapy (ERT) with recombinant human acid alpha-glucosidase is an effective treatment for patients with infantile-onset Pompe disease (IOPD) but cannot prevent a slow progression of myopathy. Albuterol has been shown to be helpful in adult patients with Pompe disease, and therefore, we administered an open-label adjunctive therapy with albuterol in IOPD patients undergoing ERT. METHODS: Fourteen patients, aged 2 to 12 years, were enrolled in this study; all of them had a disease onset before 12 months of life, and 13 of them were ambulatory because of early initiation of ERT. All patients received albuterol (also referred to as salbutamol) 12 mg daily for 26 weeks. The outcome measurements included a 6-minute walk test, four-stair climb test (SCT), the standing/walking/running/jumping domains of Gross Motor Function Measure-88, speech quality, serum creatine kinase, and urinary glucose tetrasaccharide. Outcome and safety measurements were evaluated at baseline, and at 1, 3, and 6 months (26 weeks) after entering the trial. RESULTS: After a period of 26 weeks, among the 12 patients who were able to complete the SCT, the median time needed decreased by 22% (p = 0.034). Other parameters inconsistently improved in a variety of individuals. Eleven adverse events, including nausea, urinary frequency, and tachycardia, were potentially related to the study drug, but all were mild and disappeared after a brief drug withdrawal. One patient was actively withdrawn from the trial because of poor compliance. CONCLUSIONS: The results of our study suggest that albuterol showed a good safety profile as an adjunctive treatment in our IOPD cohort, although the benefits are limited.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA