Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Plant J ; 113(6): 1176-1191, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36628476

RESUMO

Lateral roots are important for a wide range of processes, including uptake of water and nutrients. The CLAVATA3 (CLV3)/EMBRYO SURROUNDING REGION-RELATED (CLE) 1 ~ 7 peptide family and their cognate receptor CLV1 have been shown to negatively regulate lateral root formation under low-nitrate conditions. However, little is known about how CLE signaling regulates lateral root formation. A persistent obstacle in CLE peptide research is their functional redundancies, which makes functional analyses difficult. To address this problem, we generate the cle1 ~ 7 septuple mutant (cle1 ~ 7-cr1, cr stands for mutant allele generated with CRISPR/Cas9). cle1 ~ 7-cr1 exhibits longer lateral roots under normal conditions. Specifically, in cle1 ~ 7-cr1, the lateral root density is increased, and lateral root primordia initiation is found to be accelerated. Further analysis shows that cle3 single mutant exhibits slightly longer lateral roots. On the other hand, plants that overexpress CLE2 and CLE3 exhibit decreased lateral root lengths. To explore cognate receptor(s) of CLE2 and CLE3, we analyze lateral root lengths in clv1 barely any meristem 1(bam1) double mutant. Mutating both the CLV1 and BAM1 causes longer lateral roots, but not in each single mutant. In addition, genetic analysis reveals that CLV1 and BAM1 are epistatic to CLE2 and CLE3. Furthermore, gene expression analysis shows that the LATERAL ORGAN BOUNDARIES DOMAIN/ASYMMETRIC LEAVES2-LIKE (LBD/ASL) genes, which promote lateral root formation, are upregulated in cle1 ~ 7-cr1 and clv1 bam1. We therefore propose that CLE2 and CLE3 peptides are perceived by CLV1 and BAM1 to mediate lateral root formation through LBDs regulation.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Raízes de Plantas , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Peptídeos/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais/genética
2.
J Exp Bot ; 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38941269

RESUMO

Plants use a combination of sophisticated local and systemic pathways to optimize growth depending on heterogeneous nutrient availability in the soil. Legume plants can acquire mineral nitrogen (N) either through their roots or via a symbiotic interaction with N-fixing rhizobia bacteria housed in so-called root nodules. To identify shoot-to-root systemic signals acting in Medicago truncatula plants at N-deficit or N-satiety, plants were grown in a split-root experimental design, in which either high or low N was provided to a half of the root system, allowing the analysis of systemic pathways independently of any local N response. Among the plant hormone families analyzed, the cytokinin trans-Zeatin accumulated in plants at N-satiety. Cytokinin application by petiole feeding led to an inhibition of both root growth and nodulation. In addition, an exhaustive analysis of miRNAs revealed that miR2111 accumulates systemically under N-deficit in both shoots and non-treated distant roots, whereas a miRNA related to inorganic Phosphate (Pi)-acquisition, the miR399, does so in plants grown at N-satiety. These two accumulation patterns are dependent on CRA2 (Compact Root Architecture 2), a receptor required for CEP (C-terminally Encoded Peptide) signaling. Constitutive ectopic expression of the miR399 reduced nodule numbers and root biomass depending on Pi availability, suggesting that the miR399-dependent Pi-acquisition regulatory module controlled by N-availability affects the development of the whole legume plant root system.

3.
Proc Natl Acad Sci U S A ; 117(51): 32750-32756, 2020 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-33288706

RESUMO

Cell division is often regulated by extracellular signaling networks to ensure correct patterning during development. In Arabidopsis, the SHORT-ROOT (SHR)/SCARECROW (SCR) transcription factor dimer activates CYCLIND6;1 (CYCD6;1) to drive formative divisions during root ground tissue development. Here, we show plasma-membrane-localized BARELY ANY MERISTEM1/2 (BAM1/2) family receptor kinases are required for SHR-dependent formative divisions and CYCD6;1 expression, but not SHR-dependent ground tissue specification. Root-enriched CLE ligands bind the BAM1 extracellular domain and are necessary and sufficient to activate SHR-mediated divisions and CYCD6;1 expression. Correspondingly, BAM-CLE signaling contributes to the restriction of formative divisions to the distal root region. Additionally, genetic analysis reveals that BAM-CLE and SHR converge to regulate additional cell divisions outside of the ground tissues. Our work identifies an extracellular signaling pathway regulating formative root divisions and provides a framework to explore this pathway in patterning and evolution.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/citologia , Arabidopsis/metabolismo , Raízes de Plantas/citologia , Proteínas Serina-Treonina Quinases/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Divisão Celular , Regulação da Expressão Gênica de Plantas , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células Vegetais/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Plantas Geneticamente Modificadas , Proteínas Serina-Treonina Quinases/genética , Transdução de Sinais , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
4.
Plant Mol Biol ; 108(3): 225-239, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35038066

RESUMO

KEY MESSAGE: This study focused on the role of CLE1-7 peptides as defense mediators, and showed that root-expressed CLE3 functions as a systemic signal to regulate defense-related gene expression in shoots. In the natural environment, plants employ diverse signaling molecules including peptides to defend themselves against various pathogen attacks. In this study, we investigated whether CLAVATA3/EMBRYO SURROUNDING REGION-RELATED (CLE) genes (CLE1-7) respond to biotic stimuli. CLE3 showed significant up-regulation upon treatment with flg22, Pep2, and salicylic acid (SA). Quantitative real-time PCR (qRT-PCR) analysis revealed that CLE3 expression is regulated by the NON-EXPRESSOR OF PR GENES1 (NPR1)-dependent SA signaling and flg22-FLAGELLIN-SENSITIVE 2 (FLS2) signaling pathways. We demonstrated that SA-induced up-regulation of CLE3 in roots was required for activation of WRKY33, a gene involved in the regulation of systemic acquired resistance (SAR), in shoots, suggesting that CLE3 functions as a root-derived signal that regulates the expression of defense-related genes in shoots. Microarray analysis of transgenic Arabidopsis lines overexpressing CLE3 under the control of a ß-estradiol-inducible promoter revealed that root-confined CLE3 overexpression affected gene expression in both roots and shoots. Comparison of CLE2- and CLE3-induced genes indicated that CLE2 and CLE3 peptides target a few common but largely distinct downstream genes. These results suggest that root-derived CLE3 is involved in the regulation of systemic rather than local immune responses. Our study also sheds light on the potential role of CLE peptides in long-distance regulation of plant immunity.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas/fisiologia , Raízes de Plantas/metabolismo , Brotos de Planta/metabolismo , Fatores de Transcrição/metabolismo , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Regulação para Baixo , Estradiol/farmacologia , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Peptídeos e Proteínas de Sinalização Intercelular , Raízes de Plantas/genética , Brotos de Planta/genética , Plantas Geneticamente Modificadas , Ácido Salicílico/farmacologia , Plântula/crescimento & desenvolvimento , Plântula/metabolismo , Fatores de Transcrição/genética , Regulação para Cima
5.
New Phytol ; 235(6): 2300-2312, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35642449

RESUMO

Known for their regulatory roles in stem cell homeostasis, CLAVATA3/ESR-RELATED (CLE) peptides also function as mediators of external stimuli such as hormones. De novo shoot regeneration, representing the remarkable plant cellular plasticity, involves reconstitution of stem cells under control of stem-cell regulators. Yet whether and how stem cell-regulating CLE peptides are implicated in plant regeneration remains unknown. By CRISPR/Cas9-induced loss-of-function studies, peptide application, precursor overexpression, and expression analyses, the role of CLE1-CLE7 peptides and their receptors in de novo shoot regeneration was studied in Arabidopsis thaliana. CLE1-CLE7 are induced by callus-induction medium and dynamically expressed in pluripotent callus. Exogenously-applied CLE1-CLE7 peptides or precursor overexpression effectively leads to shoot regeneration suppression, whereas their simultaneous mutation results in enhanced regenerative capacity, demonstrating that CLE1-CLE7 peptides redundantly function as negative regulators of de novo shoot regeneration. CLE1-CLE7-mediated shoot regeneration suppression is impaired in loss-of-function mutants of callus-expressed CLAVATA1 (CLV1) and BARELY ANY MERISTEM1 (BAM1) genes, indicating that CLV1/BAM1 are required for CLE1-CLE7-mediated shoot regeneration signaling. CLE1-CLE7 signaling resulted in transcriptional repression of WUSCHEL (WUS), a stem cell-promoting transcription factor known as a principal regulator of plant regeneration. Our results indicate that functionally-redundant CLE1-CLE7 peptides genetically act through CLV1/BAM1 receptors and repress WUS expression to modulate shoot-regeneration capacity, establishing the mechanistic basis for CLE1-CLE7-mediated shoot regeneration and a novel role for CLE peptides in hormone-dependent developmental plasticity.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Meristema/metabolismo , Peptídeos/metabolismo , Brotos de Planta/metabolismo , Proteínas Serina-Treonina Quinases , Transdução de Sinais/genética
6.
Development ; 145(10)2018 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-29789310

RESUMO

CLAVATA3/EMBRYO SURROUNDING REGION (CLE) peptides are secreted endogenous plant ligands that are sensed by receptor kinases (RKs) to convey environmental and developmental inputs. Typically, this involves an RK with narrow ligand specificity that signals together with a more promiscuous co-receptor. For most CLEs, biologically relevant (co-)receptors are unknown. The dimer of the receptor-like protein CLAVATA 2 (CLV2) and the pseudokinase CORYNE (CRN) conditions perception of so-called root-active CLE peptides, the exogenous application of which suppresses root growth by preventing protophloem formation in the meristem. clv2 as well as crn null mutants are resistant to root-active CLE peptides, possibly because CLV2-CRN promotes expression of their cognate receptors. Here, we have identified the CLE-RESISTANT RECEPTOR KINASE (CLERK) gene, which is required for full sensing of root-active CLE peptides in early developing protophloem. CLERK protein can be replaced by its close homologs, SENESCENCE-ASSOCIATED RECEPTOR-LIKE KINASE (SARK) and NSP-INTERACTING KINASE 1 (NIK1). Yet neither CLERK nor NIK1 ectodomains interact biochemically with described CLE receptor ectodomains. Consistently, CLERK also acts genetically independently of CLV2-CRN We, thus, have discovered a novel hub for redundant CLE sensing in the root.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Arabidopsis/genética , Raízes de Plantas/enzimologia , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas de Arabidopsis/genética , Genoma de Planta/genética , Proteínas de Membrana/genética , Plantas Geneticamente Modificadas , Proteínas Serina-Treonina Quinases/genética
7.
New Phytol ; 229(5): 2525-2534, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33067828

RESUMO

Legumes form a symbiosis with atmospheric nitrogen (N2 )-fixing soil rhizobia, resulting in new root organs called nodules that enable N2 -fixation. Nodulation is a costly process that is tightly regulated by the host through autoregulation of nodulation (AON) and nitrate-dependent regulation of nodulation. Both pathways require legume-specific CLAVATA/ESR-related (CLE) peptides. Nitrogen-induced nodulation-suppressing CLE peptides have not previously been investigated in Medicago truncatula, for which only rhizobia-induced MtCLE12 and MtCLE13 have been characterised. Here, we report on novel peptides MtCLE34 and MtCLE35 in nodulation control. The nodulation-suppressing CLE peptides of five legume species were classified into three clades based on sequence homology and phylogeny. This approached identified MtCLE34 and MtCLE35 and four new CLE peptide orthologues of Pisum sativum. Whereas MtCLE12 and MtCLE13 are induced by rhizobia, MtCLE34 and MtCLE35 respond to both rhizobia and nitrate. MtCLE34 was identified as a pseudogene lacking a functional CLE-domain. MtCLE35 was found to inhibit nodulation in a SUNN- and RDN1-dependent manner via overexpression analysis. Together, our findings indicate that MtCLE12 and MtCLE13 have a specific role in AON, while MtCLE35 regulates nodule numbers in response to both rhizobia and nitrate. MtCLE34 likely had a similar role to MtCLE35, but its function was lost due to a premature nonsense mutation.


Assuntos
Medicago truncatula , Rhizobium , Regulação da Expressão Gênica de Plantas , Medicago truncatula/genética , Medicago truncatula/metabolismo , Nitratos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Nodulação/genética , Nódulos Radiculares de Plantas/metabolismo , Simbiose
8.
Plant Mol Biol ; 104(6): 561-574, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32980951

RESUMO

KEY MESSAGE: This study focused on the role of CLE1-CLE7 peptides as environmental mediators and indicated that root-induced CLE2 functions systemically in light-dependent carbohydrate metabolism in shoots. Plants sense environmental stimuli and convert them into cellular signals, which are transmitted to distinct cells and tissues to induce adequate responses. Plant hormones and small secretory peptides often function as environmental stress mediators. In this study, we investigated whether CLAVATA3/EMBRYO SURROUNDING REGION-RELATED proteins, CLE1-CLE7, which share closely related CLE domains, mediate environmental stimuli in Arabidopsis thaliana. Expression analysis of CLE1-CLE7 revealed that these genes respond to different environmental stimuli, such as nitrogen deprivation, nitrogen replenishment, cold, salt, dark, and sugar starvation, in a sophisticated manner. To further investigate the function of CLE2, we generated transgenic Arabidopsis lines expressing the ß-glucuronidase gene under the control of the CLE2 promoter or expressing the CLE2 gene under the control of an estradiol-inducible promoter. We also generated cle2-1 and cle2-2 mutants using the CRISPR/Cas9 technology. In these transgenic lines, dark induced the expression of CLE2 in the root vasculature. Additionally, induction of CLE2 in roots induced the expression of various genes not only in roots but also in shoots, and genes related to light-dependent carbohydrate metabolism were particularly induced in shoots. In addition, cle2 mutant plants showed chlorosis when subjected to a shade treatment. These results suggest that root-induced CLE2 functions systemically in light-dependent carbohydrate metabolism in shoots.


Assuntos
Proteínas de Arabidopsis/fisiologia , Arabidopsis/metabolismo , Metabolismo dos Carboidratos , Brotos de Planta/metabolismo , Arabidopsis/genética , Arabidopsis/efeitos da radiação , Proteínas de Arabidopsis/genética , Sistemas CRISPR-Cas , Escuridão , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Interação Gene-Ambiente , Luz , Brotos de Planta/efeitos da radiação , Plantas Geneticamente Modificadas , Domínios Proteicos/genética , Transdução de Sinais
9.
New Phytol ; 222(1): 159-170, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30317651

RESUMO

Sap molecules are transported by xylem flow throughout the whole plant body. Factors regulating the xylem transport of different molecules remain to be identified. We used fluorophores to visualize xylem transport from roots to leaves in Arabidopsis thaliana. Several previously established Arabidopsis lines with modified xylem cell walls were used to determine the contribution of xylem cell walls to xylem transport. Fluorophores underwent xylem flow-dependent transport from roots to leaves within 20 min. A comparison of rhodamine, fluorescein and three fluorescently labeled CLV3/ESR-related (CLE) peptides revealed cargo-dependent xylem transport patterns in terms of leaf position and vein order. Only minor changes in amino acid sequence were sufficient to alter the xylem transport patterns of the labeled CLE peptides. We found that the xylem transport pattern of fluorescein was affected in Arabidopsis lines with modified AtXYN1, LAC4 or CCoAOMT1 expression. In these lines, application of a defense inducer, pipecolic acid, to roots resulted in altered defense response patterns in leaves, whereas all the lines showed wild-type-like responses when pipecolic acid was sprayed onto leaves. The combined results reveal a finely controlled cargo-dependent xylem transport and suggest that the xylem cell wall structure is crucial for this transport system.


Assuntos
Arabidopsis/metabolismo , Parede Celular/metabolismo , Xilema/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Transporte Biológico , Celulase/metabolismo , Fluoresceína/metabolismo , Lignina/metabolismo , Peptídeos/metabolismo , Folhas de Planta/metabolismo , Plantas Geneticamente Modificadas , Rodaminas/metabolismo
10.
Plant Cell Environ ; 42(1): 188-197, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-29722016

RESUMO

Legumes form root nodules to house beneficial nitrogen-fixing rhizobia bacteria. However, nodulation is resource demanding; hence, legumes evolved a systemic signalling mechanism called autoregulation of nodulation (AON) to control nodule numbers. AON begins with the production of CLE peptides in the root, which are predicted to be glycosylated, transported to the shoot, and perceived. We synthesized variants of nodulation-suppressing CLE peptides to test their activity using petiole feeding to introduce CLE peptides into the shoot. Hydroxylated, monoarabinosylated, and triarabinosylated variants of soybean GmRIC1a and GmRIC2a were chemically synthesized and fed into recipient Pisum sativum (pea) plants, which were used due to the availability of key AON pathway mutants unavailable in soybean. Triarabinosylated GmRIC1a and GmRIC2a suppressed nodulation of wild-type pea, whereas no other peptide variant tested had this ability. Suppression also occurred in the supernodulating hydroxyproline O-arabinosyltransferase mutant, Psnod3, but not in the supernodulating receptor mutants, Pssym29, and to some extent, Pssym28. During our study, bioinformatic resources for pea became available and our analyses identified 40 CLE peptide-encoding genes, including orthologues of nodulation-suppressive CLE peptides. Collectively, we demonstrated that soybean nodulation-suppressive CLE peptides can function interspecifically in the AON pathway of pea and require arabinosylation for their activity.


Assuntos
Arabinose/metabolismo , Peptídeos/metabolismo , Pisum sativum/crescimento & desenvolvimento , Nodulação , Regulação da Expressão Gênica de Plantas , Redes e Vias Metabólicas/fisiologia , Pisum sativum/metabolismo , Peptídeos/fisiologia , Proteínas de Plantas/metabolismo , Proteínas de Plantas/fisiologia , Nódulos Radiculares de Plantas/crescimento & desenvolvimento , Nódulos Radiculares de Plantas/metabolismo
11.
Plant Cell Environ ; 42(3): 1033-1044, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30378140

RESUMO

CLE peptides have been implicated in various developmental processes of plants and mediate their responses to environmental stimuli. However, the biological relevance of most CLE genes remains to be functionally characterized. Here, we report that CLE9, which is expressed in stomata, acts as an essential regulator in the induction of stomatal closure. Exogenous application of CLE9 peptides or overexpression of CLE9 effectively led to stomatal closure and enhanced drought tolerance, whereas CLE9 loss-of-function mutants were sensitivity to drought stress. CLE9-induced stomatal closure was impaired in abscisic acid (ABA)-deficient mutants, indicating that ABA is required for CLE9-medaited guard cell signalling. We further deciphered that two guard cell ABA-signalling components, OST1 and SLAC1, were responsible for CLE9-induced stomatal closure. MPK3 and MPK6 were activated by the CLE9 peptide, and CLE9 peptides failed to close stomata in mpk3 and mpk6 mutants. In addition, CLE9 peptides stimulated the induction of hydrogen peroxide (H2 O2 ) and nitric oxide (NO) synthesis associated with stomatal closure, which was abolished in the NADPH oxidase-deficient mutants or nitric reductase mutants, respectively. Collectively, our results reveal a novel ABA-dependent function of CLE9 in the regulation of stomatal apertures, thereby suggesting a potential role of CLE9 in the stress acclimatization of plants.


Assuntos
Ácido Abscísico/metabolismo , Proteínas de Arabidopsis/fisiologia , Arabidopsis/fisiologia , Peróxido de Hidrogênio/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/fisiologia , Óxido Nítrico/metabolismo , Estômatos de Plantas/fisiologia , Adaptação Fisiológica , Arabidopsis/metabolismo , Desidratação , Óxido Nítrico/fisiologia
12.
Int J Mol Sci ; 20(17)2019 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-31484454

RESUMO

CLAVATA3/EMBRYO SURROUNDING REGION (CLE) peptides are post-translationally cleaved and modified peptides from their corresponding pre-propeptides. Although they are only 12 to 13 amino acids in length, they are important ligands involved in regulating cell proliferation and differentiation in plant shoots, roots, vasculature, and other tissues. They function by interacting with their corresponding receptors. CLE peptides have been studied in many plants, but not in wheat. We identified 104 TaCLE genes in the wheat genome based on a genome-wide scan approach. Most of these genes have homologous copies distributed on sub-genomes A, B, and D. A few genes are derived from tandem duplication and segmental duplication events. Phylogenetic analysis revealed that TaCLE genes can be divided into five different groups. We obtained functional characterization of the peptides based on the evolutionary relationships among the CLE peptide families of wheat, rice, and Arabidopsis, and expression pattern analysis. Using chemically synthesized peptides (TaCLE3p and TaCLE34p), we found that TaCLE3 and TaCLE34 play important roles in regulating wheat and Arabidopsis root development, and wheat stem development. Overexpression analysis of TaCLE3 in Arabidopsis revealed that TaCLE3 not only affects the development of roots and stems, but also affects the development of leaves and fruits. These data represent the first comprehensive information on TaCLE family members.


Assuntos
Triticum/metabolismo , Regulação da Expressão Gênica de Plantas , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Triticum/classificação , Triticum/genética
13.
Development ; 142(8): 1437-46, 2015 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-25813544

RESUMO

Protophloem is a specialized vascular tissue in growing plant organs, such as root meristems. In Arabidopsis mutants with impaired primary root protophloem differentiation, brevis radix (brx) and octopus (ops), meristematic activity and consequently overall root growth are strongly reduced. Second site mutation in the protophloem-specific presumed phosphoinositide 5-phosphatase cotyledon vascular pattern 2 (CVP2), but not in its homolog CVP2-like 1 (CVL1), partially rescues brx defects. Consistent with this finding, CVP2 hyperactivity in a wild-type background recreates a brx phenotype. Paradoxically, however, while cvp2 or cvl1 single mutants display no apparent root defects, the root phenotype of cvp2 cvl1 double mutants is similar to brx or ops, although, as expected, cvp2 cvl1 seedlings contain more phosphatidylinositol-4,5-biphosphate. Thus, tightly balanced phosphatidylinositol-4,5-biphosphate levels appear essential for proper protophloem differentiation. Genetically, OPS acts downstream of phosphatidylinositol-4,5-biphosphate levels, as cvp2 mutation cannot rescue ops defects, whereas increased OPS dose rescues cvp2 cvl1 defects. Finally, all three mutants display higher density and accelerated emergence of lateral roots, which correlates with increased auxin response in the root differentiation zone. This phenotype is also created by application of peptides that suppress protophloem differentiation, clavata3/embryo surrounding region 26 (CLE26) and CLE45. Thus, local changes in the primary root protophloem systemically shape overall root system architecture.


Assuntos
Arabidopsis/citologia , Arabidopsis/metabolismo , Floema/citologia , Floema/metabolismo , Fosfatidilinositol 4,5-Difosfato/metabolismo , Raízes de Plantas/citologia , Raízes de Plantas/metabolismo , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Floema/crescimento & desenvolvimento , Fosfatidilinositóis/metabolismo , Monoéster Fosfórico Hidrolases/genética , Monoéster Fosfórico Hidrolases/metabolismo , Raízes de Plantas/crescimento & desenvolvimento
14.
EMBO Rep ; 17(8): 1145-54, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27354416

RESUMO

Receptor kinases convey diverse environmental and developmental inputs by sensing extracellular ligands. In plants, one group of receptor-like kinases (RLKs) is characterized by extracellular leucine-rich repeat (LRR) domains, which interact with various ligands that include the plant hormone brassinosteroid and peptides of the CLAVATA3/EMBRYO SURROUNDING REGION (CLE) type. For instance, the CLE45 peptide requires the LRR-RLK BARELY ANY MERISTEM 3 (BAM3) to prevent protophloem formation in Arabidopsis root meristems. Here, we show that other proposed CLE45 receptors, the two redundantly acting LRR-RLKs STERILITY-REGULATING KINASE MEMBER 1 (SKM1) and SKM2 (which perceive CLE45 in the context of pollen tube elongation), cannot substitute for BAM3 in the root. Moreover, we identify MEMBRANE-ASSOCIATED KINASE REGULATOR 5 (MAKR5) as a post-transcriptionally regulated amplifier of the CLE45 signal that acts downstream of BAM3. MAKR5 belongs to a small protein family whose prototypical member, BRI1 KINASE INHIBITOR 1, is an essentially negative regulator of brassinosteroid signaling. By contrast, MAKR5 is a positive effector of CLE45 signaling, revealing an unexpected diversity in the conceptual roles of MAKR genes in different signaling pathways.


Assuntos
Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Membrana/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais , Regulação da Expressão Gênica de Plantas , Fenótipo , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Transcrição Gênica
15.
J Exp Bot ; 67(16): 4813-26, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27229733

RESUMO

Cell-to-cell communication is crucial for the coherent functioning of multicellular organisms, and they have evolved intricate molecular mechanisms to achieve such communication. Small, secreted peptide hormones participate in cell-to-cell communication to regulate various physiological processes. One such family of plant peptide hormones is the CLAVATA3 (CLV3)/EMBRYO SURROUNDING REGION-related (CLE) family, whose members play crucial roles in the differentiation of shoot and root meristems. Recent biochemical and genetic studies have characterized various CLE signaling modules, which include CLE peptides, transmembrane receptors, and downstream intracellular signaling components. CLE signaling systems are conserved across the plant kingdom but have divergent modes of action in various developmental processes in different species. Moreover, several CLE peptides play roles in symbiosis, parasitism, and responses to abiotic cues. Here we review recent studies that have provided new insights into the mechanisms of CLE signaling.


Assuntos
Desenvolvimento Vegetal , Reguladores de Crescimento de Plantas/genética , Proteínas de Plantas/genética , Transdução de Sinais , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Plantas/metabolismo
16.
New Phytol ; 208(4): 1104-13, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26083273

RESUMO

Ligand receptor-based signaling is a means of cell-to-cell communication for coordinating developmental and physiological processes in multicellular organisms. In plants, cell-producing meristems utilize this signaling to regulate their activities and ensure for proper development. Shoot and root systems share common requirements for carrying out this process; however, its molecular basis is largely unclear. It has been suggested that synthetic CLV3/EMBRYO SURROUNDING REGION (CLE) peptide shrinks the root meristem through the actions of CLAVATA2 (CLV2) and the RECEPTOR-LIKE PROTEIN KINASE 2 (RPK2) pathway in Arabidopsis thaliana. Our genetic screening for mutations that resist CLE peptide signaling in roots determined that BAM1, which is a member of the leucine-rich repeat receptor-like kinase (LRR-RLK) family, is also involved in this pathway. BAM1 is preferentially expressed in the root tip, including the quiescent center and its surrounding stem cells. Our genetic analysis revealed that BAM1 functions together with RPK2. Using coimmunoprecipitation assay, we showed that BAM1 is capable of forming heteromeric complexes with RPK2. These findings suggest that the BAM1 and RPK2 receptors constitute a signaling pathway that modulates cell proliferation in the root meristem and that related molecules are employed in root and shoot meristems.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Genes de Plantas , Raízes de Plantas/metabolismo , Proteínas Serina-Treonina Quinases/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proliferação de Células , Meristema , Peptídeos/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais
17.
Plant J ; 76(6): 970-81, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24118638

RESUMO

Cell-to-cell communication is essential for the coordinated development of multicellular organisms. Members of the CLAVATA3/EMBRYO-SURROUNDING REGION-RELATED (CLE) family, a group of small secretory peptides, are involved in these processes in plants. Although post-translational modifications are considered to be indispensable for their activity, the detailed mechanisms governing these modifications are not well understood. Here, we report that SUPPRESSOR OF LLP1 1 (SOL1), a putative Zn²âº carboxypeptidase previously isolated as a suppressor of the CLE19 over-expression phenotype, functions in C-terminal processing of the CLE19 proprotein to produce the functional CLE19 peptide. Newly isolated sol1 mutants are resistant to CLE19 over-expression, consistent with the previous report (Casamitjana-Martinez, E., Hofhuis, H.F., Xu, J., Liu, C.M., Heidstra, R. and Scheres, B. (2003) Curr. Biol. 13, 1435-1441). As expected, our experiment using synthetic CLE19 peptide revealed that the sol1 mutation does not compromise CLE signal transduction pathways per se. SOL1 possesses enzymatic activity to remove the C-terminal arginine residue of CLE19 proprotein in vitro, and SOL1-dependent cleavage of the C-terminal arginine residue is necessary for CLE19 activity in vivo. Additionally, the endosomal localization of SOL1 suggests that this processing occurs in endosomes in the secretory pathway. Thus, our data indicate the importance of C-terminal processing of CLE proproteins to ensure CLE activities.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Carboxipeptidases/metabolismo , Regulação Enzimológica da Expressão Gênica , Processamento de Proteína Pós-Traducional , Sequência de Aminoácidos , Arabidopsis/citologia , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/isolamento & purificação , Carboxipeptidases/genética , Carboxipeptidases/isolamento & purificação , Endossomos/enzimologia , Estrogênios/farmacologia , Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genes Reporter , Meristema/citologia , Meristema/enzimologia , Meristema/genética , Meristema/crescimento & desenvolvimento , Dados de Sequência Molecular , Mutagênese Insercional , Fenótipo , Raízes de Plantas/citologia , Raízes de Plantas/enzimologia , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Brotos de Planta/citologia , Brotos de Planta/enzimologia , Brotos de Planta/genética , Brotos de Planta/crescimento & desenvolvimento , Plantas Geneticamente Modificadas , Transdução de Sinais , Nicotiana/enzimologia , Nicotiana/genética
18.
J Integr Plant Biol ; 55(12): 1212-23, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23718712

RESUMO

Plants exploit several types of cell surface receptors for perception of extracellular signals, of which the extracellular leucine-rich repeat (eLRR)-containing receptors form the major class. Although the function of most plant eLRR receptors remains unclear, an increasing number of these receptors are shown to play roles in innate immunity and a wide variety of developmental processes. Recent efforts using domain swaps, gene shuffling analyses, site-directed mutagenesis, interaction studies, and crystallographic analyses resulted in the current knowledge on ligand binding and the mechanism of activation of plant eLRR receptors. This review provides an overview of eLRR receptor research, specifically summarizing the recent understanding of interactions among plant eLRR receptors, their co-receptors and corresponding ligands. The functions of distinct eLRR receptor domains, and their role in structure, ligand perception and multimeric complex formation are discussed. [Figure: see text] Bart P.H.J. Thomma (Corresponding author).


Assuntos
Proteínas de Plantas/metabolismo , Plantas/metabolismo , Receptores de Superfície Celular/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Proteínas de Plantas/genética , Plantas/genética , Receptores de Superfície Celular/genética
19.
Plants (Basel) ; 12(1)2023 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-36616316

RESUMO

Plants engage in symbiotic relationships with soil microorganisms to overcome nutrient limitations in their environment. Among the best studied endosymbiotic interactions in plants are those with arbuscular mycorrhizal (AM) fungi and N-fixing bacteria called rhizobia. The mechanisms regulating plant nutrient homeostasis and acquisition involve small mobile molecules such as peptides and micro RNAs (miRNAs). A large number of CLE (CLAVATA3/EMBRYO SURROUNDING REGION-RELATED) and CEP (C-TERMINALLY ENCODED PEPTIDE) peptide hormones as well as certain miRNAs have been reported to differentially respond to the availability of essential nutrients such as nitrogen (N) and phosphorus (P). Interestingly, a partially overlapping pool of these molecules is involved in plant responses to root colonization by rhizobia and AM fungi, as well as mineral nutrition. The crosstalk between root endosymbiosis and nutrient availability has been subject of intense investigations, and new insights in locally or systemically mobile molecules in nutrient- as well as symbiosis-related signaling continue to arise. Focusing on the key roles of peptides and miRNAs, we review the mechanisms that shape plant responses to nutrient limitation and regulate the establishment of symbiotic associations with beneficial soil microorganisms.

20.
Curr Biol ; 33(3): 597-605.e3, 2023 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-36693368

RESUMO

The plant vasculature delivers phloem sap to the growth apices of sink organs, the meristems, via the interconnected sieve elements of the protophloem.1,2,3 In the A. thaliana root meristem, the stem cells form two files of protophloem sieve elements (PPSEs), whose timely differentiation requires a set of positive genetic regulators. In corresponding loss-of-function mutants, signaling of secreted CLAVATA3/EMBRYO SURROUNDING REGION 45 (CLE45) peptide through the BARELY ANY MERISTEM 3 (BAM3) receptor is hyperactive and interferes with PPSE differentiation. This can be mimicked by an external CLE45 application to wild type. Because developing PPSEs express CLE45-BAM3 pathway components from early on until terminal differentiation, it remains unclear how they escape the autocrine inhibitory CLE45 signal. Here, we report that the wild type becomes insensitive to CLE45 treatment on neutral to alkaline pH media, as well as upon simultaneous treatment with a specific proton pump inhibitor at a standard pH of 5.7. We find that these observations can be explained by neither pH-dependent CLE45 uptake nor pH-dependent CLE45 charge. Moreover, pH-dependent perception specifically requires the CLE45 R4 residue and is not observed for the redundant PPSE-specific CLE25 and CLE26 peptides. Finally, pH-dependent CLE45 response in developing PPSEs as opposed to pH-independent response in neighboring cell files indicates that late-developing PPSEs can no longer sense CLE45. This is consistent with an apoplastic acidic to alkaline pH gradient we observed along developing PPSE cell files. In summary, we conclude that developing PPSEs self-organize their transition to differentiation by desensitizing themselves against autocrine CLE45 signaling through an apoplastic pH increase.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Floema/metabolismo , Raízes de Plantas , Meristema/metabolismo , Diferenciação Celular , Peptídeos/metabolismo , Percepção , Concentração de Íons de Hidrogênio , Regulação da Expressão Gênica de Plantas , Proteínas de Membrana/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA