RESUMO
Homotypic Fusion and Protein Sorting (HOPS) and Class C-core Vacuole/Endosome Tethering (CORVET) complexes regulate the correct fusion of endolysosomal bodies. Mutations in core proteins (VPS11, VPS16, VPS18, and VPS33) have been linked with multiple neurological disorders, including mucopolysaccharidosis (MPS), genetic leukoencephalopathy (gLE), and dystonia. Mutations in human Vacuolar Protein Sorting 16 (VPS16) have been associated with MPS and dystonia. In this study, we generated and characterized a zebrafish vps16(-/-) mutant line using immunohistochemical and behavioral approaches. The loss of Vps16 function caused multiple systemic defects, hypomyelination, and increased neuronal cell death. Behavioral analysis showed a progressive loss of visuomotor response and reduced motor response and habituation to acoustic/tap stimuli in mutants. Finally, using a novel multiple-round acoustic/tap stimuli test, mutants showed intermediate memory deficits. Together, these data demonstrate that zebrafish vps16(-/-) mutants show systemic defects, neurological and motor system pathologies, and cognitive impairment. This is the first study to report behavior abnormalities and memory deficiencies in a zebrafish vps16(-/-) mutant line. Finally, we conclude that the deficits observed in vps16(-/-) zebrafish mutants do not mimic pathologies associated with dystonia, but more align to abnormalities associated with MPS and gLE.
Assuntos
Proteínas de Transporte Vesicular , Proteínas de Peixe-Zebra , Peixe-Zebra , Animais , Peixe-Zebra/genética , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo , Mutação , Transtornos do Neurodesenvolvimento/genética , Transtornos do Neurodesenvolvimento/metabolismo , Modelos Animais de Doenças , Bainha de Mielina/metabolismo , Comportamento AnimalRESUMO
Early endosomes (EEs) are part of the endocytic transport pathway and resemble the earliest class of transport vesicles between the internalization of extracellular material, their cellular distribution or vacuolar degradation. In filamentous fungi, EEs fulfill important functions in long distance transport of cargoes as mRNAs, ribosomes, and peroxisomes. Formation and maturation of early endosomes is controlled by the specific membrane-bound Rab-GTPase Rab5 and tethering complexes as CORVET (class C core vacuole/endosome tethering). In the basidiomycete Ustilago maydis, Rab5a is the prominent GTPase to recruit CORVET to EEs; in rab5a deletion strains, this function is maintained by the second EE-associated GTPase Rab5b. The tethering- and core-subunits of CORVET are essential, buttressing a central role for EE transport in U. maydis. The function of EEs in long distance transport is supported by the Nma1 protein that interacts with the Vps3 subunit of CORVET. The interaction stabilizes the binding of Vps3 to the CORVET core complex that is recruited to Rab5a via Vps8. Deletion of nma1 leads to a significantly reduced number of EEs, and an increased conversion rate of EEs to late endosomes. Thus, Nma1 modulates the lifespan of EEs to ensure their availability for the various long distance transport processes.
Assuntos
Basidiomycota , Proteínas de Saccharomyces cerevisiae , Ustilago , Basidiomycota/metabolismo , Endossomos/metabolismo , Transporte Proteico , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Ustilago/genética , Ustilago/metabolismo , Proteínas de Transporte Vesicular/metabolismoRESUMO
In endolysosomal networks, two hetero-hexameric tethers called HOPS and CORVET are found widely throughout eukaryotes. The unicellular ciliate Tetrahymena thermophila possesses elaborate endolysosomal structures, but curiously both it and related protozoa lack the HOPS tether and several other trafficking proteins, while retaining the related CORVET complex. Here, we show that Tetrahymena encodes multiple paralogs of most CORVET subunits, which assemble into six distinct complexes. Each complex has a unique subunit composition and, significantly, shows unique localization, indicating participation in distinct pathways. One pair of complexes differ by a single subunit (Vps8), but have late endosomal versus recycling endosome locations. While Vps8 subunits are thus prime determinants for targeting and functional specificity, determinants exist on all subunits except Vps11. This unprecedented expansion and diversification of CORVET provides a potent example of tether flexibility, and illustrates how 'backfilling' following secondary losses of trafficking genes can provide a mechanism for evolution of new pathways.This article has an associated First Person interview with the first author of the paper.
Assuntos
Tetrahymena thermophila , Endossomos , Humanos , Lisossomos , Tetrahymena thermophila/genética , Proteínas de Transporte VesicularRESUMO
Multisubunit tethering complexes (MTCs) are multitasking hubs that form a link between membrane fusion, organelle motility and signaling. CORVET, CHEVI and HOPS are MTCs of the endo-lysosomal system. They regulate the major membrane flows required for endocytosis, lysosome biogenesis, autophagy and phagocytosis. In addition, individual subunits control complex-independent transport of specific cargoes and exert functions beyond tethering, such as attachment to microtubules and SNARE activation. Mutations in CHEVI subunits lead to arthrogryposis, renal dysfunction and cholestasis (ARC) syndrome, while defects in CORVET and, particularly, HOPS are associated with neurodegeneration, pigmentation disorders, liver malfunction and various forms of cancer. Diseases and phenotypes, however, vary per affected subunit and a concise overview of MTC protein function and associated human pathologies is currently lacking. Here, we provide an integrated overview on the cellular functions and pathological defects associated with CORVET, CHEVI or HOPS proteins, both with regard to their complexes and as individual subunits. The combination of these data provides novel insights into how mutations in endo-lysosomal proteins lead to human pathologies.
Assuntos
Endossomos/metabolismo , Lisossomos/metabolismo , Animais , Artrogripose/metabolismo , Colestase/metabolismo , Homeostase , Humanos , Mutação , Proteínas/genética , Proteínas/metabolismo , Insuficiência Renal/metabolismoRESUMO
Disorders of intracellular trafficking are a group of inherited disorders, which often display multisystem phenotypes. Vacuolar protein sorting (VPS) subunit C, composed of VPS11, VPS18, VPS16, and VPS33A proteins, is involved in tethering of endosomes, lysosomes, and autophagosomes. Our group and others have previously described patients with a specific homozygous missense VPS33A variant, exhibiting a storage disease phenotype resembling mucopolysaccharidosis (MPS), termed "MPS-plus syndrome." Here, we report two siblings from a consanguineous Turkish-Arabic family, who have overlapping features of MPS and intracellular trafficking disorders, including short stature, coarse facies, developmental delay, peripheral neuropathy, splenomegaly, spondylar dysplasia, congenital neutropenia, and high-normal glycosaminoglycan excretion. Whole exome sequencing and familial segregation analyses led to the homozygous NM_022575.3:c.540G>T; p.Trp180Cys variant in VPS16 in both siblings. Multiple bioinformatic methods supported the pathogenicity of this variant. Different monoallelic null VPS16 variants and a homozygous missense VPS16 variant had been previously associated with dystonia. A biallelic intronic, probably splice-altering variant in VPS16, causing an MPS-plus syndrome-like disease has been very recently reported in two individuals. The siblings presented herein display no dystonia, but have features of a multisystem storage disorder, representing a novel MPS-plus syndrome-like disease, associated for the first time with VPS16 missense variants.
Assuntos
Mucopolissacaridoses/genética , Mutação de Sentido Incorreto , Proteínas de Transporte Vesicular/genética , Anormalidades Múltiplas , Feminino , Homozigoto , Humanos , Lactente , Masculino , Mucopolissacaridoses/patologia , Linhagem , Fenótipo , Irmãos , SíndromeRESUMO
Membrane trafficking plays pivotal roles in various cellular activities and higher-order functions of eukaryotes and requires tethering factors to mediate contact between transport intermediates and target membranes. Two evolutionarily conserved tethering complexes, homotypic fusion and protein sorting (HOPS) and class C core vacuole/endosome tethering (CORVET), are known to act in endosomal/vacuolar transport in yeast and animals. Both complexes share a core subcomplex consisting of Vps11, Vps18, Vps16, and Vps33, and in addition to this core, HOPS contains Vps39 and Vps41, whereas CORVET contains Vps3 and Vps8. HOPS and CORVET subunits are also conserved in the model plant Arabidopsis. However, vacuolar trafficking in plants occurs through multiple unique transport pathways, and how these conserved tethering complexes mediate endosomal/vacuolar transport in plants has remained elusive. In this study, we investigated the functions of VPS18, VPS3, and VPS39, which are core complex, CORVET-specific, and HOPS-specific subunits, respectively. Impairment of these tethering proteins resulted in embryonic lethality, distinctly altering vacuolar morphology and perturbing transport of a vacuolar membrane protein. CORVET interacted with canonical RAB5 and a plant-specific R-soluble NSF attachment protein receptor (SNARE), VAMP727, which mediates fusion between endosomes and the vacuole, whereas HOPS interacted with RAB7 and another R-SNARE, VAMP713, which likely mediates homotypic vacuolar fusion. These results indicate that CORVET and HOPS act in distinct vacuolar trafficking pathways in plant cells, unlike those of nonplant systems that involve sequential action of these tethering complexes during vacuolar/lysosomal trafficking. These results highlight a unique diversification of vacuolar/lysosomal transport that arose during plant evolution, using evolutionarily conserved tethering components.
Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas SNARE/metabolismo , Vacúolos/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , Arabidopsis/enzimologia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Endossomos/genética , Endossomos/metabolismo , Fusão de Membrana , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Ligação Proteica , Proteínas SNARE/genética , Vacúolos/enzimologia , Vacúolos/genética , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo , Proteínas rab de Ligação ao GTP/genéticaRESUMO
Apicomplexans use the endolysosomal system for the biogenesis of their secretory organelles, namely, micronemes, rhoptries, and dense granules. In Toxoplasma gondii, our previous in silico search identified the HOPS tethering but not the CORVET complex and demonstrated a role of Vps11 (a common component for both complexes) in its secretory organelle biogenesis. Herein, we performed Vps11-GFP-Trap pull-down assays and identified by proteomic analysis, not only the CORVET-specific subunit Vps8 but also a BEACH domain-containing protein (BDCP) conserved in eukaryotes. We show that knocking-down Vps8 affects targeting of dense granule proteins, transport of rhoptry proteins, and the localization of the cathepsin L protease vacuolar compartment marker. Only a subset of micronemal proteins are affected by the absence of Vps8, shedding light on at least two trafficking pathways involved in microneme maturation. Knocking-down BDCP revealed a restricted and particular role of this protein in rhoptry and vacuolar compartment biogenesis. Moreover, depletion of BDCP or Vps8 abolishes parasite virulence in vivo. This study identified BDCP as a novel CORVET/HOPS-associated protein, playing specific roles and acting in concert during secretory organelle biogenesis, an essential process for host cell infection. Our results open the hypothesis for a role of BDCP in the vesicular trafficking towards lysosome-related organelles in mammals and yeast.
Assuntos
Complexos Multiproteicos/metabolismo , Proteínas de Protozoários/metabolismo , Toxoplasma/citologia , Toxoplasma/metabolismo , Compartimento Celular , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Complexos Multiproteicos/genética , Mutação , Biogênese de Organelas , Subunidades Proteicas , Transporte Proteico , Proteômica/métodos , Proteínas de Protozoários/genética , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismoRESUMO
The mammalian homotypic fusion and vacuole protein sorting (HOPS) complex is comprised of six subunits: VPS11, VPS16, VPS18, VPS39, VPS41 and the Sec1/Munc18 (SM) family member VPS33A. Human HOPS has been predicted to be a tethering complex required for fusion of intracellular compartments with lysosomes, but it remains unclear whether all HOPS subunits are required. We showed that the whole HOPS complex is required for fusion of endosomes with lysosomes by monitoring the delivery of endocytosed fluorescent dextran to lysosomes in cells depleted of individual HOPS proteins. We used the crystal structure of the VPS16/VPS33A complex to design VPS16 and VPS33A mutants that no longer bind each other and showed that, unlike the wild-type proteins, these mutants no longer rescue lysosome fusion with endosomes or autophagosomes in cells depleted of the endogenous proteins. There was no effect of depleting either VIPAR or VPS33B, paralogs of VPS16 and VPS33A, on fusion of lysosomes with either endosomes or autophagosomes and immunoprecipitation showed that they form a complex distinct from HOPS. Our data demonstrate the necessity of recruiting the SM protein VPS33A to HOPS via its interaction with VPS16 and that HOPS proteins, but not VIPAR or VPS33B, are essential for fusion of endosomes or autophagosomes with lysosomes.
Assuntos
Endossomos/metabolismo , Lisossomos/metabolismo , Fagossomos/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Sequência de Aminoácidos , Autofagia , Células HeLa , Humanos , Dados de Sequência Molecular , Ligação Proteica , Transporte Proteico , Proteínas de Transporte Vesicular/química , Proteínas de Transporte Vesicular/genéticaRESUMO
Since the late 1990s, a number of multisubunit tethering complexes (MTCs) have been described that function in membrane trafficking events: TRAPP I, TRAPP II, TRAPP III, COG, HOPS, CORVET, Dsl1, GARP and exocyst. On the basis of structural and sequence similarities, they have been categorized as complexes associated with tethering containing helical rods (CATCHR) (Dsl1, COG, GARP and exocyst) or non-CATCHR (TRAPP I, II and III, HOPS and CORVET) complexes (Yu IM, Hughson FM. Tethering factors as organizers of intracellular vesicular traffic. Annu Rev Cell Dev Biol 2010;26:137-156). Both acronyms (CATCHR and MTC) imply these complexes tether opposing membranes to facilitate fusion. The main question we will address is: have these complexes been formally demonstrated to function as tethers? If the answer is no, then is it premature or even correct to refer to them as tethers? In this commentary, we will argue that the vast majority of MTCs have not been demonstrated to act as a tether. We propose that a distinction between the terms tether and tethering factor be considered to address this issue.
Assuntos
Membrana Celular/metabolismo , Multimerização Proteica , Proteínas de Transporte Vesicular/metabolismo , Animais , Humanos , Ligação Proteica , Transporte ProteicoRESUMO
Early endosomes are organized in a network of vesicles shaped by cycles of fusion, fission, and conversion to late endosomes. In yeast, endosome fusion and conversion are regulated, among others, by CORVET, a hexameric protein complex. In the mammalian endocytic system, distinct subpopulations of early endosomes labelled by the Rab5 effectors APPL1 and EEA1 are present. Here, the function of mammalian CORVET with respect to these endosomal subpopulations was investigated. Tgfbrap1 as CORVET-specific subunit and functional ortholog of Vps3p was identified, demonstrating that it is differentially distributed between APPL1 and EEA1 endosomes. Surprisingly, depletion of CORVET-specific subunits caused fragmentation of APPL1-positive endosomes but not EEA1 endosomes in vivo. These and in vitro data suggest that CORVET plays a role in endosome fusion independently of EEA1. Depletion of CORVET subunits caused accumulation of large EEA1 endosomes indicative of another role in the conversion of EEA1 endosomes into late endosomes. In addition, depletion of CORVET-specific subunits caused alterations in transport depending on both the type of cargo and the specific endosomal subpopulation. These results demonstrate that CORVET plays distinct roles at multiple stages in the mammalian endocytic pathway.
Assuntos
Endossomos/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Animais , Células HeLa , Humanos , Camundongos , Ligação Proteica , Transporte Proteico , Proteínas de Transporte Vesicular/genéticaRESUMO
Protein and lipid transport along the endolysosomal system of eukaryotic cells depends on multiple fusion and fission events. Over the past few years, the molecular constituents of both fission and fusion machineries have been identified. Here, we focus on the mechanism of membrane fusion at endosomes, vacuoles and lysosomes, and in particular on the role of the two homologous tethering complexes called CORVET and HOPS. Both complexes are heterohexamers; they share four subunits, interact with Rab GTPases and soluble NSF attachment protein receptors (SNAREs) and can tether membranes. Owing to the presence of specific subunits, CORVET is a Rab5 effector complex, whereas HOPS can bind efficiently to late endosomes and lysosomes through Rab7. Based on the recently described overall structure of the HOPS complex and a number of in vivo and in vitro analyses, important insights into their function have been obtained. Here, we discuss the general function of both complexes in yeast and in metazoan cells in the context of endosomal biogenesis and maturation.
Assuntos
Endossomos/fisiologia , Lisossomos/fisiologia , Fusão de Membrana , Complexos Multiproteicos/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , Proteínas rab5 de Ligação ao GTP/metabolismo , Animais , Transporte Biológico , Membrana Celular/fisiologia , Humanos , Ligação Proteica , Proteínas SNARE/metabolismo , Leveduras/metabolismo , proteínas de unión al GTP Rab7RESUMO
In fungi, two recognized mechanisms contribute to pH homeostasis: the plasma membrane proton-pumping ATPase that exports excess protons and the vacuolar proton-pumping ATPase (V-ATPase) that mediates vacuolar proton uptake. Here, we report that overexpression of PEP3 which encodes a component of the HOPS and CORVET complexes involved in vacuolar biogenesis, shortened lag phase in Saccharomyces cerevisiae exposed to acetic acid stress. By confocal microscopy, PEP3-overexpressing cells stained with the vacuolar membrane-specific dye, FM4-64 had more fragmented vacuoles than the wild-type control. The stained overexpression mutant was also found to exhibit about 3.6-fold more FM4-64 fluorescence than the wild-type control as determined by flow cytometry. While the vacuolar pH of the wild-type strain grown in the presence of 80 mM acetic acid was significantly higher than in the absence of added acid, no significant difference was observed in vacuolar pH of the overexpression strain grown either in the presence or absence of 80 mM acetic acid. Based on an indirect growth assay, the PEP3-overexpression strain exhibited higher V-ATPase activity. We hypothesize that PEP3 overexpression provides protection from acid stress by increasing vacuolar surface area and V-ATPase activity and, hence, proton-sequestering capacity.
Assuntos
Ácido Acético/toxicidade , Proteínas Adaptadoras de Transporte Vesicular/biossíntese , Expressão Gênica , Proteínas de Saccharomyces cerevisiae/biossíntese , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/crescimento & desenvolvimento , Estresse Fisiológico , Proteínas Adaptadoras de Transporte Vesicular/genética , Concentração de Íons de Hidrogênio , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/fisiologia , Proteínas de Saccharomyces cerevisiae/genética , ATPases Vacuolares Próton-Translocadoras/metabolismo , Vacúolos/metabolismoRESUMO
Contractile vacuole complexes (CVCs) are complex osmoregulatory organelles, with vesicular (bladder) and tubular (spongiome) subcompartments. The mechanisms that underlie their formation and maintenance within the eukaryotic endomembrane network are poorly understood. In the Ciliate Tetrahymena thermophila, six differentiated CORVETs (class C core vacuole/endosome tethering complexes), with Vps8 subunits designated A-F, are likely to direct endosomal trafficking. Vps8Dp localizes to both bladder and spongiome. We show by inducible knockdown that VPS8D is essential to CVC organization and function. VPS8D knockdown increased susceptibility to osmotic shock, tolerated in the wildtype but triggering irreversible lethal swelling in the mutant. The knockdown rapidly triggered contraction of the spongiome and lengthened the period of the bladder contractile cycle. More prolonged knockdown resulted in disassembly of both the spongiome and bladder, and dispersal of proteins associated with those compartments. In stressed cells where the normally singular bladder is replaced by numerous vesicles bearing bladder markers, Vps8Dp concentrated conspicuously at long-lived inter-vesicle contact sites, consistent with tethering activity. Similarly, Vps8Dp in cell-free preparations accumulated at junctions formed after vacuoles came into close contact. Also consistent with roles for Vps8Dp in tethering and/or fusion were the emergence in knockdown cells of multiple vacuole-related structures, replacing the single bladder.
RESUMO
Proper functioning of the precisely controlled endolysosomal system is essential for maintaining the homeostasis of the entire cell. Tethering factors play pivotal roles in mediating the fusion of different transport vesicles, such as endosomes or autophagosomes with each other or with lysosomes. In this work, we uncover several new interactions between the endolysosomal tethering factors Rabenosyn-5 (Rbsn) and the HOPS and CORVET complexes. We find that Rbsn binds to the HOPS/CORVET complexes mainly via their shared subunit Vps18 and we mapped this interaction to the 773-854 region of Vps18. Based on genetic rescue experiments, the binding between Rbsn and Vps18 is required for endosomal transport and is dispensable for autophagy. Moreover, Vps18 seems to be important for ß1 integrin recycling by binding to Rbsn and its known partner Vps45.
Assuntos
Endossomos/metabolismo , Lisossomos/metabolismo , Sítios de Ligação , Células HEK293 , Células HeLa , Humanos , Lipídeos/química , Proteínas Associadas aos Microtúbulos/metabolismo , Ligação Proteica , Subunidades Proteicas/metabolismo , Proteínas de Transporte Vesicular/metabolismoRESUMO
Background: The multi-subunit homotypic fusion and vacuole protein sorting (HOPS) membrane-tethering complex is involved in regulating the fusion of late endosomes and autophagosomes with lysosomes in eukaryotes. The C-terminal regions of several HOPS components have been shown to be required for correct complex assembly, including the C-terminal really interesting new gene (RING) zinc finger domains of HOPS components VPS18 and VPS41. We sought to structurally characterise the putative C-terminal zinc finger domain of VPS39, which we hypothesised may be important for binding of VPS39 to cellular partners or to other HOPS components. Methods: We recombinantly expressed, purified and solved the crystal structure of the proposed zinc-binding region of VPS39. Results: In the structure, this region forms an anti-parallel ß-hairpin that is incorporated into a homotetrameric eight-stranded ß-barrel. However, the fold is stabilised by coordination of zinc ions by residues from the purification tag and an intramolecular disulphide bond between two predicted zinc ligands. Conclusions: We solved the structure of the VPS39 C-terminal domain adopting a non-native fold. Our work highlights the risk of non-native folds when purifying small zinc-containing domains with hexahistidine tags. However, the non-native structure we observe may have implications for rational protein design.
RESUMO
Two related multisubunit tethering complexes promote endolysosomal trafficking in all eukaryotes: Rab5-binding CORVET that was suggested to transform into Rab7-binding HOPS. We have previously identified miniCORVET, containing Drosophila Vps8 and three shared core proteins, which are required for endosome maturation upstream of HOPS in highly endocytic cells (Lorincz et al., 2016a). Here, we show that Vps8 overexpression inhibits HOPS-dependent trafficking routes including late endosome maturation, autophagosome-lysosome fusion, crinophagy and lysosome-related organelle formation. Mechanistically, Vps8 overexpression abolishes the late endosomal localization of HOPS-specific Vps41/Lt and prevents HOPS assembly. Proper ratio of Vps8 to Vps41 is thus critical because Vps8 negatively regulates HOPS by outcompeting Vps41. Endosomal recruitment of miniCORVET- or HOPS-specific subunits requires proper complex assembly, and Vps8/miniCORVET is dispensable for autophagy, crinophagy and lysosomal biogenesis. These data together indicate the recruitment of these complexes to target membranes independent of each other in Drosophila, rather than their transformation during vesicle maturation.
Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Endossomos/metabolismo , Expressão Gênica , Proteínas de Transporte Vesicular/metabolismo , AnimaisRESUMO
Toxoplasma gondii which is a member of the coccidian parasites owns a spatially polarized secretory system, which synthesizes de novo micronemes and rhoptries. These apical secretory organelles discharge their contents into host cells promoting invasion and survival. Herein, we identified a novel Coccidian Specific CORVET/HOPS Associated Protein (CSCHAP) belonging to the interaction network of both tethering complexes. CSCHAP is associated with the endomembrane system, rhoptries, micronemes and probably to the inner core of the conoid. Conditional depletion of CSCHAP leads to apical disconnection of rhoptries, aberrant apical organelles biogenesis and severely hinders T. gondii invasion. Overall, our study provides new insights into the mechanisms underpinning secretory organelles biogenesis in coccidian parasites.
Assuntos
Biogênese de Organelas , Organelas/metabolismo , Proteínas de Protozoários/metabolismo , Toxoplasma/crescimento & desenvolvimento , Técnicas de Silenciamento de Genes , Organelas/genética , Mapeamento de Interação de Proteínas , Mapas de Interação de Proteínas , Proteínas de Protozoários/genética , Toxoplasma/genética , Fatores de Virulência/genética , Fatores de Virulência/metabolismoRESUMO
Targeting of endomembrane transport containers is of the utmost importance for proper land plant growth and development. Given the immobility of plant cells, localized membrane vesicle secretion and recycling are amongst the main processes guiding proper cell, tissue and whole plant morphogenesis. Cell wall biogenesis and modification are dependent on vectorial membrane traffic, not only during normal development, but also in stress responses and in plant defense against pathogens and/or symbiosis. It is surprising how little we know about these processes in plants, from small GTPase regulation to the tethering complexes that act as their effectors. Tethering factors are single proteins or protein complexes mediating first contact between the target membrane and arriving membrane vesicles. In this review we focus on the tethering complexes of the best-studied plant model-Arabidopsis thaliana. Genome-based predictions indicate the presence of all major tethering complexes in plants that are known from a hypothetical last eukaryotic common ancestor (LECA). The evolutionary multiplication of paralogs of plant tethering complex subunits has produced the massively expanded EXO70 family, indicating a subfunctionalization of the terminal exocytosis machinery in land plants. Interpretation of loss of function (LOF) mutant phenotypes has to consider that related, yet clearly functionally-specific complexes often share some common core subunits. It is therefore impossible to conclude with clarity which version of the complex is responsible for the phenotypic deviations observed. Experimental interest in the analysis of plant tethering complexes is growing and we hope to contribute with this review by attracting even more attention to this fascinating field of plant cell biology.
RESUMO
Yeast studies identified two heterohexameric tethering complexes, which consist of 4 shared (Vps11, Vps16, Vps18 and Vps33) and 2 specific subunits: Vps3 and Vps8 (CORVET) versus Vps39 and Vps41 (HOPS). CORVET is an early and HOPS is a late endosomal tether. The function of HOPS is well known in animal cells, while CORVET is poorly characterized. Here we show that Drosophila Vps8 is highly expressed in hemocytes and nephrocytes, and localizes to early endosomes despite the lack of a clear Vps3 homolog. We find that Vps8 forms a complex and acts together with Vps16A, Dor/Vps18 and Car/Vps33A, and loss of any of these proteins leads to fragmentation of endosomes. Surprisingly, Vps11 deletion causes enlargement of endosomes, similar to loss of the HOPS-specific subunits Vps39 and Lt/Vps41. We thus identify a 4 subunit-containing miniCORVET complex as an unconventional early endosomal tether in Drosophila.
Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Endossomos/metabolismo , Regulação da Expressão Gênica , Complexos Multiproteicos/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Animais , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Drosophila melanogaster/citologia , Drosophila melanogaster/genética , Drosophila melanogaster/crescimento & desenvolvimento , Hemócitos/metabolismo , Complexos Multiproteicos/genética , Néfrons/metabolismo , Técnicas do Sistema de Duplo-Híbrido , Proteínas de Transporte Vesicular/química , Proteínas de Transporte Vesicular/genéticaRESUMO
Membrane fusion in the endocytic pathway is mediated by a protein machinery consistent of Rab GTPases, tethering factors and SNAREs. In yeast, the endosomal CORVET and lysosomal HOPS tethering complexes share 4 of their 6 subunits. The 2 additional subunits in each complex - Vps3 and Vps8 for CORVET, and the homologous Vps39 and Vps41 for HOPS - bind directly to Rab5 and Rab7, respectively. In humans, all subunits for HOPS have been described. However, human CORVET remains poorly characterized and a homolog of Vps3 is still missing. Here we characterize 2 previously identified Vps39 isoforms, hVps39-1/hVam6/TLP and hVps39-2/TRAP1, in yeast and HEK293 cells. None of them can compensate the loss of the endogenous yeast Vps39, though the specific interaction of hVps39-1 with the virus-specific LT protein was reproduced. Both human Vps39 proteins show a cytosolic localization in yeast and mammalian cells. However, hVps39-2/TRAP1 strongly co-localizes with co-expressed Rab5 and interacts directly with Rab5-GTP in vitro. We conclude that hVps39-2/TRAP1 is an endosomal protein and an effector of Rab5, suggesting a role of the protein as a subunit of the putative human CORVET complex.