Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell Rep ; 43(3): 113950, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38489264

RESUMO

Despite extensive research, the origin and evolution of the chloroplast division machinery remain unclear. Here, we employ recently sequenced genomes and transcriptomes of Archaeplastida clades to identify the core components of chloroplast division and reconstruct their evolutionary histories, respectively. Our findings show that complete division ring structures emerged in Charophytes. We find that Glaucophytes experienced strong selection pressure, generating diverse variants adapted to the changing terrestrial environments. By integrating the functions of chloroplast division genes (CDGs) annotated in a workflow developed using large-scale multi-omics data, we further show that dispersed duplications acquire more species-specific functions under stronger selection pressures. Notably, PARC6, a dispersed duplicate CDG, regulates leaf color and plant growth in Solanum lycopersicum, demonstrating neofunctionalization. Our findings provide an integrated perspective on the functional evolution of chloroplast division machinery and highlight the potential of dispersed duplicate genes as the primary source of adaptive evolution of chloroplast division.


Assuntos
Cloroplastos , Plantas , Cloroplastos/genética , Plantas/genética , Evolução Molecular , Filogenia
2.
Cell Rep ; 43(4): 113985, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38517890

RESUMO

Emerging evidence suggests a beneficial role of rhizobacteria in ameliorating plant disease resistance in an environment-friendly way. In this study, we characterize a rhizobacterium, Bacillus cereus NJ01, that enhances bacterial pathogen resistance in rice and Arabidopsis. Transcriptome analyses show that root inoculation of NJ01 induces the expression of salicylic acid (SA)- and abscisic acid (ABA)-related genes in Arabidopsis leaves. Genetic evidence showed that EDS1, PAD4, and WRKY18 are required for B. cereus NJ01-induced bacterial resistance. An EDS1-PAD4 complex interacts with WRKY18 and enhances its DNA binding activity. WRKY18 directly binds to the W box in the promoter region of the SA biosynthesis gene ICS1 and ABA biosynthesis genes NCED3 and NCED5 and contributes to the NJ01-induced bacterial resistance. Taken together, our findings indicate a role of the EDS1/PAD4-WRKY18 complex in rhizobacteria-induced disease resistance.


Assuntos
Ácido Abscísico , Proteínas de Arabidopsis , Arabidopsis , Bacillus cereus , Proteínas de Ligação a DNA , Doenças das Plantas , Ácido Salicílico , Bacillus cereus/genética , Ácido Abscísico/metabolismo , Arabidopsis/imunologia , Arabidopsis/microbiologia , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Doenças das Plantas/microbiologia , Doenças das Plantas/imunologia , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Ácido Salicílico/metabolismo , Regulação da Expressão Gênica de Plantas , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Oryza/microbiologia , Oryza/imunologia , Oryza/genética , Resistência à Doença/genética , Resistência à Doença/imunologia , Imunidade Vegetal
3.
Cell Rep ; 43(7): 114466, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-38985681

RESUMO

Meristems are crucial for organ formation, but our knowledge of their molecular evolution is limited. Here, we show that AINTEGUMENTA (MpANT) in the euANT branch of the APETALA2-like transcription factor family is essential for meristem development in the nonvascular plant Marchantia polymorpha. MpANT is expressed in the thallus meristem. Mpant mutants show defects to maintain meristem identity and undergo meristem duplication, while MpANT overexpressers show ectopic thallus growth. MpANT directly upregulates MpGRAS9 in the SHORT-ROOT (SHR) branch of the GRAS family. In the vascular plant Arabidopsis thaliana, the euANT-branch genes PLETHORAs (AtPLTs) and AtANT are involved in the formation and maintenance of root/shoot apical meristems and lateral organ primordia, and AtPLTs directly target SHR-branch genes. In addition, euANTs bind through a similar DNA-binding motif to many conserved homologous genes in M. polymorpha and A. thaliana. Overall, the euANT pathway has an evolutionarily conserved role in meristem development.


Assuntos
Regulação da Expressão Gênica de Plantas , Marchantia , Meristema , Proteínas de Plantas , Meristema/metabolismo , Meristema/crescimento & desenvolvimento , Marchantia/genética , Marchantia/metabolismo , Marchantia/crescimento & desenvolvimento , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/genética , Arabidopsis/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética
4.
Cell Rep ; 43(7): 114444, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-38990723

RESUMO

The emergence of novel traits is often preceded by a potentiation phase, when all the genetic components necessary for producing the trait are assembled. However, elucidating these potentiating factors is challenging. We have previously shown that an anthocyanin-activating R2R3-MYB, STRIPY, triggers the emergence of a distinct foliar pigmentation pattern in the monkeyflower Mimulus verbenaceus. Here, using forward and reverse genetics approaches, we identify three potentiating factors that pattern STRIPY expression: MvHY5, a master regulator of light signaling that activates STRIPY and is expressed throughout the leaf, and two leaf developmental regulators, MvALOG1 and MvTCP5, that are expressed in opposing gradients along the leaf proximodistal axis and negatively regulate STRIPY. These results provide strong empirical evidence that phenotypic novelties can be potentiated through incorporation into preexisting genetic regulatory networks and highlight the importance of positional information in patterning the novel foliar stripe.


Assuntos
Antocianinas , Regulação da Expressão Gênica de Plantas , Pigmentação , Folhas de Planta , Antocianinas/metabolismo , Folhas de Planta/metabolismo , Mimulus/metabolismo , Mimulus/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Fenótipo
5.
Cell Rep ; 43(1): 113617, 2024 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-38150366

RESUMO

In plant roots, the identity of the stem cell niche (SCN) is maintained by an auxin gradient with its maximum in the quiescent center (QC). Optimal levels of auxin signaling are essential for root SCN identity, but the regulatory mechanisms that control this pathway in root are largely unknown. Here, we find that the zinc finger transcription factor sensitive to proton rhizotoxicity 1 (STOP1) regulates root SCN identity by negative feedback of auxin signaling in root tips. Mutation and overexpression of STOP1 both affect QC cell division and distal stem cell differentiation in the root. We find that auxin treatment stabilizes STOP1 via MPK3/6-dependent phosphorylation. Accumulating STOP1 can compete with AUX/IAAs to interact with, and enhance the repressive activity of, auxin-repressive response factor ARF2. Overall, we show that the MPK3/6-STOP1-ARF2 module prevents excessive auxin signaling in the presence of auxin to maintain root SCN identity.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Ácidos Indolacéticos/farmacologia , Ácidos Indolacéticos/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Raízes de Plantas , Nicho de Células-Tronco , Meristema/metabolismo , Regulação da Expressão Gênica de Plantas , Fatores de Transcrição/metabolismo
6.
Cell Rep ; 43(2): 113725, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38300800

RESUMO

Flavonoids are a class of secondary metabolites widely distributed in plants. Regiospecific modification by methylation and glycosylation determines flavonoid diversity. A rare flavone glycoside, diosmin (luteolin-4'-methoxyl-7-O-glucosyl-rhamnoside), occurs in Chrysanthemum indicum. How Chrysanthemum plants evolve new biosynthetic capacities remains elusive. Here, we assemble a 3.11-Gb high-quality C. indicum genome with a contig N50 value of 4.39 Mb and annotate 50,606 protein-coding genes. One (CiCOMT10) of the tandemly repeated O-methyltransferase genes undergoes neofunctionalization, preferentially transferring the methyl group to the 4'-hydroxyl group of luteolin with ortho-substituents to form diosmetin. In addition, CiUGT11 (UGT88B3) specifically glucosylates 7-OH group of diosmetin. Next, we construct a one-pot cascade biocatalyst system by combining CiCOMT10, CiUGT11, and our previously identified rhamnosyltransferase, effectively producing diosmin with over 80% conversion from luteolin. This study clarifies the role of transferases in flavonoid diversity and provides important gene elements essential for producing rare flavone.


Assuntos
Chrysanthemum , Diosmina , Flavonas , Metiltransferases/genética , Luteolina , Glucosiltransferases/genética , Chrysanthemum/genética , Genômica , Flavonoides
7.
Cell Rep ; 43(2): 113726, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38308844

RESUMO

Warm ambient conditions induce thermomorphogenesis and affect plant growth and development. However, the chromatin regulatory mechanisms involved in thermomorphogenesis remain largely obscure. In this study, we show that the histone methylation readers MORF-related gene 1 and 2 (MRG1/2) are required to promote hypocotyl elongation in response to warm ambient conditions. A transcriptome sequencing analysis indicates that MRG1/2 and phytochrome interacting factor 4 (PIF4) coactivate a number of thermoresponsive genes, including YUCCA8, which encodes a rate-limiting enzyme in the auxin biosynthesis pathway. Additionally, MRG2 physically interacts with PIF4 to bind to thermoresponsive genes and enhances the H4K5 acetylation of the chromatin of target genes in a PIF4-dependent manner. Furthermore, MRG2 competes with phyB for binding to PIF4 and stabilizes PIF4 in planta. Our study indicates that MRG1/2 activate thermoresponsive genes by inducing histone acetylation and stabilizing PIF4 in Arabidopsis.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Fitocromo , Histonas , Vernalização , Arabidopsis/genética , Cromatina , Metilação , Proteínas de Arabidopsis/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Proteínas Cromossômicas não Histona
8.
Cell Rep ; 43(2): 113747, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38329875

RESUMO

Legumes establish a symbiotic relationship with nitrogen-fixing rhizobia by developing nodules. Nodules are modified lateral roots that undergo changes in their cellular development in response to bacteria, but the transcriptional reprogramming that occurs in these root cells remains largely uncharacterized. Here, we describe the cell-type-specific transcriptome response of Medicago truncatula roots to rhizobia during early nodule development in the wild-type genotype Jemalong A17, complemented with a hypernodulating mutant (sunn-4) to expand the cell population responding to infection and subsequent biological inferences. The analysis identifies epidermal root hair and stele sub-cell types associated with a symbiotic response to infection and regulation of nodule proliferation. Trajectory inference shows cortex-derived cell lineages differentiating to form the nodule primordia and, posteriorly, its meristem, while modulating the regulation of phytohormone-related genes. Gene regulatory analysis of the cell transcriptomes identifies new regulators of nodulation, including STYLISH 4, for which the function is validated.


Assuntos
Medicago truncatula , Medicago truncatula/genética , Medicago truncatula/metabolismo , Medicago truncatula/microbiologia , Transcriptoma/genética , Raízes de Plantas/genética , Linhagem da Célula/genética , Reguladores de Crescimento de Plantas
9.
Cell Rep ; 43(2): 113768, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38363676

RESUMO

The ribosome-tethered N-terminal acetyltransferase A (NatA) acetylates 52% of soluble proteins in Arabidopsis thaliana. This co-translational modification of the N terminus stabilizes diverse cytosolic plant proteins. The evolutionary conserved Huntingtin yeast partner K (HYPK) facilitates NatA activity in planta, but in vitro, its N-terminal helix α1 inhibits human NatA activity. To dissect the regulatory function of HYPK protein domains in vivo, we genetically engineer CRISPR-Cas9 mutants expressing a HYPK fragment lacking all functional domains (hypk-cr1) or an internally deleted HYPK variant truncating helix α1 but retaining the C-terminal ubiquitin-associated (UBA) domain (hypk-cr2). We find that the UBA domain of HYPK is vital for stabilizing the NatA complex in an organ-specific manner. The N terminus of HYPK, including helix α1, is critical for promoting NatA activity on substrates starting with various amino acids. Consequently, deleting only 42 amino acids inside the HYPK N terminus causes substantial destabilization of the plant proteome and higher tolerance toward drought stress.


Assuntos
Arabidopsis , Humanos , Arabidopsis/genética , Acetiltransferase N-Terminal A , Aminoácidos , Evolução Biológica , Citosol , Proteínas de Transporte
10.
Cell Rep ; 43(3): 113909, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38451814

RESUMO

The deciduous tree Idesia polycarpa can provide premium edible oil with high polyunsaturated fatty acid contents. Here, we generate its high-quality reference genome, which is ∼1.21 Gb, comprising 21 pseudochromosomes and 42,086 protein-coding genes. Phylogenetic and genomic synteny analyses show that it diverged with Populus trichocarpa about 16.28 million years ago. Notably, most fatty acid biosynthesis genes are not only increased in number in its genome but are also highly expressed in the fruits. Moreover, we identify, through genome-wide association analysis and RNA sequencing, the I. polycarpa SUGAR TRANSPORTER 5 (IpSTP5) gene as a positive regulator of high oil accumulation in the fruits. Silencing of IpSTP5 by virus-induced gene silencing causes a significant reduction of oil content in the fruits, suggesting it has the potential to be used as a molecular marker to breed the high-oil-content cultivars. Our results collectively lay the foundation for breeding the elite cultivars of I. polycarpa.


Assuntos
Estudo de Associação Genômica Ampla , Salicaceae , Filogenia , Melhoramento Vegetal , Salicaceae/genética , Sequência de Bases
11.
Cell Rep ; 43(3): 113825, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38386555

RESUMO

Jasmonate (JA) is a well-known phytohormone essential for plant response to biotic stress. Recently, a crucial role of JA signaling in salt resistance has been highlighted; however, the specific regulatory mechanism remains largely unknown. In this study, we found that the NUCLEAR FACTOR-Y (NF-Y) subunits NF-YA1, NF-YB2, and NF-YC9 form a trimeric complex that positively regulates the expression of salinity-responsive genes, whereas JASMONATE-ZIM DOMAIN protein 8 (JAZ8) directly interacts with three subunits and acts as the key repressor to suppress both the assembly of the NF-YA1-YB2-YC9 trimeric complex and the transcriptional activation activity of the complex. When plants encounter high salinity, JA levels are elevated and perceived by the CORONATINE INSENSITIVE (COI) 1 receptor, leading to the degradation of JAZ8 via the 26S proteasome pathway, thereby releasing the activity of the NF-YA1-YB2-YC9 complex, initiating the activation of salinity-responsive genes, such as MYB75, and thus enhancing the salinity tolerance of plants.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Fator de Ligação a CCAAT/genética , Fator de Ligação a CCAAT/metabolismo , Ciclopentanos/metabolismo , Regulação da Expressão Gênica de Plantas , Oxilipinas , Plantas Geneticamente Modificadas/metabolismo , Tolerância ao Sal/genética , Transdução de Sinais , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
12.
Cell Rep ; 43(3): 113838, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38386554

RESUMO

Lysine acetylation is a dynamic post-translational modification of proteins. Extensive studies have revealed that the acetylation modulated by histone acetyltransferases and histone deacetylases (HDACs) plays a crucial role in regulating protein function. However, there has been limited focus on how HDACs regulate jasmonic acid (JA) biosynthesis in plants. Here, we uncover that the protein stability of OsLOX14, a critical enzyme involved in JA biosynthesis, is regulated by a histone deacetylase, OsHDA706, and is hindered by a viral protein. Our results show that OsHDA706 deacetylates OsLOX14 and enhances the stability of OsLOX14, leading to JA accumulation and an improved broad-spectrum rice antiviral defense. Furthermore, we found that the viral protein P2, encoded by the destructive rice stripe virus, disrupts the association of OsHDA706-OsLOX14, promoting viral infection. Overall, our findings reveal how HDAC manipulates the interplay of deacetylation and protein stability of a JA biosynthetic enzyme to enhance plant antiviral responses.


Assuntos
Histona Acetiltransferases , Histona Desacetilases , Histona Desacetilases/metabolismo , Histona Acetiltransferases/metabolismo , Processamento de Proteína Pós-Traducional , Proteínas Virais/metabolismo , Acetilação
13.
Cell Rep ; 43(3): 113913, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38442016

RESUMO

The self-incompatibility system evolves in angiosperms to promote cross-pollination by rejecting self-pollination. Here, we show the involvement of Exo84c in the SI response of both Brassica napus and Arabidopsis. The expression of Exo84c is specifically elevated in stigma during the SI response. Knocking out Exo84c in B. napus and SI Arabidopsis partially breaks down the SI response. The SI response inhibits both the protein secretion in papillae and the recruitment of the exocyst complex to the pollen-pistil contact sites. Interestingly, these processes can be partially restored in exo84c SI Arabidopsis. After incompatible pollination, the turnover of the exocyst-labeled compartment is enhanced in papillae. However, this process is perturbed in exo84c SI Arabidopsis. Taken together, our results suggest that Exo84c regulates the exocyst complex vacuolar degradation during the SI response. This process is likely independent of the known SI pathway in Brassicaceae to secure the SI response.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Brassicaceae , Brassicaceae/genética , Brassicaceae/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Pólen/metabolismo , Transporte Proteico , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
14.
Cell Rep ; 43(4): 113987, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38517888

RESUMO

Cultivating drought-tolerant tea varieties enhances both yield and quality of tea plants in northern China. However, the mechanisms underlying their drought tolerance remain largely unknown. Here we identified a key regulator called CsREV, which differentially regulates xylem patterns between leaves and stems, thereby conferring drought tolerance in tea plants. When drought occurs, upregulation of CsREV activates the CsVND7a-dependent xylem vessel differentiation. However, when drought persists, the vessel differentiation is hindered as CsVND7a is downregulated by CsTCP4a. This, combined with the CsREV-promoted secondary-cell-wall thickness of xylem vessel, leads to the enhanced curling of leaves, a characteristic closely associated with plant drought tolerance. Notably, this inhibitory effect of CsTCP4a on CsVND7a expression is absent in stems, allowing stem xylem vessels to continuously differentiate. Overall, the CsREV-CsTCP4-CsVND7 module is differentially utilized to shape the xylem patterns in leaves and stems, potentially balancing water transportation and utilization to improve tea plant drought tolerance.


Assuntos
Secas , Regulação da Expressão Gênica de Plantas , Folhas de Planta , Proteínas de Plantas , Caules de Planta , Xilema , Xilema/metabolismo , Folhas de Planta/metabolismo , Folhas de Planta/fisiologia , Caules de Planta/metabolismo , Caules de Planta/fisiologia , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Camellia sinensis/fisiologia , Camellia sinensis/genética , Camellia sinensis/metabolismo , Adaptação Fisiológica
15.
Cell Rep ; 43(4): 113971, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38537644

RESUMO

Sorghum bicolor is among the most important cereals globally and a staple crop for smallholder farmers in sub-Saharan Africa. Approximately 20% of sorghum yield is lost annually in Africa due to infestation with the root parasitic weed Striga hermonthica. Existing Striga management strategies are not singularly effective and integrated approaches are needed. Here, we demonstrate the functional potential of the soil microbiome to suppress Striga infection in sorghum. We associate this suppression with microbiome-mediated induction of root endodermal suberization and aerenchyma formation and with depletion of haustorium-inducing factors, compounds required for the initial stages of Striga infection. We further identify specific bacterial taxa that trigger the observed Striga-suppressive traits. Collectively, our study describes the importance of the soil microbiome in the early stages of root infection by Striga and pinpoints mechanisms of Striga suppression. These findings open avenues to broaden the effectiveness of integrated Striga management practices.


Assuntos
Microbiota , Raízes de Plantas , Microbiologia do Solo , Sorghum , Striga , Sorghum/microbiologia , Sorghum/metabolismo , Striga/fisiologia , Raízes de Plantas/microbiologia , Raízes de Plantas/metabolismo , Raízes de Plantas/parasitologia , Metaboloma , Doenças das Plantas/microbiologia , Doenças das Plantas/parasitologia
16.
Cell Rep ; 43(4): 114091, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38607914

RESUMO

Nitric oxide (NO) is a gasotransmitter required in a broad range of mechanisms controlling plant development and stress conditions. However, little is known about the specific role of this signaling molecule during lipid storage in the seeds. Here, we show that NO is accumulated in developing embryos and regulates the fatty acid profile through the stabilization of the basic/leucine zipper transcription factor bZIP67. NO and nitro-linolenic acid target and accumulate bZIP67 to induce the downstream expression of FAD3 desaturase, which is misregulated in a non-nitrosylable version of the protein. Moreover, the post-translational modification of bZIP67 is reversible by the trans-denitrosylation activity of peroxiredoxin IIE and defines a feedback mechanism for bZIP67 redox regulation. These findings provide a molecular framework to control the seed fatty acid profile caused by NO, and evidence of the in vivo functionality of nitro-fatty acids during plant developmental signaling.


Assuntos
Proteínas de Arabidopsis , Fatores de Transcrição de Zíper de Leucina Básica , Ácidos Graxos , Peroxirredoxinas , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/genética , Ácidos Graxos/metabolismo , Regulação da Expressão Gênica de Plantas , Metabolismo dos Lipídeos , Óxido Nítrico/metabolismo , Peroxirredoxinas/metabolismo , Processamento de Proteína Pós-Traducional , Sementes/metabolismo
17.
Cell Rep ; 43(6): 114349, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38870009

RESUMO

Heat shock transcription factors (HSFs) play a crucial role in heat stress tolerance in vegetative tissues. However, their involvement in reproductive tissues and their post-translational modifications are not well understood. In this study, we identify the E3 ligase XB3 ORTHOLOG 1 IN ARABIDOPSIS THALIANA (XBAT31) as a key player in the ubiquitination and degradation of HSFB2a/B2b. Our results show that the xbat31 mutant exhibits a higher percentage of unfertile siliques and decreased expression of HSPs in flowers under heat stress conditions compared to the wild type. Conversely, the hsfb2a hsfb2b double mutant displays improved reproductive thermotolerance. We find that XBAT31 interacts with HSFB2a/B2b and mediates their ubiquitination. Furthermore, HSFB2a/B2b ubiquitination is reduced in the xbat31-1 mutant, resulting in higher accumulation of HSFB2a/B2b in flowers under heat stress conditions. Overexpression of HSFB2a or HSFB2b leads to an increase in unfertile siliques under heat stress conditions. Thus, our results dissect the important role of the XBAT31-HSFB2a/B2b module in conferring reproductive thermotolerance in plants.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Regulação da Expressão Gênica de Plantas , Resposta ao Choque Térmico , Termotolerância , Ubiquitina-Proteína Ligases , Ubiquitinação , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/fisiologia , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Flores/metabolismo , Flores/genética , Flores/fisiologia , Fatores de Transcrição de Choque Térmico/metabolismo , Fatores de Transcrição de Choque Térmico/genética , Mutação/genética , Ligação Proteica , Reprodução/genética , Termotolerância/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética
18.
Cell Rep ; 43(7): 114384, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-38970790

RESUMO

Microbial plant pathogens deploy amphipathic cyclic lipopeptides to reduce surface tension in their environment. While plants can detect these molecules to activate cellular stress responses, the role of these lipopeptides or associated host responses in pathogenesis are not fully clear. The gramillin cyclic lipopeptide is produced by the Fusarium graminearum fungus and is a virulence factor and toxin in maize. Here, we show that gramillin promotes virulence and necrosis in both monocots and dicots by disrupting ion balance across membranes. Gramillin is a cation-conducting ionophore and causes plasma membrane depolarization. This disruption triggers cellular signaling, including a burst of reactive oxygen species (ROS), transcriptional reprogramming, and callose production. Gramillin-induced ROS depends on expression of host ILK1 and RBOHD genes, which promote fungal induction of virulence genes during infection and host susceptibility. We conclude that gramillin's ionophore activity targets plant membranes to coordinate attack by the F. graminearum fungus.


Assuntos
Membrana Celular , Fusarium , Lipopeptídeos , Doenças das Plantas , Fusarium/patogenicidade , Fusarium/metabolismo , Lipopeptídeos/farmacologia , Lipopeptídeos/metabolismo , Virulência , Membrana Celular/metabolismo , Doenças das Plantas/microbiologia , Peptídeos Cíclicos/farmacologia , Peptídeos Cíclicos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Zea mays/microbiologia
19.
Cell Rep ; 43(1): 113638, 2024 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-38184853

RESUMO

Functions of the SKP1-CUL1-F box (SCF) ubiquitin E3 ligases are essential in plants. The F box proteins (FBPs) are substrate receptors that recruit substrates and assemble an active SCF complex, but the regulatory mechanism underlying the FBPs binding to CUL1 to activate the SCF cycle is not fully understood. We show that Arabidopsis csn1-10 is defective in SCFEBF1-mediated PIF3 degradation during de-etiolation, due to impaired association of EBF1 with CUL1 in csn1-10. EBF1 preferentially associates with un-neddylated CUL1 that is deficient in csn1-10 and the EBF1-CUL1 binding is rescued by the neddylation inhibitor MLN4924. Furthermore, we identify a subset of FBPs with impaired binding to CUL1 in csn1-10, indicating their assembly to form SCF complexes may depend on COP9 signalosome (CSN)-mediated deneddylation of CUL1. This study reports that a key role of CSN-mediated CULLIN deneddylation is to gate the binding of the FBP-substrate module to CUL1, thus initiating the SCF cycle of substrate ubiquitination.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Proteínas F-Box , Proteínas Culina/metabolismo , Arabidopsis/metabolismo , Núcleo Celular/metabolismo , Proteínas F-Box/metabolismo , Ubiquitina/metabolismo , Complexo do Signalossomo COP9/metabolismo , Proteínas Ligases SKP Culina F-Box/metabolismo , Proteínas de Arabidopsis/metabolismo
20.
Cell Rep ; 43(2): 113763, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38358890

RESUMO

The lateral root angle or gravitropic set-point angle (GSA) is an important trait for root system architecture (RSA) that determines the radial expansion of the root system. The GSA therefore plays a crucial role for the ability of plants to access nutrients and water in the soil. Only a few regulatory pathways and mechanisms that determine GSA are known. These mostly relate to auxin and cytokinin pathways. Here, we report the identification of a small molecule, mebendazole (MBZ), that modulates GSA in Arabidopsis thaliana roots and acts via the activation of ethylene signaling. MBZ directly acts on the serine/threonine protein kinase CTR1, which is a negative regulator of ethylene signaling. Our study not only shows that the ethylene signaling pathway is essential for GSA regulation but also identifies a small molecular modulator of RSA that acts downstream of ethylene receptors and that directly activates ethylene signaling.


Assuntos
Arabidopsis , Mebendazol , Citocininas , Etilenos , Ácidos Indolacéticos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA