Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Molecules ; 29(15)2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-39124970

RESUMO

This work presents the studies of a very strong hydrogen bond (VSHB) in biologically active phthalic acids. Research on VSHB comes topical due to its participation in many biological processes. The studies cover the modelling of intermolecular interactions and phthalic acids with 2,4,6-collidine and N,N-dimethyl-4-pyridinamine complexes with aim to obtain a VSHB. The four synthesized complexes were studied by experimental X-ray, IR, and Raman methods, as well as theoretical Car-Parrinello Molecular Dynamics (CP-MD) and Density Functional Theory (DFT) simulations. By variation of the steric repulsion and basicity of the complex' components, a very short intramolecular hydrogen bond was achieved. The potential energy curves calculated by the DFT method were characterized by a low barrier (0.7 and 0.9 kcal/mol) on proton transfer in the OHN intermolecular hydrogen bond for 3-nitrophthalic acid with either 2,4,6-collidine or N,N-dimethyl-4-pyridinamine cocrystals. Moreover, the CP-MD simulations exposed very strong bridging proton dynamics in the intermolecular hydrogen bonds. The accomplished crystallographic and spectroscopic studies indicate that the OHO intramolecular hydrogen bond in 4-nitrophthalic cocrystals is VSHB. The influence of a strong steric effect on the geometry of the studied cocrystals and the stretching vibration bands of the carboxyl and carboxylate groups was elaborated.

2.
Int J Mol Sci ; 24(2)2023 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-36675059

RESUMO

The nature of intra- and intermolecular non-covalent interactions was studied in four naphthalene derivatives commonly referred to as "proton sponges". Special attention was paid to an intramolecular hydrogen bond present in the protonated form of the compounds. The unsubstituted "proton sponge" served as a reference structure to study the substituent influence on the hydrogen bond (HB) properties. We selected three compounds substituted by methoxy, amino, and nitro groups. The presence of the substituents either retained the parent symmetry or rendered the compounds asymmetric. In order to reveal the non-covalent interaction properties, the Hirshfeld surface (HS) was computed for the crystal structures of the studied compounds. Next, quantum-chemical simulations were performed in vacuo and in the crystalline phase. Car-Parrinello molecular dynamics (CPMD), Path Integral Molecular Dynamics (PIMD), and metadynamics were employed to investigate the time-evolution changes of metric parameters and free energy profile in both phases. Additionally, for selected snapshots obtained from the CPMD trajectories, non-covalent interactions and electronic structure were studied. Quantum theory of atoms in molecules (QTAIM) and the Density Overlap Regions Indicator (DORI) were applied for this purpose. It was found based on Hirshfeld surfaces that, besides intramolecular hydrogen bonds, other non-covalent interactions are present and have a strong impact on the crystal structure organization. The CPMD results obtained in both phases showed frequent proton transfer phenomena. The proton was strongly delocalized in the applied time-scale and temperature, especially in the PIMD framework. The use of metadynamics allowed for tracing the free energy profiles and confirming that the hydrogen bonds present in "proton sponges" are Low-Barrier Hydrogen Bonds (LBHBs). The electronic and topological analysis quantitatively described the temperature dependence and time-evolution changes of the electronic structure. The covalency of the hydrogen bonds was estimated based on QTAIM analysis. It was found that strong hydrogen bonds show greater covalency, which is additionally determined by the proton position in the hydrogen bridge.


Assuntos
Automóveis , Prótons , Ligação de Hidrogênio , Simulação de Dinâmica Molecular , Entropia
3.
Int J Mol Sci ; 24(6)2023 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-36982321

RESUMO

This study covers the analysis of isomeric forms of nitrophthalic acids with pyridine. This work dwells on the complementary experimental (X-ray, IR and Raman) and theoretical (Car-Parrinello Molecular Dynamics (CPMD) and Density Functional Theory (DFT)) studies of the obtained complexes. The conducted studies showed that steric repulsion between the nitro group in ortho-position and the carboxyl group causes significant isomeric changes. Modeling of the nitrophthalic acid-pyridine complex yielded a short strong intramolecular hydrogen bond (SSHB). The transition energy from the isomeric form with an intermolecular hydrogen bond to the isomeric form with an intramolecular hydrogen bond was estimated.


Assuntos
Hidrogênio , Simulação de Dinâmica Molecular , Hidrogênio/química , Ligação de Hidrogênio , Piridinas/química , Isomerismo
4.
J Comput Chem ; 43(9): 588-597, 2022 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-35147988

RESUMO

Density functionals at the level of the generalized gradient approximation (GGA) and a plane-wave basis set are widely used today to perform ab initio molecular dynamics (AIMD) simulations. Going up in the ladder of accuracy of density functionals from GGA (second rung) to hybrid density functionals (fourth rung) is much desired pertaining to the accuracy of the latter in describing structure, dynamics, and energetics of molecular and condensed matter systems. On the other hand, hybrid density functional based AIMD simulations are about two orders of magnitude slower than GGA based AIMD for systems containing ~100 atoms using ~100 compute cores. Two methods, namely MTACE and s-MTACE, based on a multiple time step integrator and adaptively compressed exchange operator formalism are able to provide a speed-up of about 7-9 in performing hybrid density functional based AIMD. In this work, we report an implementation of these methods using a task-group based parallelization within the CPMD program package, with the intention to take advantage of the large number of compute cores available on modern high-performance computing platforms. We present here the boost in performance achieved through this algorithm. This work also identifies the computational bottleneck in the s-MTACE method and proposes a way to overcome it.

5.
Int J Mol Sci ; 23(22)2022 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-36430173

RESUMO

It is postulated that the overexpression of Carbonic Anhydrase isozyme IX in some cancers contributes to the acidification of the extracellular matrix. It was proved that this promotes the growth and metastasis of the tumor. These observations have made Carbonic Anhydrase IX an attractive drug target. In the light of the findings and importance of the glycoprotein in the cancer treatment, we have employed quantum-chemical approaches to study non-covalent interactions in the binding pocket. As a ligand, the acetazolamide (AZM) molecule was chosen, being known as a potential inhibitor exhibiting anticancer properties. First-Principles Molecular Dynamics was performed to study the chalcogen and other non-covalent interactions in the AZM ligand and its complexes with amino acids forming the binding site. Based on Density Functional Theory (DFT) and post-Hartree-Fock methods, the metric and electronic structure parameters were described. The Non-Covalent Interaction (NCI) index and Atoms in Molecules (AIM) methods were applied for qualitative/quantitative analyses of the non-covalent interactions. Finally, the AZM-binding pocket interaction energy decomposition was carried out. Chalcogen bonding in the AZM molecule is an important factor stabilizing the preferred conformation. Free energy mapping via metadynamics and Path Integral molecular dynamics confirmed the significance of the chalcogen bond in structuring the conformational flexibility of the systems. The developed models are useful in the design of new inhibitors with desired pharmacological properties.


Assuntos
Calcogênios , Neoplasias , Humanos , Anidrase Carbônica IX/química , Ligantes , Inibidores da Anidrase Carbônica/farmacologia , Inibidores da Anidrase Carbônica/química , Acetazolamida/farmacologia , Acetazolamida/química , Calcogênios/química
6.
Int J Mol Sci ; 23(4)2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-35216257

RESUMO

The experimental and theoretical description of premelting behavior is one of the most challenging tasks in contemporary material science. In this paper, n-octanol was studied using a multi-method approach to investigate it at macroscopic and molecular levels. The experimental infrared (IR) spectra were collected in the solid state and liquid phase at temperature range from -84∘C to -15 ∘C to detect temperature-related indicators of pretransitional phenomena. Next, the nonlinear dielectric effect (NDE) was measured at various temperatures (from -30 ∘C to -15 ∘C) to provide insight into macroscopic effects of premelting. As a result, a two-step mechanism of premelting in n-octanol was established based on experimental data. It was postulated that it consists of a rotator state formation followed by the surface premelting. In order to shed light onto molecular-level processes, classical molecular dynamics (MD) was performed to investigate the time evolution of the changes in metric parameters as a function of simulation temperature. The applied protocol enabled simulations in the solid state as well as in the liquid (the collapse of the ordered crystal structure). The exact molecular motions contributing to the rotator state formation were obtained, revealing an enabling of the rotational freedom of the terminal parts of the chains. The Car-Parrinello molecular dynamics (CPMD) was applied to support and interpret experimental spectroscopic findings. The vibrational properties of the stretching of OH within the intermolecular hydrogen bond were studied using Fourier transformation of the autocorrelation function of both dipole moments and atomic velocity. Finally, path integral molecular dynamics (PIMD) was carried out to analyze the quantum effect's influence on the bridged proton position in the hydrogen bridge. On the basis of the combined experimental and theoretical conclusions, a novel mechanism of the bridged protons dynamics has been postulated-the interlamellar hydrogen bonding pattern, resulting in an additional OH stretching band, visible in the solid-state experimental IR spectra.


Assuntos
1-Octanol/química , Hidrogênio/química , Análise de Fourier , Ligação de Hidrogênio , Simulação de Dinâmica Molecular , Prótons , Teoria Quântica , Vibração
7.
Molecules ; 27(7)2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35408698

RESUMO

The intra- and intermolecular interactions of selected quinolone carboxylic acid derivatives were studied in monomers, dimers and crystals. The investigated compounds are well-recognized as medicines or as bases for further studies in drug design. We employed density functional theory (DFT) in its classical formulation to develop gas-phase and solvent reaction field (PCM) models describing geometric, energetic and electronic structure parameters for monomers and dimers. The electronic structure was investigated based on the atoms in molecules (AIM) and natural bond orbital (NBO) theories. Special attention was devoted to the intramolecular hydrogen bonds (HB) present in the investigated compounds. The characterization of energy components was performed using symmetry-adapted perturbation theory (SAPT). Finally, the time-evolution methods of Car-Parrinello molecular dynamics (CPMD) and path integral molecular dynamics (PIMD) were employed to describe the hydrogen bond dynamics as well as the spectroscopic signatures. The vibrational features of the O-H stretching were studied using Fourier transformation of the autocorrelation function of atomic velocity. The inclusion of quantum nuclear effects provided an accurate depiction of the bridged proton delocalization. The CPMD and PIMD simulations were carried out in the gas and crystalline phases. It was found that the polar environment enhances the strength of the intramolecular hydrogen bonds. The SAPT analysis revealed that the dispersive forces are decisive factors in the intermolecular interactions. In the electronic ground state, the proton-transfer phenomena are not favourable. The CPMD results showed generally that the bridged proton is localized at the donor side, with possible proton-sharing events in the solid-phase simulation of stronger hydrogen bridges. However, the PIMD enabled the quantitative estimation of the quantum effects inclusion-the proton position was moved towards the bridge midpoint, but no qualitative changes were detected. It was found that the interatomic distance between the donor and acceptor atoms was shortened and that the bridged proton was strongly delocalized.


Assuntos
Teoria Quântica , Quinolonas , Ácidos Carboxílicos , Ligação de Hidrogênio , Simulação de Dinâmica Molecular , Compostos Orgânicos , Prótons
8.
Molecules ; 27(24)2022 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-36557978

RESUMO

The hydrogen bonds properties of 2,6-difluorobenzamide, 5-hydroxyquinoline and 4-hydroxybenzoic acid were investigated by Car-Parrinello and path integral molecular dynamics (CPMD and PIMD), respectively. The computations were carried out in vacuo and in the crystalline phase. The studied complexes possess diverse networks of intermolecular hydrogen bonds (N-H…O, O-H…N and O-H…O). The time evolution of hydrogen bridges gave a deeper insight into bonds dynamics, showing that bridged protons are mostly localized on the donor side; however, the proton transfer phenomenon was registered as well. The vibrational features associated with O-H and N-H stretching were analyzed on the basis of the Fourier transform of the atomic velocity autocorrelation function. The spectroscopic effects of hydrogen bond formation were studied. The PIMD revealed quantum effects influencing the hydrogen bridges providing more accurate free energy sampling. It was found that the N…O or O…O interatomic distances decreased (reducing the length of the hydrogen bridge), while the O-H or N-H covalent bond was elongated, which led to the increase in the proton sharing. Furthermore, Quantum Theory of Atoms in Molecules (QTAIM) was used to give insight into electronic structure parameters. Finally, Symmetry-Adapted Perturbation Theory (SAPT) was employed to estimate the energy contributions to the interaction energy of the selected dimers.


Assuntos
Prótons , Quinolinas , Ligação de Hidrogênio , Ácido Benzoico , Hidrogênio , Benzamidas , Teoria Quântica
9.
Molecules ; 27(4)2022 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-35209010

RESUMO

n-Octanol is the object of experimental and theoretical study of spectroscopic signatures and intermolecular interactions. The FTIR measurements were carried out at 293 K for n-octanol and its deuterated form. Special attention was paid to the vibrational features associated with the O-H stretching and the isotope effect. Density Functional Theory (DFT) in its classical formulations was applied to develop static models describing intermolecular hydrogen bond (HB) and isotope effect in the gas phase and using solvent reaction field reproduced by Polarizable Continuum Model (PCM). The Atoms in Molecules (AIM) theory enabled electronic structure and molecular topology study. The Symmetry-Adapted Perturbation Theory (SAPT) was used for energy decomposition in the dimers of n-octanol. Finally, time-evolution methods, namely classical molecular dynamics (MD) and Car-Parrinello Molecular Dynamics (CPMD) were employed to shed light onto dynamical nature of liquid n-octanol with emphasis put on metric and vibrational features. As a reference, CPMD gas phase results were applied. Nuclear quantum effects were included using Path Integral Molecular Dynamics (PIMD) and a posteriori method by solving vibrational Schrödinger equation. The latter applied procedure allowed to study the deuterium isotope effect.

10.
Int J Mol Sci ; 22(19)2021 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-34638700

RESUMO

Substitution is well-known to modulate the physico-chemical properties of molecules. In this study, a combined, multifactor approach was employed to determine a plethora of substitution patterns using -Br and -O-H in 1,4-naphthoquinone and its derivatives. On the basis of classical Density Functional Theory (DFT), 25 models divided into three groups were developed. The first group contains 1,4-naphthoquinone and its derivatives substituted only by -Br. The second group consists of compounds substituted by -Br and one -O-H group. As a result of the substitution, an intramolecular hydrogen bond was formed. The third group also contains -Br as a substituent, but two -O-H groups were introduced and two intramolecular hydrogen bonds were established. The simulations were performed at the ωB97XD/6-311++G(2d,2p) level of theory. The presence of substituents influenced the electronic structure of the parent compound and its derivatives by inductive effects, but it also affected the geometry of the 2 and 3 groups, due to the intramolecular hydrogen bonding and the formation of a quasi-ring/rings. The static DFT models were applied to investigate the aromaticity changes in the fused rings based on the Harmonic Oscillator Model of Aromaticity (HOMA). The OH stretching was detected for the compounds from groups 2 and 3 and further used to find correlations with energetic parameters. The evolution of the electronic structure was analyzed using Hirshfeld atomic charges and the Substituent Active Region (cSAR) parameter. The proton reaction path was investigated to provide information on the modulation of hydrogen bridge properties by diverse substitution positions on the donor and acceptor sides. Subsequently, Car-Parrinello Molecular Dynamics (CPMD) was carried out in the double-bridged systems (group 3) to assess the cooperative effects in double -O-H-substituted systems. It was determined that the -O-H influence on the core of the molecule is more significant than that of -Br, but the latter has a major impact on the bridge dynamics. The competitive or synergic effect of two -Br substituents was found to depend on the coupling between the intramolecular hydrogen bridges. Thus, the novel mechanism of a secondary (cooperative) substituent effect was established in the double-bridged systems via DFT and CPMD results comparison, consisting of a mediation of the bromine substitutions' influence by the cooperative proton transfer events in the hydrogen bridges.


Assuntos
Simulação de Dinâmica Molecular , Naftoquinonas/química , Ligação de Hidrogênio , Estrutura Molecular
11.
Int J Mol Sci ; 22(10)2021 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-34069244

RESUMO

The O-H...N and O-H...O hydrogen bonds were investigated in 10-hydroxybenzo[h]quinoline (HBQ) and benzo[h]quinoline-2-methylresorcinol complex in vacuo, solvent and crystalline phases. The chosen systems contain analogous donor and acceptor moieties but differently coupled (intra- versus intermolecularly). Car-Parrinello molecular dynamics (CPMD) was employed to shed light onto principle components of interactions responsible for the self-assembly. It was applied to study the dynamics of the hydrogen bonds and vibrational features as well as to provide initial geometries for incorporation of quantum effects and electronic structure studies. The vibrational features were revealed using Fourier transformation of the autocorrelation function of atomic velocity and by inclusion of nuclear quantum effects on the O-H stretching solving vibrational Schrödinger equation a posteriori. The potential of mean force (Pmf) was computed for the whole trajectory to derive the probability density distribution and for the O-H stretching mode from the proton vibrational eigenfunctions and eigenvalues incorporating statistical sampling and nuclear quantum effects. The electronic structure changes of the benzo[h]quinoline-2-methylresorcinol dimer and trimers were studied based on Constrained Density Functional Theory (CDFT) whereas the Electron Localization Function (ELF) method was applied for all systems. It was found that the bridged proton is localized on the donor side in both investigated systems in vacuo. The crystalline phase simulations indicated bridged proton-sharing and transfer events in HBQ. These effects are even more pronounced when nuclear quantization is taken into account, and the quantized Pmf allows the proton to sample the acceptor area more efficiently. The CDFT indicated the charge depletion at the bridged proton for the analyzed dimer and trimers in solvent. The ELF analysis showed the presence of the isolated proton (a signature of the strongest hydrogen bonds) only in some parts of the HBQ crystal simulation. The collected data underline the importance of the intramolecular coupling between the donor and acceptor moieties.


Assuntos
Quinolinas/química , Teoria da Densidade Funcional , Elétrons , Análise de Fourier , Gases , Ligação de Hidrogênio , Simulação de Dinâmica Molecular , Estrutura Molecular , Resorcinóis/química , Vibração
12.
Int J Mol Sci ; 22(15)2021 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-34360798

RESUMO

Non-covalent interactions responsible for molecular features and self-assembly in Naphthazarin C polymorph were investigated on the basis of diverse theoretical approaches: Density Functional Theory (DFT), Diffusion Quantum Monte Carlo (DQMC), Symmetry-Adapted Perturbation Theory (SAPT) and Car-Parrinello Molecular Dynamics (CPMD). The proton reaction paths in the intramolecular hydrogen bridges were studied. Two potential energy minima were found indicating that the proton transfer phenomena occur in the electronic ground state. Diffusion Quantum Monte Carlo (DQMC) and other levels of theory including Coupled Cluster (CC) employment enabled an accurate inspection of Potential Energy Surface (PES) and revealed the energy barrier for the proton transfer. The structure and reactivity evolution associated with the proton transfer were investigated using Harmonic Oscillator Model of Aromaticity - HOMA index, Fukui functions and Atoms In Molecules (AIM) theory. The energy partitioning in the studied dimers was carried out based on Symmetry-Adapted Perturbation Theory (SAPT) indicating that dispersive forces are dominant in the structure stabilization. The CPMD simulations were performed at 60 K and 300 K in vacuo and in the crystalline phase. The temperature influence on the bridged protons dynamics was studied and showed that the proton transfer phenomena were not observed at 60 K, but the frequent events were noticed at 300 K in both studied phases. The spectroscopic signatures derived from the CPMD were computed using Fourier transformation of autocorrelation function of atomic velocity for the whole molecule and bridged protons. The computed gas-phase IR spectra showed two regions with OH absorption that covers frequencies from 2500 cm-1 to 2800 cm-1 at 60 K and from 2350 cm-1 to 3250 cm-1 at 300 K for both bridged protons. In comparison, the solid state computed IR spectra revealed the environmental influence on the vibrational features. For each of them absorption regions were found between 2700-3100 cm-1 and 2400-2850 cm-1 at 60 K and 2300-3300 cm-1 and 2300-3200 cm-1 at 300 K respectively. Therefore, the CPMD study results indicated that there is a cooperation of intramolecular hydrogen bonds in Naphthazarin molecule.


Assuntos
Simulação de Dinâmica Molecular , Naftoquinonas/química , Ligação de Hidrogênio , Teoria Quântica
13.
Molecules ; 26(11)2021 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-34204133

RESUMO

Intra- and intermolecular forces competition was investigated in the 9,10-anthraquinone (1) and its derivatives both in vacuo and in the crystalline phase. The 1,8-dihydroxy-9,10-anthraquinone (2) and 1,8-dinitro-4,5-dihydroxy-anthraquinone (3) contain Resonance-Assisted Hydrogen Bonds (RAHBs). The intramolecular hydrogen bonds properties were studied in the electronic ground and excited states employing Møller-Plesset second-order perturbation theory (MP2), Density Functional Theory (DFT) method in its classical formulation as well as its time-dependent extension (TD-DFT). The proton potential functions were obtained via scanning the OH distance and the dihedral angle related to the OH group rotation. The topological analysis was carried out on the basis of theories of Atoms in Molecules (AIM-molecular topology, properties of critical points, AIM charges) and Electron Localization Function (ELF-2D maps showing bonding patterns, calculation of electron populations in the hydrogen bonds). The Symmetry-Adapted Perturbation Theory (SAPT) was applied for the energy decomposition in the dimers. Finally, Car-Parrinello molecular dynamics (CPMD) simulations were performed to shed light onto bridge protons dynamics upon environmental influence. The vibrational features of the OH stretching were revealed using Fourier transformation of the autocorrelation function of atomic velocity. It was found that the presence of OH and NO2 substituents influenced the geometric and electronic structure of the anthraquinone moiety. The AIM and ELF analyses showed that the quantitative differences between hydrogen bonds properties could be neglected. The bridged protons are localized on the donor side in the electronic ground state, but the Excited-State Intramolecular Proton Transfer (ESIPT) was noticed as a result of the TD-DFT calculations. The hierarchy of interactions determined by SAPT method indicated that weak hydrogen bonds play modifying role in the organization of these crystal structures, but primary ordering factor is dispersion. The CPMD crystalline phase results indicated bridged proton-sharing in the compound 2.

14.
Molecules ; 26(18)2021 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-34577113

RESUMO

Our long-term investigations have been devoted the characterization of intramolecular hydrogen bonds in cyclic compounds. Our previous work covers naphthazarin, the parent compound of two systems discussed in the current work: 2,3-dimethylnaphthazarin (1) and 2,3-dimethoxy-6-methylnaphthazarin (2). Intramolecular hydrogen bonds and substituent effects in these compounds were analyzed on the basis of Density Functional Theory (DFT), Møller-Plesset second-order perturbation theory (MP2), Coupled Clusters with Singles and Doubles (CCSD) and Car-Parrinello Molecular Dynamics (CPMD). The simulations were carried out in the gas and crystalline phases. The nuclear quantum effects were incorporated a posteriori using the snapshots taken from ab initio trajectories. Further, they were used to solve a vibrational Schrödinger equation. The proton reaction path was studied using B3LYP, ωB97XD and PBE functionals with a 6-311++G(2d,2p) basis set. Two energy minima (deep and shallow) were found, indicating that the proton transfer phenomena could occur in the electronic ground state. Next, the electronic structure and topology were examined in the molecular and proton transferred (PT) forms. The Atoms In Molecules (AIM) theory was employed for this purpose. It was found that the hydrogen bond is stronger in the proton transferred (PT) forms. In order to estimate the dimers' stabilization and forces responsible for it, the Symmetry-Adapted Perturbation Theory (SAPT) was applied. The energy decomposition revealed that dispersion is the primary factor stabilizing the dimeric forms and crystal structure of both compounds. The CPMD results showed that the proton transfer phenomena occurred in both studied compounds, as well as in both phases. In the case of compound 2, the proton transfer events are more frequent in the solid state, indicating an influence of the environmental effects on the bridged proton dynamics. Finally, the vibrational signatures were computed for both compounds using the CPMD trajectories. The Fourier transformation of the autocorrelation function of atomic velocity was applied to obtain the power spectra. The IR spectra show very broad absorption regions between 700 cm-1-1700 cm-1 and 2300 cm-1-3400 cm-1 in the gas phase and 600 cm-1-1800 cm-1 and 2200 cm-1-3400 cm-1 in the solid state for compound 1. The absorption regions for compound 2 were found as follows: 700 cm-1-1700 cm-1 and 2300 cm-1-3300 cm-1 for the gas phase and one broad absorption region in the solid state between 700 cm-1 and 3100 cm-1. The obtained spectroscopic features confirmed a strong mobility of the bridged protons. The inclusion of nuclear quantum effects showed a stronger delocalization of the bridged protons.

15.
Entropy (Basel) ; 24(1)2021 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-35052097

RESUMO

In this manuscript, we use a combination of Car-Parrinello molecular dynamics (CPMD) and ReaxFF reactive molecular dynamics (ReaxFF-MD) simulations to study the brown coal-water interactions and coal oxidation. Our Car-Parrinello molecular dynamics simulation results reveal that hydrogen bonds dominate the water adsorption process, and oxygen-containing functional groups such as carboxyl play an important role in the interaction between brown coal and water. The discrepancy in hydrogen bonds formation between our simulation results by ab initio molecular dynamics (CPMD) and that by ReaxFF-MD indicates that the ReaxFF force field is not capable of accurately describing the diffusive behaviors of water on lignite at low temperatures. The oxidations of brown coal for both fuel rich and fuel lean conditions at various temperatures were investigated using ReaxFF-MD simulations through which the generation rates of major products were obtained. In addition, it was observed that the density decrease significantly enhances the generation of gaseous products due to the entropy gain by reducing system density. Although the ReaxFF-MD simulation of complete coal combustion process is limited to high temperatures, the combined CPMD and ReaxFF-MD simulations allow us to examine the correlation between water adsorption on brown coal and the initial stage of coal oxidation.

16.
Molecules ; 25(20)2020 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-33066679

RESUMO

Noncovalent interactions are among the main tools of molecular engineering. Rational molecular design requires knowledge about a result of interplay between given structural moieties within a given phase state. We herein report a study of intra- and intermolecular interactions of 3-nitrophthalic and 4-nitrophthalic acids in the gas, liquid, and solid phases. A combination of the Infrared, Raman, Nuclear Magnetic Resonance, and Incoherent Inelastic Neutron Scattering spectroscopies and the Car-Parrinello Molecular Dynamics and Density Functional Theory calculations was used. This integrated approach made it possible to assess the balance of repulsive and attractive intramolecular interactions between adjacent carboxyl groups as well as to study the dependence of this balance on steric confinement and the effect of this balance on intermolecular interactions of the carboxyl groups.


Assuntos
Nitrocompostos/química , Ácidos Ftálicos/química , Teoria da Densidade Funcional , Ligação de Hidrogênio , Espectroscopia de Ressonância Magnética , Simulação de Dinâmica Molecular , Prótons , Análise Espectral Raman
17.
J Comput Chem ; 37(18): 1657-67, 2016 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-27092962

RESUMO

We report here the development of hybrid quantum mechanics/molecular mechanics (QM/MM) interface between the plane-wave density functional theory based CPMD code and the empirical force-field based GULP code for modeling periodic solids and surfaces. The hybrid QM/MM interface is based on the electrostatic coupling between QM and MM regions. The interface is designed for carrying out full relaxation of all the QM and MM atoms during geometry optimizations and molecular dynamics simulations, including the boundary atoms. Both Born-Oppenheimer and Car-Parrinello molecular dynamics schemes are enabled for the QM part during the QM/MM calculations. This interface has the advantage of parallelization of both the programs such that the QM and MM force evaluations can be carried out in parallel to model large systems. The interface program is first validated for total energy conservation and parallel scaling performance is benchmarked. Oxygen vacancy in α-cristobalite is then studied in detail and the results are compared with a fully QM calculation and experimental data. Subsequently, we use our implementation to investigate the structure of rhodium cluster (Rhn ; n = 2 to 6) formed from Rh(C2 H4 )2 complex adsorbed within a cavity of Y-zeolite in a reducible atmosphere of H2 gas. © 2016 Wiley Periodicals, Inc.

18.
Laryngoscope ; 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38979706

RESUMO

OBJECTIVE: To identify characteristics of patients who have poor improvement in symptoms following surgical management of Zenker Diverticulum (ZD). METHODS: Prospective, multicenter cohort study of all individuals enrolled in the Prospective OUtcomes of Cricopharyngeus Hypertonicity (POUCH) Collaborative who underwent surgical repair of ZD between August 2017 and January 2024. Patient demographics, esophagrams, and the 10-item Eating Assessment Tool (EAT-10) pre- and post-procedure were obtained from a REDCap database. t-tests, Wilcoxon rank sum tests, Chi-square or Fisher's exact tests were used to compare the characteristics. Patients with <50% improvement in their EAT-10 scores were deemed surgical nonresponders (SNRs). Those with ≥50% improvement in their EAT-10 scores were deemed surgical responders (SRs). RESULTS: A total of 184 patients were prospectively followed after undergoing either open or endoscopic surgical management. Twenty-two patients (12%) were deemed SNRs. Preoperative presence of a hiatal hernia was statistically significant characteristic between the SNRs (63.6%) and SRs (32.1%) (p = 0.004). Size of the ZD and history of previous ZD surgery was not a significant characteristic. The length of stay and complication rate were not statistically different between the groups. CONCLUSION: Coexistent esophageal pathology may lead to poor symptomatic improvement following ZD surgery. Preoperative workup of other esophageal disorders is recommended to detect likely SNRs. For SNRs, further esophageal workup may be necessary to evaluate for other esophageal causes related to poor symptomatic improvement following ZD surgery. LEVEL OF EVIDENCE: Level 3 Laryngoscope, 2024.

19.
Spectrochim Acta A Mol Biomol Spectrosc ; 320: 124585, 2024 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-38850825

RESUMO

The studies of two isomers of ascorbic acid and their deuteroanalogues, presented in the paper, have been accomplished by vibrational spectroscopy methods and quantum-chemical simulations. The spectroscopic research of L-ascorbic and D-isoascorbic acids have been carried out by the infrared (IR) and Raman (R) techniques. On the basis of the obtained results the spectral interpretation of the hydrogen bonded groups of ascorbic acids has been performed. Car-Parrinello Molecular Dynamics (CPMD) and Density Functional Theory (DFT) have been employed to support spectroscopic experimental findings and shed light onto the bridged proton dynamics in the L- and D- isomers of ascorbic acids. The accurate assignments of the hydrogen bond modes have been accomplished with the application of deuterosubstitution, CPMD-solid state simulations and Potential Energy Distribution (PED) analysis. The spectral and structural results have shown that dependency ν(OH) = f(γ(OH)) is the most common for the OHO hydrogen bond, whereas dependency d(OO) = f(γ(OH)) differs as for the ionic and resonance assisted hydrogen bonds.

20.
Laryngoscope ; 134(1): 97-102, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37191092

RESUMO

OBJECTIVE: To compare improvement in patient-reported outcomes (PROM) in persons undergoing endoscopic and open surgical management of Zenker diverticula (ZD). METHODOLOGY: Prospective, multicenter cohort study of all individuals enrolled in the Prospective OUtcomes of Cricopharyngeus Hypertonicity (POUCH) Collaborative who underwent surgery for ZD. Patient survey, radiography reports, and the 10-item Eating Assessment Tool (EAT-10) pre- and post-procedure were abstracted from a REDCap database, which summarized means, medians, percentages, and frequencies of. Outcome based on operative intervention (endoscopic vs. open) was compared using t-test, Wilcoxon rank sum test or chi-square test, as appropriate. RESULTS: One hundred and forty-seven persons were prospectively followed. The mean age (SD) of the cohort was 68.7 (11.0). Overall, 66% of patients reported 100% improvement in EAT-10; 81% of patients had greater than 75% improvement; and 88% had greater than 50% improvement. Endoscopic was used for n = 109 patients, and open surgical intervention was used for n = 38. The median [interquartile range, IQR] EAT-10 percent improvement for endoscopic treatment was 93.3% [72, 100], and open was 100% [92.3, 100] (p = 0.05). The incidence of intraoperative complications was 3.7% for endoscopic and 7.9% for open surgical management. The median [IQR] in follow-up was 86 and 97.5 days, respectively. CONCLUSION: Both endoscopic and open surgical management of ZD provide significant improvement in patient-reported outcomes. The data suggest that open diverticulectomy may provide a modest advantage in symptomatic improvement compared to endoscopic management. The data suggest that the postoperative complication rate is higher in the open surgical group. LEVEL OF EVIDENCE: 3 Laryngoscope, 134:97-102, 2024.


Assuntos
Divertículo de Zenker , Humanos , Estudos de Coortes , Esofagoscopia , Estudos Longitudinais , Estudos Prospectivos , Estudos Retrospectivos , Resultado do Tratamento , Divertículo de Zenker/cirurgia , Pessoa de Meia-Idade , Idoso
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA