RESUMO
Hydrologic-hydraulic modelling of urban catchment is an asset for land managers to simulate Sustainable Urban Drainage Systems (SUDS) implementation to fulfil combined sewer overflow (CSO) regulations. This review aims to assess the current practices in modelling SUDS scenarios at large scale for CSO mitigation encompassing every stage of the modelling process from the choice of the equation to the validation of the initial state of the urban system, right through to the elaboration, modelling, and selection of SUDS scenarios to evaluate their performance on CSO. Through a quantitative and qualitative analysis of 50 published studies, we found a diversity of choices when modelling the status quo of the urban system. Authors generally do not explain the modelling processes of slow components (deep infiltration, groundwater infiltration) and interconnexion between SUDS and the sewer system. In addition, only a few authors explain how CSO structures are modelled. Furthermore, the modelling of SUDS implementation at catchment scale is highlighted in the 50 studies retrieved with three different approaches going from simplified to detailed. SUDS modelling choices seem to be consistent with the objectives: studies focusing on dealing with several objectives at the time typically opt for a complex system configuration that includes the surface processes, network, CSO, SUDS, and often the soil and/or groundwater components. Conversely, authors who have selected a basic configuration generally aim to address a single, straightforward question (e.g., which type of SUDS). However, elaboration and selection of scenarios for CSO mitigation is mainly based on local constraints, which does not allow hydrological performance to be directly optimised. In conclusion, to improve current practices in modelling SUDS scenarios at large scale for CSO mitigation, authors suggest to: (i) improve clear practices of CSO modelling, calibration and validation at the urban catchment scale, (ii) develop methods to optimize the performance of scenarios for CSO mitigation using hydrological drivers, and (iii) improve parsimonious and user-friendly models to simulate SUDS scenarios in a context of data scarcity.
Assuntos
Modelos Teóricos , Esgotos , Água Subterrânea , HidrologiaRESUMO
Treatment Wetlands (TWs) are widely used for the treatment of domestic wastewater, with an increasing emphasis on provision of multiple co-benefits. However, concerns remain regarding achieving stringent phosphorus (P) discharge limits, system robustness and resilience, and associated guidance on system design and operation. Typically, where P removal is intended with a passive TW, surface flow (SF) systems are the chosen design type. This study analysed long-term monitoring datasets (2-30 years) from 85 full-scale SF TWs (25 m2 to 487 ha) treating domestic sewage with the influent load ranging from 2.17 to 54,779 m3/d, including secondary treatment, tertiary treatment, and combined sewer overflows treatment. The results showed median percentage removals of total P (TP) and orthophosphate (Ortho P) of 28% and 31%, respectively. Additionally, median areal mass removal rates were 5.13 and 2.87 gP/m2/yr, respectively. For tertiary SF TWs without targeted upstream P removal, 80% of the 44 systems achieved ≤3 mg/L annual average effluent total P. Tertiary SF TWs with targeted upstream P removal demonstrated high robustness, delivering stable effluent TP < 0.35 mg/L. Seasonality in removal achieved was absent from 85% of sites, with 95% of all systems demonstrating stable annual average effluent TP concentrations for up to a 30-year period. Only two out of 32 systems showed a significant increase in effluent TP concentration after the initial year and remained stable thereafter. The impact of different liner types on water infiltration, cost, and carbon footprint were analysed to quantify the impact of these commonly cited barriers to implementation of SF TW for P removal. The use of PVC enclosed between geotextile gave the lowest additional cost and carbon footprint associated with lining SF TWs. Whilst the P-k-C* model is considered the best practice for sizing SF TWs to achieve design pollutant reductions, it should be used with caution with further studies needed to more comprehensively understand the key design parameters and relationships that determine P removal performance in order to reliably predict effluent quality.
Assuntos
Fósforo , Eliminação de Resíduos Líquidos , Águas Residuárias , Áreas Alagadas , Fósforo/análise , Águas Residuárias/química , Eliminação de Resíduos Líquidos/métodos , Purificação da Água/métodos , Esgotos/química , Poluentes Químicos da Água/análiseRESUMO
Ozonolysis is a useful as well as dangerous reaction for performing alkene cleavage. On the other hand, enzymes are considered a more sustainable and safer alternative. Among them, Caulobacter segnis dioxygenase (CsO2) known so far for its ability to catalyze the coenzyme-free oxidation of vinylguaiacol into vanillin, was selected and its substrate scope evaluated towards diverse natural and synthetic stilbenoids. Under optimized conditions, CsO2 catalyzed the oxidative cleavage of the C=C double bonds of various trans-stilbenes, providing that a hydroxyl moiety was necessary in para-position of the phenyl group (e. g., resveratrol and its derivatives) for the reaction to take place, which was confirmed by modelling studies. The reactions occurred rapidly (0.5-3â h) with high conversions (95-99 %) and without formation of by-products. The resveratrol biotransformation was carried out on 50-mL scale thus confirming the feasibility of the biocatalytic system as a preparative method.
Assuntos
Dioxigenases , Ozônio , Estilbenos , Dioxigenases/metabolismo , Resveratrol , Estilbenos/químicaRESUMO
In rural catchments, villages often feature their own, separate urban water infrastructure, including combined sewer overflows (CSOs) or wastewater treatment plants (WWTPs). These point sources affect the water quantity and quality of the receiving low order streams. However, the extent of this impact is rarely monitored. We installed discharge and water quality measurements at the outlet of two small, neighbouring headwater catchments, one that includes a village, a WWTP, and two CSOs, while the other is predominantly influenced by agricultural activities. We also deployed electrical conductivity (EC) loggers at the CSOs to accurately detect discharge times. Discharge from the WWTP and CSOs led to higher peak flows and runoff coefficients during events. Less dilution of EC and increasing ammonium-N (NH4 - N) and ortho-phosphorus (oPO4 - P) concentrations indicate a significant contribution of poorly treated wastewater from the WWTP. During CSO events, water volumes and nutrient loads were clearly elevated, although concentrations were diluted, except for nitrite-N (NO2 - N) and particulate phosphorus (PP). Baseflow nitrate-N (NO3 - N) concentrations were diluted by the WWTP effluent, which led to considerably lower concentrations compared to the more agriculturally influenced stream. Concentrations of oPO4 - P, NH4 - N, and NO2 - N, which are most likely to originate from the WWTP, vary throughout the year but are always elevated. Our study shows the major and variable impact rural settlements can have on stream hydrology and water quality. Point sources should be monitored more closely to better understand the interaction of natural catchment responses and effects caused by sanitary infrastructure.
Assuntos
Poluentes Químicos da Água , Qualidade da Água , Esgotos/química , Monitoramento Ambiental , Dióxido de Nitrogênio , Fósforo , Poluentes Químicos da Água/análiseRESUMO
In France, there are 37 specialist obesity treatment centres (CSOs), located in mainland and overseas France. Attached to public or private health establishments, they have two main missions, which they carry out within the framework of national specifications: the multidisciplinary management of severe or complex obesity, and the organisation, coordination and development of the regional obesity care network. This article illustrates the practice of the Caen Normandy CSO.
Assuntos
Obesidade Mórbida , Humanos , Obesidade Mórbida/terapia , Obesidade/terapia , FrançaRESUMO
An operationally simple and metal-free approach is described for the synthesis of pyrazole-tethered thioamide and amide conjugates. The thioamides were generated by employing a three-component reaction of diverse pyrazole C-3/4/5 carbaldehydes, secondary amines, and elemental sulfur in a single synthetic operation. The advantages of this developed protocol refer to the broad substrate scope, metal-free and easy to perform reaction conditions. Moreover, the pyrazole C-3/5-linked amide conjugates were also synthesized via an oxidative amination of pyrazole carbaldehydes and 2-aminopyridines using hydrogen peroxide as an oxidant.
RESUMO
Bariatric surgery, combined with nutritional and psychological care and physical activity, is currently the most effective treatment for morbid obesity. The multidisciplinary team at the Caen Normandy obesity center explains the prerequisites of this therapeutic approach, and the monitoring and vigilance to be developed in partnership with the patient.
Assuntos
Cirurgia Bariátrica , Obesidade Mórbida , Humanos , Obesidade Mórbida/cirurgia , Cirurgia Bariátrica/psicologiaRESUMO
Climate change will stress urban sanitation systems. Although urban sanitation uses various infrastructure types and service systems, current research appears skewed toward a small subset of cases. We conducted a systematic literature review to critically appraise the evidence for climate change impacts on all urban sanitation system types. We included road-based transport networks, an essential part of fecal sludge management systems. We combined the evidence on climate change impacts with the existing knowledge about modes of urban sanitation failures. We found a predominance of studies that assess climate impacts on centralized sewerage in high-income contexts. The implications of climate change for urban nonsewered and complex, fragmented, and (partially) decentralized sanitation systems remain under-researched. In addition, the understanding of the impacts of climate change on urban sanitation systems fails to take a comprehensive citywide perspective considering interdependencies with other sectors and combinations of climate effects. We conclude that the evidence for climate change impacts on urban sanitation systems is weak. To date, research neither adequately represents the variety of urban sanitation infrastructure and service systems nor reflects the operational and management challenges of already stressed systems.
Assuntos
Mudança Climática , Saneamento , Fezes , Renda , EsgotosRESUMO
BACKGROUND: Civil society organizations (CSOs) are important in health care delivery. They have the potential to play significant roles in immunization-related services, such as advocacy, health education, demand creation and resource mobilization. Their roles are often indispensable, diverse and beneficial in reducing infant morbidity and mortality due to vaccine-preventable diseases. This study explored the potential barriers to and facilitators of CSO engagement in increasing immunization coverage in Odukpani Local Government Area of Cross River State, Nigeria. METHODS: The study adopted qualitative data collection methods. Twenty-two focus group discussion (FGD) sessions, three in-depth interviews (IDIs) and 26 key informant interviews (KIIs) were conducted. Appropriate guides (FGD guide, IDI guide and KII guide) were used to conduct face-to-face interviews and the discussions. The FGDs, KIIs and IDIs were audio-recorded and transcribed. A framework analysis approach involving five key stages of analysis (familiarization with data, identification of thematic framework, indexing, charting, mapping/interpretation) was used for data analyses and presentation. RESULTS: CSOs encounter barriers in the course of their immunization advocacy, communication and social mobilization due to male child preference, leading to shielding of male children and not allowing them to be given immunization, as well as patriarchy, safety concerns, religious concerns, anti-vaccine misinformation and rumours, low perception of effectiveness and efficacy of vaccines, inaccessibility of localities, low health literacy and superstitious beliefs. Various community structures, such as the institution of the village head, elders' council and town crier (announcer), and the existence of change agents, act as facilitators of immunization advocacy and uptake. Factors such as traditional control mechanisms including masquerades and religion act as either barriers or facilitators depending on the community and the mode of deployment. CSO members are willing to overcome these barriers and leverage the facilitators. CONCLUSIONS: For successful engagement in immunization-related services, there are barriers in the study area that CSOs should overcome, such as male child preference and geographic inaccessibility, as well as facilitators that they should leverage such as traditional information dissemination systems and enforcement of compliance by the chiefs and elders' council.
Assuntos
Cobertura Vacinal , Vacinas , Idoso , Criança , Humanos , Lactente , Governo Local , Masculino , Nigéria , VacinaçãoRESUMO
Combined sewer overflow structures (CSO) play an important role in sewer networks. When the local capacity of a sewer system is exceeded during intense rainfall events, they act as a "safety valve" and discharge excess rainfall run-off and wastewater directly to a natural receiving water body, thus preventing widespread urban flooding. There is a regulatory requirement that solids in CSO spills must be small and their amount strictly controlled. Therefore, a vast majority of CSOs in the UK contain screens. This paper presents the results of a feasibility study of using low-cost, low-energy acoustic sensors to remotely assess the condition of CSO screens to move to cost-effective reactive maintenance visits. In situ trials were carried out in several CSOs to evaluate the performance of the acoustic sensor under realistic screen and flow conditions. The results demonstrate that the system is robust within ±2.5% to work successfully in a live CSO environment. The observed changes in the screen condition resulted in 8-39% changes in the values of the coefficient in the proposed acoustic model. These changes are detectable and consistent with observed screen and hydraulic data. This study suggested that acoustic-based sensing can effectively monitor the CSO screen blockage conditions and hence reduce the risk of non-compliant CSO spills.
RESUMO
Nowadays due to smart environment creation there is a rapid growth in wireless sensor network (WSN) technology real time applications. The most critical resource in in WSN is battery power. One of the familiar methods which mainly concentrate in increasing the power factor in WSN is clustering. In this research work, a novel concept for clustering is introduced which is multi weight chicken swarm based genetic algorithm for energy efficient clustering (MWCSGA). It mainly consists of six sections. They are system model, chicken swarm optimization, genetic algorithm, CCSO-GA cluster head selection, multi weight clustering model, inter cluster, and intra cluster communication. In the performance evaluation the proposed model is compared with few earlier methods such as Genetic Algorithm-Based Energy-Efficient Adaptive Clustering Protocol For Wireless Sensor Networks (GA-LEACH), Low energy adaptive Clustering hierarchy approach for WSN (MW-LEACH) and Chicken Swarm Optimization based Genetic Algorithm (CSOGA). During the comparison it is proved that our proposed method performed well in terms of energy efficiency, end to end delay, packet drop, packet delivery ratio and network throughput.
RESUMO
Combined sewer overflows (CSO), generated during the wet weather flow from the combination of the inflow and stormwater runoff in sewer system, result in an overflow of untreated wastewater from sewer system, which might ultimately contain different micropollutants (MPs). In this study, a coagulation-flocculation-sedimentation (CFS) pretreated CSO spiked with MPs was treated by catalytic ozonation using carbon, iron, and peroxide-based catalysts. The catalysts were characterized and their activity on MPs removal was studied at two different ozone (O3) doses (5 and 10 mg L-1). The effect of the treatment on the spiked CSO effluent was also assessed from the acute toxicity of the effluent using Microtox®, Yeast, and Macrophage cell-line toxicity assay tests. All the carbon-based catalysts showed large surface area, which was strongly influenced by the activation technique in the preparation of the catalysts. The CFS treatment strongly reduced the turbidity (≥60%) but had marginal effect on the UV254, dissolved organic carbon (DOC), and pH. Sludge Based Carbon (SBC) showed strong adsorption capacity (≥60% removal efficiency) for all MPs studied compared to other carbon and iron-based catalysts. Ozonation alone was effective for the degradation of easily oxidizable MPs (sulfamethoxazole, mecoprop, and 2,4-dichlorophenoxyl acetic acid), achieving more than 80% degradation efficiency at 10 mg L-1 of ozone, but not effective for atrazine (≤60% degradation efficiency) at similar O3 dose. Catalytic ozonation (at 10 mg L-1 O3 dose) improved the degradation of the MPs at low catalyst dosage but higher dosage strongly inhibited their degradation. In all cases, the effluents showed negligible acute toxicity, indicating the suitability of the process for the treatment of CSO.
Assuntos
Ozônio , Poluentes Químicos da Água , Purificação da Água , Floculação , Águas Residuárias/análise , Poluentes Químicos da Água/análise , Tempo (Meteorologia)RESUMO
BACKGROUND: Ischemic stroke is the second leading cause of death globally. The narrow time window for administering effective thrombolytic therapy motivates the search for alternative prevention strategies. Microglia and astrocyte activation-mediated inflammation play a pivotal role in ischemic stroke injury. Cottonseed oil (CSO) has been shown to exert anti-inflammatory effects against peripheral tissue injury, although CSO is mostly used as a solvent for lipid-soluble drugs. However, the role of CSO in neuroprotection against stroke has not been previously reported. METHODS: We treated adult male rats with CSO (1.3 ml/kg, subcutaneous injection, once every other day for 3 weeks) and then constructed a middle cerebral artery occlusion (MCAO) model followed by 24 h of reperfusion. Then, we measured the neurological scores, infarction volume, neuronal injury, and brain edema; we also measured the levels of pro-inflammatory cytokines (IL-1ß, IL-6, TNF-α), degree of microglial and astrocytic activation, protein expression levels of Toll-like receptor 4 (TLR4), nuclear factor kappa B (NF-κB), C3d and S100A10, and the presence of A1 type astrocytes and A2 type astrocytes. RESULTS: We found that CSO treatment significantly improved the neurological deficit, reduced infarction volume, and alleviated neuronal injuries, blood-brain barrier (BBB) disruption, and brain edema. Additionally, CSO treatment significantly reduced microglial and astrocytic activation, inhibited TLR4 and NF-κB protein expression, and reduced the release of IL-1ß, IL-6, and TNF-α. Finally, CSO treatment significantly decreased the number of C3d/glial fibrillary acidic protein (GFAP)-positive cells and C3d protein expression, and increased the number of S100A10/GFAP-positive cells and S100A10 protein expression. CONCLUSION: Our results first found that CSO treatment alleviated ischemic stroke injury by reducing microglial and astrocytic activation and inflammation, which was related to the inhibition of TLR4/NF-κB pathway and the reduction of A1 phenotype neurotoxic astrocyte activation, suggesting that CSO could be a new strategy in the prevention of ischemic stroke.
Assuntos
Astrócitos/efeitos dos fármacos , Óleo de Sementes de Algodão/farmacologia , Inflamação/tratamento farmacológico , AVC Isquêmico/tratamento farmacológico , Microglia/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Animais , Astrócitos/metabolismo , Óleo de Sementes de Algodão/uso terapêutico , Citocinas/metabolismo , Inflamação/metabolismo , AVC Isquêmico/metabolismo , Masculino , Microglia/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Fármacos Neuroprotetores/uso terapêutico , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacosRESUMO
Sustainable urban drainage systems (SUDS) can significantly reduce runoff from urban areas. However, their potential to mitigate acute river impacts of combined sewer overflows (CSO) is largely unknown. To close this gap, a novel coupled model approach was deployed that simulates the effect of realistic SUDS strategies, developed for an established city quarter, on acute oxygen depressions in the receiving river. Results show that for an average rainfall year the SUDS strategies reduce total runoff by 28%-39% and peak runoff by 31%-48%. Resulting relative reduction in total CSO volume ranges from 45%-58%, exceeding annual runoff reduction from SUDS by a factor of 1.5. Negative impacts in the form of fish-critical dissolved oxygen (DO) conditions in the receiving river (<2 mg DO L-1) can be completely prevented with the SUDS strategies for an average rainfall year. The realistic SUDS strategies were compared with a simpler simulation approach which consists in globally downscaling runoff from all impervious areas. It indicates that such a simple approach does not completely account for the positive effect of SUDS, underestimating CSO volumes for specific rain events by up to 13%. Accordingly, global downscaling is only recommended for preliminary planning purposes.
Assuntos
Rios , Movimentos da Água , Cidades , Modelos Teóricos , ChuvaRESUMO
Combined sewer overflows discharging into natural water bodies could potentially contaminate them in terms of conventional wastewater parameters and coliform bacteria. When green water infrastructures are not technically feasible or practically sustainable for stormwater management, innovative compact and effective end-of-pipe systems can be of interest. This study presents long-term and real-environment validated data of a compact and rapid treatment system specifically applicable to CSOs that consists of a dynamic rotating belt filter, adsorption on granular activated carbon and UV disinfection steps. The results of treatment for Lake Garda in Italy, showed great potential for TSS, COD and E. coli removal efficiencies with more than 90%, 69% and 99% respectively. Due to the short contact time of GAC adsorption, nutrients removals were not very high. TN and TP removal of around 41% and 19% were observed respectively that suggests further specific nutrients removal processes are required for achieving higher efficiencies. The treatment system, due to its compactness and rapidness could be a great asset for water utilities in different EU catchments that are dealing with the frequent CSO events. In addition, the possibility of using different combinations of treatment steps allows the choice of different treatment scenarios depending on the treatment goals for any specific catchment.
Assuntos
Escherichia coli , Lagos , Desinfecção , Itália , Esgotos , Águas ResiduáriasRESUMO
Combined sewer overflow (CSO) water introduces pathogens to receiving waters. To control pathogenic releases, chlorine may be added to disinfect CSO water. The added chlorine may react with water constituents to form oxidative species known as chlorine-produced oxidants (CPO). CPO are the sum of free and combined oxidative species that form upon adding free chlorine-bearing compounds (e.g. gaseous chlorine or hypochlorite) to water. CPO discharge is often regulated by governing agencies. Current methods to model CPO behavior do not account for CPO decay and dilution simultaneously in receiving water. This study creates a novel model for CPO demand and dilution in receiving water from chlorinated effluent in order to determine site-specific practices for implementation of a CSO water disinfection regime. To do this, representative receiving water was collected and dosed with 1, 2, and 4 mg/L chlorine. The residual chlorine was measured at intervals up to 30 min after dosing. The immediate and subsequent chlorine demand was calculated, with the subsequent demand modeled by simultaneous application of dilution and decay using pseudo-first-order decay kinetics. A comparison of model calculations indicates that application of dilution before decay underestimates CPO demand, while application of decay before dilution overestimates CPO demand.
Assuntos
Cloro/química , Desinfetantes/química , Desinfecção/métodos , Oxidantes/química , Esgotos/química , Compostos Clorados/química , Modelos Químicos , Purificação da ÁguaRESUMO
As the coronavirus crisis spreads swiftly through the population, it takes a particularly heavy toll on minority individuals and older adults, with older minority adults at especially high risk. Given the shockingly high rates of infections and deaths in nursing homes, staying in the community appears to be a good option for older adults in this crisis, but in order for some older adults to do so much assistance is required. This situation draws attention to the need for benevolent intervention on the part of the state should older adults become ill or lose their sources of income and support during the crisis. This essay provides a brief overview of public support and the financial and health benefits for older individuals who remain in the community during the pandemic. It reports the case example of Austin, Texas, a city with a rapidly aging and diverse population of almost a million residents, to ask how we can assess the success of municipalities in responding to the changing needs of older adults in the community due to COVID-19. It concludes with a discussion of what governmental and non-governmental leadership can accomplish in situations such as that brought about by the current crisis.
Assuntos
Infecções por Coronavirus/epidemiologia , Vida Independente , Governo Local , Pneumonia Viral/epidemiologia , Serviço Social/organização & administração , Idoso , Idoso de 80 Anos ou mais , Betacoronavirus , COVID-19 , Abastecimento de Alimentos , Humanos , Pessoa de Meia-Idade , Pandemias , SARS-CoV-2 , Texas/epidemiologiaRESUMO
EPA and DHA are important components of cell membranes. Since humans have limited ability for EPA and DHA synthesis, these must be obtained from the diet, primarily from oily fish. Dietary EPA and DHA intakes are constrained by the size of fish stocks and by food choice. Seed oil from transgenic plants that synthesise EPA and DHA represents a potential alternative source of these fatty acids, but this has not been tested in humans. We hypothesised that incorporation of EPA and DHA into blood lipids from transgenic Camelina sativa seed oil (CSO) is equivalent to that from fish oil. Healthy men and women (18-30 years or 50-65 years) consumed 450 mg EPA + DHA from either CSO or commercial blended fish oil (BFO) in test meals in a double-blind, postprandial cross-over trial. There were no significant differences between test oils or sexes in EPA and DHA incorporation into plasma TAG, phosphatidylcholine or NEFA over 8 h. There were no significant differences between test oils, age groups or sexes in postprandial VLDL, LDL or HDL sizes or concentrations. There were no significant differences between test oils in postprandial plasma TNFα, IL 6 or 10, or soluble intercellular cell adhesion molecule-1 concentrations in younger participants. These findings show that incorporation into blood lipids of EPA and DHA consumed as CSO was equivalent to BFO and that such transgenic plant oils are a suitable dietary source of EPA and DHA in humans.
Assuntos
Camellia , Ácidos Docosa-Hexaenoicos/administração & dosagem , Ácido Eicosapentaenoico/administração & dosagem , Óleos de Peixe/administração & dosagem , Óleos de Plantas/administração & dosagem , Adolescente , Adulto , Idoso , Colesterol/sangue , Estudos Cross-Over , Método Duplo-Cego , Ácidos Graxos não Esterificados/sangue , Feminino , Óleos de Peixe/química , Voluntários Saudáveis , Humanos , Masculino , Pessoa de Meia-Idade , Fosfatidilcolinas/sangue , Óleos de Plantas/química , Plantas Geneticamente Modificadas/química , Período Pós-Prandial/efeitos dos fármacos , Sementes/química , Adulto JovemRESUMO
This study investigates the level of agreement between problem gamblers and their concerned significant others (CSOs) regarding the amount of money lost when gambling. Reported losses were analyzed from 266 participants (133 dyads) seeking treatment, which included different types of CSO-gambler dyads. The intraclass correlation coefficients (ICCs) concerning the money lost when gambling during the last 30 days were calculated based on the timeline followback. In order to model reports that were highly skewed and included zeros, a two-part generalized linear mixed-effects model was used. The results were compared from models assuming either a Gaussian, two-part gamma, or two-part lognormal response distribution. Overall, the results indicated a fair level of agreement, ICC = .57, 95% CI (.48, .64), between the gamblers and their CSOs. The partner CSOs tended to exhibit better agreement than the parent CSOs with regard to the amount of money lost, ICCdiff = .20, 95% CI (.03, .39). The difference became smaller and inconclusive when reports of no losses (zeros) were included, ICCdiff = .16, 95% CI (- .05, .36). A small simulation investigation indicated that the two-part model worked well under assumptions related to this study, and further, that calculating the ICCs under normal assumptions led to incorrect conclusions regarding the level of agreement for skewed reports (such as gambling losses). For gambling losses, the normal assumption is unlikely to hold and ICCs based on this assumption are likely to be highly unreliable.
Assuntos
Jogo de Azar/psicologia , Modelos Psicológicos , Adulto , Teorema de Bayes , Feminino , Humanos , Relações Interpessoais , Masculino , Adulto JovemRESUMO
Using combined sewer systems to handle excess stormwater runoff is common in older urban areas. Combined sewer overflow (CSO) events occur when hydraulic capacity is exceeded, and untreated wastewater discharges to surface waters. As urban population density increases, and more demand is placed on infrastructure, CSO events happen more often and cause serious environmental problems and public-health risks. Recently, green infrastructure (GI) has been integrated with existing gray infrastructure (GrayI) to reduce CSO events. However, there lacks a goal-oriented planning framework for eliminating CSOs at a watershed/sewershed scale. Moreover, existing stormwater simulations based on catchments or other geographic units, do not consider spatial variation within the unit, such as distribution, attribution, ownership, and management of GI. We propose a scenario-based Stormwater Management Planning Support System for CSOs (SMPSS-CSO) to provide a platform for reducing CSO events by coordinating parcel-based installations of GI. We applied the SMPSS-CSO to a sewershed with a single CSO location in Cincinnati, Ohio and developed four scenarios representing increased use of GI (rain barrels, green roofs, porous pavements, and detention basin) based on its cost, difficulty of installation, and property ownership. Runoff quantity, time of concentration, and peak flow rate were simulated using the curve number method. Our analysis shows a 41% reduction in stormwater runoff is necessary to eliminate CSO events for a two-year rainfall, required 97.25% of private and 27.59% of public parcels to install GI. GI alone cannot eliminate CSO events in this sewershed and must be incorporated with additional GrayI (e.g., storage tanks, pipes). The SMPSS-CSO has the potential for including multiple stakeholders' preferences and concerns in the searching for preferable scenarios.