RESUMO
Checkpoint inhibitors (CPIs) augment adaptive immunity. Systematic pan-tumor analyses may reveal the relative importance of tumor-cell-intrinsic and microenvironmental features underpinning CPI sensitization. Here, we collated whole-exome and transcriptomic data for >1,000 CPI-treated patients across seven tumor types, utilizing standardized bioinformatics workflows and clinical outcome criteria to validate multivariable predictors of CPI sensitization. Clonal tumor mutation burden (TMB) was the strongest predictor of CPI response, followed by total TMB and CXCL9 expression. Subclonal TMB, somatic copy alteration burden, and histocompatibility leukocyte antigen (HLA) evolutionary divergence failed to attain pan-cancer significance. Dinucleotide variants were identified as a source of immunogenic epitopes associated with radical amino acid substitutions and enhanced peptide hydrophobicity/immunogenicity. Copy-number analysis revealed two additional determinants of CPI outcome supported by prior functional evidence: 9q34 (TRAF2) loss associated with response and CCND1 amplification associated with resistance. Finally, single-cell RNA sequencing (RNA-seq) of clonal neoantigen-reactive CD8 tumor-infiltrating lymphocytes (TILs), combined with bulk RNA-seq analysis of CPI-responding tumors, identified CCR5 and CXCL13 as T-cell-intrinsic markers of CPI sensitivity.
Assuntos
Inibidores de Checkpoint Imunológico/farmacologia , Neoplasias/imunologia , Linfócitos T/imunologia , Biomarcadores Tumorais/metabolismo , Antígenos CD8/metabolismo , Quimiocina CXCL13/metabolismo , Cromossomos Humanos Par 9/genética , Estudos de Coortes , Ciclina D1/genética , Variações do Número de Cópias de DNA/genética , Exoma/genética , Amplificação de Genes , Humanos , Evasão da Resposta Imune/efeitos dos fármacos , Análise Multivariada , Mutação/genética , Neoplasias/patologia , Polimorfismo de Nucleotídeo Único/genética , Receptores CCR5/metabolismo , Linfócitos T/efeitos dos fármacos , Carga Tumoral/genéticaRESUMO
Blockade of the inhibitory receptor TIM-3 shows efficacy in cancer immunotherapy clinical trials. TIM-3 inhibits production of the chemokine CXCL9 by XCR1+ classical dendritic cells (cDC1), thereby limiting antitumor immunity in mammary carcinomas. We found that increased CXCL9 expression by splenic cDC1s upon TIM-3 blockade required type I interferons and extracellular DNA. Chemokine expression as well as combinatorial efficacy of TIM-3 blockade and paclitaxel chemotherapy were impaired by deletion of Cgas and Sting. TIM-3 blockade increased uptake of extracellular DNA by cDC1 through an endocytic process that resulted in cytoplasmic localization. DNA uptake and efficacy of TIM-3 blockade required DNA binding by HMGB1, while galectin-9-induced cell surface clustering of TIM-3 was necessary for its suppressive function. Human peripheral blood cDC1s also took up extracellular DNA upon TIM-3 blockade. Thus, TIM-3 regulates endocytosis of extracellular DNA and activation of the cytoplasmic DNA sensing cGAS-STING pathway in cDC1s, with implications for understanding the mechanisms underlying TIM-3 immunotherapy.
Assuntos
DNA/metabolismo , Células Dendríticas/metabolismo , Receptor Celular 2 do Vírus da Hepatite A/metabolismo , Proteínas de Membrana/metabolismo , Nucleotidiltransferases/metabolismo , Transdução de Sinais/fisiologia , Animais , Transporte Biológico/fisiologia , Linhagem Celular , Linhagem Celular Tumoral , Quimiocinas/metabolismo , Citoplasma/metabolismo , Endocitose/fisiologia , Feminino , Células HEK293 , Humanos , Imunoterapia/métodos , Camundongos , Camundongos Endogâmicos C57BLRESUMO
Despite compelling rates of durable clinical responses to programmed cell death-1 (PD-1) blockade, advances are needed to extend these benefits to resistant tumors. We found that tumor-bearing mice deficient in the chemokine receptor CXCR3 responded poorly to anti-PD-1 treatment. CXCR3 and its ligand CXCL9 were critical for a productive CD8+ T cell response in tumor-bearing mice treated with anti-PD-1 but were not required for the infiltration of CD8+ T cells into tumors. The anti-PD-1-induced anti-tumor response was facilitated by CXCL9 production from intratumoral CD103+ dendritic cells, suggesting that CXCR3 facilitates dendritic cell-T cell interactions within the tumor microenvironment. CXCR3 ligands in murine tumors and in plasma of melanoma patients were an indicator of clinical response to anti-PD-1, and their induction in non-responsive murine tumors promoted responsiveness to anti-PD-1. Our data suggest that the CXCR3 chemokine system is a biomarker for sensitivity to PD-1 blockade and that augmenting the intratumoral function of this chemokine system could improve clinical outcomes.
Assuntos
Antineoplásicos Imunológicos/farmacologia , Imunomodulação/efeitos dos fármacos , Neoplasias/imunologia , Neoplasias/metabolismo , Receptor de Morte Celular Programada 1/metabolismo , Receptores CXCR3/metabolismo , Animais , Antineoplásicos Imunológicos/uso terapêutico , Biomarcadores , Linfócitos T CD8-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Modelos Animais de Doenças , Epigênese Genética , Humanos , Ativação Linfocitária , Camundongos , Camundongos Knockout , Terapia de Alvo Molecular , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Subpopulações de Linfócitos T/efeitos dos fármacos , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Microambiente Tumoral , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
BACKGROUND: Immune checkpoint inhibitors (ICIs), antibodies targeting PD-1 (programmed cell death protein 1)/PD-L1 (programmed death-ligand 1) or CTLA4 (cytotoxic T-lymphocyte-associated protein 4), have revolutionized cancer management but are associated with devastating immune-related adverse events including myocarditis. The main risk factor for ICI myocarditis is the use of combination PD-1 and CTLA4 inhibition. ICI myocarditis is often fulminant and is pathologically characterized by myocardial infiltration of T lymphocytes and macrophages. Although much has been learned about the role of T-cells in ICI myocarditis, little is understood about the identity, transcriptional diversity, and functions of infiltrating macrophages. METHODS: We used an established murine ICI myocarditis model (Ctla4+/-Pdcd1-/- mice) to explore the cardiac immune landscape using single-cell RNA-sequencing, immunostaining, flow cytometry, in situ RNA hybridization, molecular imaging, and antibody neutralization studies. RESULTS: We observed marked increases in CCR2 (C-C chemokine receptor type 2)+ monocyte-derived macrophages and CD8+ T-cells in this model. The macrophage compartment was heterogeneous and displayed marked enrichment in an inflammatory CCR2+ subpopulation highly expressing Cxcl9 (chemokine [C-X-C motif] ligand 9), Cxcl10 (chemokine [C-X-C motif] ligand 10), Gbp2b (interferon-induced guanylate-binding protein 2b), and Fcgr4 (Fc receptor, IgG, low affinity IV) that originated from CCR2+ monocytes. It is important that a similar macrophage population expressing CXCL9, CXCL10, and CD16α (human homologue of mouse FcgR4) was expanded in patients with ICI myocarditis. In silico prediction of cell-cell communication suggested interactions between T-cells and Cxcl9+Cxcl10+ macrophages via IFN-γ (interferon gamma) and CXCR3 (CXC chemokine receptor 3) signaling pathways. Depleting CD8+ T-cells or macrophages and blockade of IFN-γ signaling blunted the expansion of Cxcl9+Cxcl10+ macrophages in the heart and attenuated myocarditis, suggesting that this interaction was necessary for disease pathogenesis. CONCLUSIONS: These data demonstrate that ICI myocarditis is associated with the expansion of a specific population of IFN-γ-induced inflammatory macrophages and suggest the possibility that IFN-γ blockade may be considered as a treatment option for this devastating condition.
Assuntos
Inibidores de Checkpoint Imunológico , Miocardite , Humanos , Camundongos , Animais , Inibidores de Checkpoint Imunológico/efeitos adversos , Linfócitos T CD8-Positivos , Miocardite/induzido quimicamente , Miocardite/metabolismo , Receptor de Morte Celular Programada 1 , Antígeno CTLA-4 , Ligantes , Quimiocinas/metabolismo , Macrófagos/metabolismo , RNA/metabolismoRESUMO
Airway smooth muscle (ASM) remodeling in asthmatic airways may contribute to persistent airflow limitation and airway hyperresponsiveness. CD4+ T cells infiltrate the ASM layer where they may induce a proliferative and secretory ASM cell phenotype. We studied the interaction between activated CD4+ T cells and ASM cells in co-culture in vitro and investigated the effects of CD4+ T cells on chemokine production by ASM cells. CD4+ T cells induced marked upregulation of C-X-C motif chemokine ligands (CXCL) 9, 10, and 11 in ASM cells. Blockade of the IFN-γ receptor on ASM cells prevented this upregulation. Furthermore, T cell-derived IFN-γ and LIGHT (lymphotoxin, exhibits inducible expression and competes with HSV glycoprotein D for binding to herpesvirus entry mediator, a receptor expressed on T lymphocytes) synergize in a dose-dependent manner to coordinately enhance CXCL9, 10, and 11 expression. The synergistic property of LIGHT was mediated exclusively through the lymphotoxin-ß receptor (LTBR), but not herpes virus entry mediator (HVEM). Disruption of LTBR signaling in ASM cells reduced CXCL9, 10, and 11 production and ASM cell-mediated CD4+ T cell chemotaxis. We conclude that the LIGHT-LTBR signaling axis acts together with IFN-γ to regulate chemokines that mediate lymphocyte infiltration in asthmatics.
Assuntos
Asma , Linfócitos T , Humanos , Miócitos de Músculo Liso , Músculo Liso , Remodelação das Vias Aéreas , Linfócitos T CD4-PositivosRESUMO
BACKGROUND: Age-associated impairments in innate immunity are believed to be a causative factor responsible for severe pathogenesis of Staphylococcus aureus (S. aureus) infection in the bone tissue. However, the basis for age-associated decline in innate immune response upon S. aureus infection remains poorly understood. RESULTS: Our transcriptional data (GEO: GSE166522) from a mouse model of S. aureus osteomyelitis show up-regulated CXCL9 and CXCL10 (CXCL9/10), which is further confirmed in vitro and in vivo by the present study. Notably, monocytes are a main source for CXCL9/10 production in bone marrow upon S. aureus challenge, but this response declines in middle-aged mice. Interestingly, conditional medium of bone marrow monocytes from middle-aged mice has a strikingly decreased effect on bactericidal functions of neutrophils and macrophages compares with that from young mice. We further show that activation of CXCL9/10-CXCR3 axis between monocytes and macrophages/neutrophils promotes the bactericidal function of the cells, whereas blocking the axis impairs such function. Importantly, treatment with either exogenous CXCL9 or CXCL10 in a middle-aged mice model enhances, while pharmacological inhibition of CXCR3 in young mice model impairs, bacterial clearance and bone marrow structure. CONCLUSIONS: These findings demonstrate that bone marrow monocytes act as a critical promotor of innate immune response via the CXLCL9/10-CXCR3 axis upon S. aureus infection, and that the increased susceptibility to S. aureus infection in skeleton in an aged host may be largely attributable to the declined induction of CXCR9/10 in monocytes.
Assuntos
Quimiocina CXCL10 , Quimiocina CXCL9 , Modelos Animais de Doenças , Imunidade Inata , Monócitos , Osteomielite , Infecções Estafilocócicas , Staphylococcus aureus , Animais , Osteomielite/microbiologia , Osteomielite/imunologia , Osteomielite/metabolismo , Osteomielite/patologia , Monócitos/imunologia , Monócitos/metabolismo , Quimiocina CXCL9/metabolismo , Quimiocina CXCL9/genética , Staphylococcus aureus/imunologia , Camundongos , Quimiocina CXCL10/metabolismo , Infecções Estafilocócicas/imunologia , Infecções Estafilocócicas/microbiologia , Infecções Estafilocócicas/patologia , Infecções Estafilocócicas/metabolismo , Camundongos Endogâmicos C57BL , Receptores CXCR3/metabolismo , Receptores CXCR3/genética , Envelhecimento/imunologia , Neutrófilos/imunologia , Neutrófilos/metabolismo , Macrófagos/imunologia , Macrófagos/metabolismoRESUMO
BACKGROUND: Quantifying T-cell activation is essential for the diagnosis and evaluation of treatment response in various hyperinflammatory and immune regulatory disorders, including hemophagocytic lymphohistiocytosis. Plasma soluble IL-2 receptor (sIL-2R) is a well-established biomarker for evaluating systemic T-cell activation. However, the limited availability of sIL-2R testing could result in delayed diagnosis. Furthermore, high sIL-2R levels may not always reflect T-cell activation. OBJECTIVES: To address these limitations, this study investigated whether cell surface markers of T-cell activation, HLA-DR, and CD38, as assessed by flow cytometry, could be used to quantify systemic T-cell activation in a variety of inflammatory disease states and examine its correlation with sIL-2R levels. METHODS: Results for sIL-2R, CXCL9, and ferritin assays were obtained from patient's medical records. Frequency of HLA-DR+CD38high(hi) T-cells was assessed in different T-cell subsets using flow cytometry. RESULTS: In this study's cohort, activation in total CD8+ T (r = 0.65; P < .0001) and CD4+ (r = 0.42; P < .0001) T-cell subsets significantly correlated with plasma sIL-2R levels. At the disease onset, the frequency of HLA-DR+CD38hi T cells in CD8+ T (r = 0.65, P < .0001) and CD4+ T (r = 0.77; P < .0001) effector memory (TEM) compartments correlated strongly with sIL-2R levels. Evaluation of T-cell activation markers in follow-up samples also revealed a positive correlation for both CD4+ TEM and CD8+ TEM activation with sIL-2R levels; thus, attesting its utility in initial diagnosis and in evaluating treatment response. The frequency of HLA-DR+CD38hi T-cells in the CD8+ TEM compartment also correlated with plasma CXCL9 (r = 0.42; P = .0120) and ferritin levels (r = 0.32; P = .0037). CONCLUSIONS: This study demonstrates that flow cytometry-based direct T-cell activation assessed by HLA-DR+CD38hi T cells accurately quantifies T-cell activation and strongly correlates with sIL-2R levels across a spectrum of hyperinflammatory and immune dysregulation disorders.
Assuntos
Doenças do Sistema Imunitário , Linfo-Histiocitose Hemofagocítica , Humanos , Linfo-Histiocitose Hemofagocítica/diagnóstico , Linfócitos T CD8-Positivos , Antígenos HLA-DR , Subpopulações de Linfócitos T , Receptores de Interleucina-2 , Ferritinas , Ativação LinfocitáriaRESUMO
BACKGROUND: Inborn errors of immunity offer important insights into mucosal immunity. In autoimmune polyendocrine syndrome type-1 (APS-1), chronic mucocutaneous candidiasis has been ascribed to neutralizing IL-17 autoantibodies. Recent evidence implicates excessive T-cell IFN-γ secretion and ensuing epithelial barrier disruption in predisposition to candidiasis, but these results remain to be replicated. Whether IL-17 paucity, increased type I inflammation, or their combination underlies susceptibility to chronic mucocutaneus candidiasis in APS-1 is debated. OBJECTIVE: Our aim was to characterize the immunologic features in the cervicovaginal mucosa of females with APS-1. METHODS: Vaginal fluid was collected with a flocked swab from 17 females with APS-1 and 18 controls, and cytokine composition was analyzed using Luminex (Luminex Corporation, Austin, Tex). Cervical cell samples were obtained with a cervix brush from 6 patients and 6 healthy controls and subjected to transcriptome analysis. RESULTS: The vaginal fluid samples from patients with APS-1 had IFN-γ concentrations comparable to those of the controls (2.6 vs 2.4 pg/mL) but high concentrations of the TH1 chemokines CXCL9 and CXCL10 (1094 vs 110 pg/mL [P < .001] and 4033 vs 273 pg/mL [P = .001], respectively), whereas the IL-17 levels in the samples from the 2 groups were comparable (28 vs 8.8 pg/mL). RNA sequencing of the cervical cells revealed upregulation of pathways related to mucosal inflammation and cell death in the patients with APS-1. CONCLUSION: Excessive TH1 cell response appears to underlie disruption of the mucosal immune responses in the genital tract of patients with APS-1 and may contribute to susceptibility to candidiasis in the genital tract as well.
Assuntos
Colo do Útero , Poliendocrinopatias Autoimunes , Vagina , Humanos , Feminino , Vagina/imunologia , Poliendocrinopatias Autoimunes/imunologia , Adulto , Colo do Útero/imunologia , Colo do Útero/patologia , Pessoa de Meia-Idade , Citocinas/metabolismo , Citocinas/imunologia , Inflamação/imunologia , Interleucina-17/imunologia , Interleucina-17/metabolismo , Quimiocina CXCL9/imunologia , Quimiocina CXCL9/metabolismo , Adulto Jovem , Interferon gama/imunologia , Interferon gama/metabolismo , Candidíase Mucocutânea Crônica/imunologia , Candidíase Mucocutânea Crônica/genética , Mucosa/imunologiaRESUMO
The tumor microenvironment (TME) is an intricate system comprised of tumor cells and the surrounding cellular and non-cellular components, exerting a pivotal influence on the initiation and progression of tumors. Exhibiting dynamic and diverse compositions as well as functional states across various tumors and patients, a profound comprehension of its specific internal interactions is indispensable for formulating efficacious anti-cancer treatment strategies. Extensive interactions among various immune cell types within the TME are well-documented, with their phenotypes and abundances closely linked to clinical prognoses. TME research is progressing towards greater complexity and precision, yet, to date, no representative TME biomarkers suitable for clinical applications have been definitively identified and validated. In a recent study, the collaborative actions of CXCL9 and SPP1 (CXCL9:SPP1) were found to collectively dictate the polarity of tumor-associated macrophages (TAMs) within the TME, exerting profound effects on tumor progression and treatment responses. The mutually exclusive expression of CXCL9:SPP1 in the TME not only governs TAM polarity but also exhibits strong correlations with immune cell profiles, antitumor factors, and patient outcomes, significantly influencing prognosis. This article consolidates the significance and prospects of CXCL9:SPP1 as a novel indicator for tumor development and prognosis, while also proposing future research directions and addressing potential challenges in this promising field.
Assuntos
Neoplasias , Macrófagos Associados a Tumor , Humanos , Prognóstico , Fenótipo , Microambiente Tumoral , Quimiocina CXCL9 , OsteopontinaRESUMO
Although microwave ablation (MWA) is an important curative therapy in colorectal cancer liver metastasis, recurrence still occurs clinically. Our previous studies have shown that the expression of programmed cell death 1 ligand 1 (PD-L1) is upregulated following MWA, suggesting that MWA combined with anti-PD-L1 treatment can serve as a promising clinical therapeutic strategy against cancer. Using MWA-treated preclinical mice models, MWA combined with αPD-L1 treatment decreased tumor growth and prolonged overall survival (OS). Furthermore, through flow cytometry and single-cell RNA sequencing analysis, we determined that the MWA plus αPD-L1 therapy significantly suppressed CD8+ T cell exhaustion and enhanced their effector function. A significant increase in γ-interferon (IFN-γ) stimulated transcription factors, specifically Irf8, was observed. This enhancement facilitated the polarization of tumor-associated macrophages (TAM1s and TAM2s) through the nuclear factor-κB/JAK-STAT1 signaling pathway. Furthermore, the combination therapy stimulated the production of CXC motif chemokine ligand (CXCL9) by TAM1s and tumor cells, potentially increasing the chemotaxis of CD8 T cells and Th1 cells. Knocking out Cxcl9 in MC38 tumor cells or using CXCL9 blockade enhanced tumor growth of untreated tumors and shortened OS. Taken together, our study showed that blocking the IFN-γ-Cxcl9-CD8+ T axis promoted tumor progression and discovered a potential involvement of IRF8-regulated TAMs in preventing T cell exhaustion. Collectively, we identified that the combination of MWA with anti-PD-L1 treatment holds promise as a therapeutic strategy to rejuvenate the immune response against tumors. This merits further exploration in clinical studies.
Assuntos
Antígeno B7-H1 , Linfócitos T CD8-Positivos , Quimiocina CXCL9 , Inibidores de Checkpoint Imunológico , Micro-Ondas , Animais , Camundongos , Quimiocina CXCL9/metabolismo , Quimiocina CXCL9/genética , Antígeno B7-H1/antagonistas & inibidores , Antígeno B7-H1/metabolismo , Micro-Ondas/uso terapêutico , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Linhagem Celular Tumoral , Linfócitos T CD8-Positivos/imunologia , Terapia Combinada , Camundongos Endogâmicos C57BL , Humanos , Macrófagos Associados a Tumor/imunologia , Macrófagos Associados a Tumor/metabolismo , Transdução de Sinais , Feminino , Microambiente Tumoral/imunologia , Interferon gama/metabolismo , Fator de Transcrição STAT1/metabolismo , Neoplasias Colorretais/patologia , Neoplasias Colorretais/imunologia , Neoplasias Colorretais/terapiaRESUMO
OBJECTIVE: The absence of CD28 is a feature of antigen-experienced, highly differentiated and aged T cells. The pathogenicity of CD28null T cells remains elusive in primary Sjögren's syndrome (pSS). Therefore, this study was performed to explore the characteristics of CD28null T cells in both peripheral blood and minor salivary glands (MSGs) of pSS patients. METHODS: pSS patients and paired healthy controls (HCs) were enrolled. The phenotype of peripheral CD28null T cells was analyzed using flow cytometry. In vitro functional assays were performed to evaluate the cytotoxic and proinflammatory effects of peripheral CD28null T cells. In addition, polychromatic immunofluorescence staining was performed to investigate infiltrating CD28null T cells in MSGs. RESULTS: A significant expansion of peripheral CD28null T cells was observed in pSS patients compared with HCs (p < 0.001), which were primarily CD8+CD28null T cells. The proportion of peripheral CD8+CD28null T cells moderately correlated with the erythrocyte sedimentation rate (r = 0.57, p < 0.01) and IgG levels (r = 0.44, p < 0.01). Peripheral CD28null T cells had stronger capacities to secrete granzyme B and perforin, but comparable capacities to secrete IFN-γ and TNF-α than their CD28+ counterparts. An abundant amount of cytotoxic and pro-inflammatory CD28null T cells was also found in MSGs. Moreover, a high expression of the chemokine receptor CXCR3 was found on peripheral and tissue-resident CD28null T cells, with its ligands CXCL9/10 abundantly present in MSGs. CONCLUSION: Increasing CD28null T cells with strong cytotoxicity and proinflammatory effects were observed in both peripheral blood and MSGs from pSS patients. The precise mechanism of action and migration still needs further investigation.
Assuntos
Antineoplásicos , Síndrome de Sjogren , Humanos , Idoso , Linfócitos T/metabolismo , Antígenos CD28 , Síndrome de Sjogren/genética , Glândulas Salivares Menores/metabolismoRESUMO
Lipoxins are small lipids that are potent endogenous mediators of systemic inflammation resolution in a variety of diseases. We previously reported that Lipoxins A4 and B4 (LXA4 and LXB4) have protective activities against neurodegenerative injury. Yet, lipoxin activities and downstream signaling in neuroinflammatory processes are not well understood. Here, we utilized a model of posterior uveitis induced by lipopolysaccharide endotoxin (LPS), which results in rapid retinal neuroinflammation primarily characterized by activation of resident macroglia (astrocytes and Müller glia), and microglia. Using this model, we observed that each lipoxin reduces acute inner retinal inflammation by affecting endogenous glial responses in a cascading sequence beginning with astrocytes and then microglia, depending on the timing of exposure; prophylactic or therapeutic. Subsequent analyses of retinal cytokines and chemokines revealed inhibition of both CXCL9 (MIG) and CXCL10 (IP10) by each lipoxin, compared to controls, following LPS injection. CXCL9 and CXCL10 are common ligands for the CXCR3 chemokine receptor, which is prominently expressed in inner retinal astrocytes and ganglion cells. We found that CXCR3 inhibition reduces LPS-induced neuroinflammation, while CXCR3 agonism alone induces astrocyte reactivity. Together, these data uncover a novel lipoxin-CXCR3 pathway to promote distinct anti-inflammatory and proresolution cascades in endogenous retinal glia.
Assuntos
Lipoxinas , Neuroglia , Doenças Neuroinflamatórias , Receptores CXCR3 , Inflamação/induzido quimicamente , Lipopolissacarídeos/toxicidade , Lipoxinas/farmacologia , Lipoxinas/metabolismo , Neuroglia/metabolismo , AnimaisRESUMO
Cutaneous wound healing is a challenge in plastic and reconstructive surgery. In theory, cells undergoing mesenchymal transition will achieve re-epithelialization through mesenchymal-epithelial transition at the end of wound healing. But in fact, some pathological stimuli will inhibit this biological process and result in scar formation. If mesenchymal-epithelial transition can be activated at the corresponding stage, the ideal wound healing may be accomplished. Two in vivo skin defect mouse models and dermal-derived mesenchymal cells were used to evaluate the effect of lithium chloride in wound healing. The mesenchymal-epithelial transition was detected by immunohistochemistry staining. In vivo, differentially expressed genes were analysed by transcriptome analyses and the subsequent testing was carried out. We found that lithium chloride could promote murine cutaneous wound healing and facilitate mesenchymal-epithelial transition in vivo and in vitro. In lithium chloride group, scar area was smaller and the collagen fibres are also orderly arranged. The genes related to mesenchyme were downregulated and epithelial mark genes were activated after intervention. Moreover, transcriptome analyses suggested that this effect might be related to the inhibition of CXCL9 and IGF2, subsequent assays demonstrated it. Lithium chloride can promote mesenchymal-epithelial transition via downregulating CXCL9 and IGF2 in murine cutaneous wound healing, the expression of IGF2 is regulated by ß-catenin. It may be a potential promising therapeutic drug for alleviating postoperative scar and promoting re-epithelialization in future.
Assuntos
Cicatriz , Cloreto de Lítio , Animais , Camundongos , Cloreto de Lítio/farmacologia , Diferenciação Celular , Cicatrização , PeleRESUMO
BACKGROUND: Tuberculosis (TB) remains a persistent threat to global public health and traditional treatment monitoring approaches are limited by their potential for contamination and need for timely evaluation. Therefore, new biomarkers are urgently required for monitoring the treatment efficacy of TB. METHODS: This study aimed to elucidate the levels of CXCL10 and CXCL9 in pulmonary TB patients who underwent anti-TB treatment. The data was acquired from five databases, including PubMed, Ovid, Web of Science, Embase, and the Cochrane Library. A meta-analysis of CXCL10 data from all time points was conducted. Furthermore, a trend meta-analysis of temporal data of CXCL10 and CXCL9 from multiple time points was also performed. RESULTS: It was revealed that patients who responded poorly to anti-TB treatment had higher serum levels relative to those who responded well (SMD: 1.23, 95% CI: -0.37-2.84) at the end of intensive treatment (2 months). Furthermore, heterogeneity was observed in these results, which might be because patients with a prior history of TB and different treatment monitoring methods than those selected in this study were also included. The analysis of alterations in CXCL10 and CXCL9 levels since the last collection time points indicated that their levels reduced with time. CONCLUSION: In summary, the study revealed that reductions in CXCL10 levels during the first two months of anti-TB treatment are correlated with treatment responses. Furthermore, decreasing levels of CXCL9 during the treatment suggest that it may also serve as a biomarker with a similar value to CXCL10. Future in-depth studies are thus warranted to further probe the relevance of CXCL10 and CXCL9 in monitoring the treatment efficacy of TB.
Assuntos
Antituberculosos , Biomarcadores , Quimiocina CXCL10 , Quimiocina CXCL9 , Tuberculose Pulmonar , Humanos , Quimiocina CXCL10/sangue , Quimiocina CXCL9/sangue , Biomarcadores/sangue , Tuberculose Pulmonar/tratamento farmacológico , Tuberculose Pulmonar/sangue , Antituberculosos/uso terapêutico , Resultado do TratamentoRESUMO
INTRODUCTION: Dysregulation of pro-inflammatory chemokines is considered a potential mechanism for the development of age-related medical conditions such as frailty. However, evidence linking circulating chemokines with frailty remains lacking. MATERIALS AND METHODS: We performed a case-control study including 48 cases and 48 controls aged 65-90 years, using the National Center for Geriatrics and Gerontology outpatient registry data. Cases were outpatients with physical frailty and low habitual daily activity. Controls were robust outpatients who performed habitual daily activities. The Japanese version of the Cardiovascular Health Study criteria was used to diagnose physical frailty, and the modified Baecke questionnaire was used to evaluate habitual daily activities. Serum CXCL9 and CXCL10 levels were measured using enzyme-linked immunosorbent assay. RESULTS: The median age (interquartile range) in cases and controls was 78 (73-83) and 76 (72-80) years, with the proportions of men were 47.9% and 43.8%, respectively. In the logistic regression model with adjustment for age, sex, and other confounding factors, the multivariable odds ratios (95% confidence intervals) for the highest versus lowest tertile of CXCL9 and CXCL10 levels were 7.90 (1.61-49.80) and 1.61 (0.42-6.30), respectively. However, we did not observe a linear association between CXCL9 levels and physical frailty components. DISCUSSION/CONCLUSION: Our preliminary data exhibit that circulating CXCL9 levels were positively associated with the odds of physical frailty. However, these findings lack evidence of a dose-response relationship between CXCL9 levels and physical frailty components. Further research with a larger sample size is required to confirm these findings.
Assuntos
Fragilidade , Geriatria , Idoso , Humanos , Masculino , Atividades Cotidianas , Estudos de Casos e Controles , Quimiocina CXCL10 , Quimiocina CXCL9 , Quimiocinas , Feminino , Idoso de 80 Anos ou maisRESUMO
A vast body of evidence provides support to a central role of exaggerated production of interferon-γ (IFN-γ) in causing hypercytokinemia and signs and symptoms of hemophagocytic lymphohistiocytosis (HLH). In this chapter, we will describe briefly the roles of IFN-γ in innate and adaptive immunity and in host defense, summarize results from animal models of primary HLH and secondary HLH with particular emphasis on targeted therapeutic approaches, review data on biomarkers associated with activation of the IFN-γ pathway, and discuss initial efficacy and safety results of IFN-γ neutralization in humans.
Assuntos
Síndrome da Liberação de Citocina , Imunidade Inata , Interferon gama , Linfo-Histiocitose Hemofagocítica , Humanos , Síndrome da Liberação de Citocina/imunologia , Síndrome da Liberação de Citocina/tratamento farmacológico , Síndrome da Liberação de Citocina/etiologia , Interferon gama/imunologia , Animais , Linfo-Histiocitose Hemofagocítica/imunologia , Linfo-Histiocitose Hemofagocítica/tratamento farmacológico , Imunidade Inata/efeitos dos fármacos , Imunidade Adaptativa/efeitos dos fármacosRESUMO
BACKGROUND: Type 1 (T1) inflammation (marked by IFN-γ expression) is now consistently identified in subsets of asthma cohorts, but how it contributes to disease remains unclear. OBJECTIVE: We sought to understand the role of CCL5 in asthmatic T1 inflammation and how it interacts with both T1 and type 2 (T2) inflammation. METHODS: CCL5, CXCL9, and CXCL10 messenger RNA expression from sputum bulk RNA sequencing, as well as clinical and inflammatory data were obtained from the Severe Asthma Research Program III (SARP III). CCL5 and IFNG expression from bronchoalveolar lavage cell bulk RNA sequencing was obtained from the Immune Mechanisms in Severe Asthma (IMSA) cohort and expression related to previously identified immune cell profiles. The role of CCL5 in tissue-resident memory T-cell (TRM) reactivation was evaluated in a T1high murine severe asthma model. RESULTS: Sputum CCL5 expression strongly correlated with T1 chemokines (P < .001 for CXCL9 and CXCL10), consistent with a role in T1 inflammation. CCL5high participants had greater fractional exhaled nitric oxide (P = .009), blood eosinophils (P < .001), and sputum eosinophils (P = .001) in addition to sputum neutrophils (P = .001). Increased CCL5 bronchoalveolar lavage expression was unique to a previously described T1high/T2variable/lymphocytic patient group in the IMSA cohort, with IFNG trending with worsening lung obstruction only in this group (P = .083). In a murine model, high expression of the CCL5 receptor CCR5 was observed in TRMs and was consistent with a T1 signature. A role for CCL5 in TRM activation was supported by the ability of the CCR5 inhibitor maraviroc to blunt reactivation. CONCLUSION: CCL5 appears to contribute to TRM-related T1 neutrophilic inflammation in asthma while paradoxically also correlating with T2 inflammation and with sputum eosinophilia.
Assuntos
Asma , Quimiocina CCL5 , Animais , Humanos , Camundongos , Quimiocina CCL5/genética , Quimiocina CCL5/metabolismo , Quimiocinas/metabolismo , Eosinófilos , Inflamação/metabolismo , Neutrófilos , EscarroRESUMO
BACKGROUND: The expression and function of coexpression genes of M1 macrophage in cervical cancer have not been identified. And the CXCL9-expressing tumour-associated macrophage has been poorly reported in cervical cancer. METHODS: To clarify the regulatory gene network of M1 macrophage in cervical cancer, we downloaded gene expression profiles of cervical cancer patients in TCGA database to identify M1 macrophage coexpression genes. Then we constructed the protein-protein interaction networks by STRING database and performed functional enrichment analysis to investigate the biological effects of the coexpression genes. Next, we used multiple bioinformatics databases and experiments to overall investigate coexpression gene CXCL9, including western blot assay and immunohistochemistry assay, GeneMANIA, Kaplan-Meier Plotter, Xenashiny, TISCH2, ACLBI, HPA, TISIDB, GSCA and cBioPortal databases. RESULTS: There were 77 positive coexpression genes and 5 negative coexpression genes in M1 macrophage. The coexpression genes in M1 macrophage participated in the production and function of chemokines and chemokine receptors. Especially, CXCL9 was positively correlated with M1 macrophage infiltration levels in cervical cancer. CXCL9 expression would significantly decrease and high CXCL9 levels were linked to good prognosis in the cervical cancer tumour patients, it manifestly expressed in blood immune cells, and was positively related to immune checkpoints. CXCL9 amplification was the most common type of mutation. The CXCL9 gene interaction network could regulate immune-related signalling pathways, and CXCL9 amplification was the most common mutation type in cervical cancer. Meanwhile, CXCL9 may had clinical significance for the drug response in cervical cancer, possibly mediating resistance to chemotherapy and targeted drug therapy. CONCLUSION: Our findings may provide new insight into the M1 macrophage coexpression gene network and molecular mechanisms in cervical cancer, and indicated that M1 macrophage association gene CXCL9 may serve as a good prognostic gene and a potential therapeutic target for cervical cancer therapies.
Cervical cancer is a common gynaecological malignancy, investigating the precise gene expression regulation of M1 macrophage is crucial for understanding the changes in the immune microenvironment of cervical cancer. In our study, a total of 82 coexpression genes with M1 macrophages were identified, and these genes were involved in the production and biological processes of chemokines and chemokine receptors. Especially, the chemokine CXCL9 was positively correlated with M1 macrophage infiltration levels in cervical cancer. CXCL9 as a protective factor, it manifestly expressed in blood immune cells, and was positively related to immune checkpoints. CXCL9 amplification was the most common type of mutation. And CXCL9 expression could have an effect on the sensitivity of some chemicals or targeted drugs against cervical cancer. These findings may provide new insight into the M1 macrophage coexpression gene network and molecular mechanisms, and shed light on the role of CXCL9 in cervical cancer.
Assuntos
Quimiocina CXCL9 , Neoplasias do Colo do Útero , Neoplasias do Colo do Útero/genética , Neoplasias do Colo do Útero/patologia , Neoplasias do Colo do Útero/metabolismo , Humanos , Feminino , Quimiocina CXCL9/genética , Quimiocina CXCL9/metabolismo , Regulação Neoplásica da Expressão Gênica , Macrófagos/metabolismo , Prognóstico , Redes Reguladoras de Genes , Mapas de Interação de Proteínas/genética , Biologia Computacional , Macrófagos Associados a Tumor/metabolismo , Perfilação da Expressão Gênica , Bases de Dados GenéticasRESUMO
OBJECTIVES: To validate the correlation between laboratory markers reflecting disease activity of macrophage activation syndrome (MAS) and serum cytokine levels and identify the valuable laboratory markers that change over time for a prompt MAS diagnosis. METHODS: Serum cytokine levels were determined by enzyme-linked immunosorbent assay and compared with laboratory markers reflecting MAS disease activity.The changes in values were evaluated from the acute phase of systemic juvenile idiopathic arthritis (s-JIA) to MAS diagnosis. RESULTS: CXCL9 was significantly correlated with aspartate aminotransferase (AST), lactate dehydrogenase (LDH), D dimer, and urine ß2 microglobulin levels. sTNF-RII was significantly correlated with platelet counts, AST, LDH, D dimer, and ferritin levels. Significant changes in platelet count, LDH, and D dimer levels were observed. Decreased platelet counts were the most valuable indicator for MAS diagnosis. CONCLUSION: Monitoring the laboratory markers that change over time, particularly decreased platelet counts, was valuable for the prompt MAS diagnosis in s-JIA.
Assuntos
Artrite Juvenil , Síndrome de Ativação Macrofágica , Humanos , Citocinas , Síndrome de Ativação Macrofágica/etiologia , Biomarcadores , Produtos de Degradação da Fibrina e do Fibrinogênio , Ativação de MacrófagosRESUMO
This study was designed to investigate the role of a disintegrin and metalloproteinase domain-like protein decysin 1 (ADAMDEC-1) in atherosclerosis (AS). The Gene Expression Omnibus (GEO) database was utilized to identify differentially expressed genes (DEGs) between carotid atheroma plaque and carotid tissue adjacent atheroma plaque obtained from AS patients. Gene functional enrichment analysis was conducted on DEGs using Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG). QRT-PCR was employed to quantify mRNAs expression. AS animal model was established using ApoE-/- mice; serum triglyceride (TG), low-density lipoprotein cholesterol (LDL-C), and high-density lipoprotein cholesterol (HDL-C) levels were detected. Aortic sinus atherosclerotic lesions were observed using H&E staining and Oil Red O staining. ADAMDEC-1 was silenced using small interfering RNAs (siRNAs) in human vascular smooth muscle cells (HVSMCs). Cell proliferation, migration, and cell cycle progression were detected by cell count kit-8 (CCK8), 5-ethynyl-2'-deoxyuridine (EDU), wound scratch healing assay, transwell assay, and flow cytometry, respectively. Western blot was used to evaluate various protein expression levels. Our results showed that ADAMDEC-1 was highly expressed in the serum of AS patients, consistent with the in silico results. The elevated TG, LDL-C, and HDL-C levels along with H&E and Oil Red O staining confirmed the successful establishment of the AS mouse model. ADAMDEC-1 expression was also elevated in AS mice. ADAMDEC-1 knockdown in HVSMCs suppressed cell proliferation, inhibited the expression of proliferating cell nuclear antigen (PCNA), and reduced the levels of matrix metalloproteinases (MMP2 and MMP9) proteins. Protein-protein interaction (PPI) analysis indicated that ADAMDEC-1 was associated with CXCL9, CCR5, TNF-α, TNFR1, and NF-κB-p50. The expression levels of CXCL9, CCR5, TNF-α, TNFR1, and NF-κB-p50 increased, while ADAMDEC-1 knockdown attenuated the expression of these proteins. Our study findings substantiate that ADAMDEC-1 may represent a novel target for AS.