Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Int J Mol Sci ; 23(21)2022 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-36361957

RESUMO

Hormone-induced Leydig cell steroidogenesis requires rapid changes in gene expression in response to various hormones, cytokines, and growth factors. These proteins act by binding to their receptors on the surface of Leydig cells leading to activation of multiple intracellular signaling cascades, downstream of which are several kinases, including protein kinase A (PKA), Ca2+/calmodulin-dependent protein kinase I (CAMKI), and extracellular signal-regulated protein kinase 1 and 2 (ERK1/2). These kinases participate in hormone-induced steroidogenesis by phosphorylating numerous proteins including transcription factors leading to increased steroidogenic gene expression. How these various kinases and transcription factors come together to appropriately induce steroidogenic gene expression in response to specific stimuli remains poorly understood. In the present work, we compared the effect of PKA, CAMKI and ERK1/2 on the transactivation potential of 15 transcription factors belonging to 5 distinct families on the activity of the Star gene promoter. We not only validated known cooperation between kinases and transcription factors, but we also identified novel cooperations that have not yet been before reported. Some transcription factors were found to respond to all three kinases, whereas others were only activated by one specific kinase. Differential responses were also observed within a family of transcription factors. The diverse response to kinases provides flexibility to ensure proper genomic response of steroidogenic cells to different stimuli.


Assuntos
Fosfoproteínas , Fatores de Transcrição , Humanos , Masculino , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Hormônios/metabolismo , Células Intersticiais do Testículo/metabolismo , Fosfoproteínas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteína Quinase Tipo 1 Dependente de Cálcio-Calmodulina/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Proteína Quinase 1 Ativada por Mitógeno/metabolismo
2.
BMC Cancer ; 20(1): 467, 2020 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-32448194

RESUMO

BACKGROUND: The mitochondrial fission protein, Dynamin related protein 1 (Drp1), and its upstream protein calcium/calmodulin-dependent protein kinase I (CaMKI) play a critical role in chemoresistance in ovarian cancer (OVCA). Thus, we examined the expression of Drp1, CaMKI and their phosphorylated forms and their prognostic impact in epithelial OVCA patients. METHODS: Expression analysis was performed by immunohistochemistry (IHC) of paraffin-embedded tumor samples from 49 patients with epithelial OVCA. Staining intensity and the percentage of positively stained tumor cells were used to calculate an immunoreactive score (IRS) of 0-12. The expression scores calculated were correlated with clinicopathological parameters and patient survival. RESULTS: High immunoreactivity of phospho-Drp1Ser637 was significantly correlated with high-grade serous carcinoma (HGSC) (p = 0.034), residual postoperative tumor of > 1 cm (p = 0.006), and non-responders to adjuvant chemotherapy (p = 0.007), whereas high expression of CaMKI was significantly correlated with stage III/IV [International Federation of Gynecologists and Obstetricians (FIGO)] (p = 0.011) and platinum-resistant recurrence (p = 0.030). ROC curve analysis showed that Drp1, phospho-Drp1Ser637 and CaMKI could significantly detect tumor progression with 0.710, 0.779, and 0.686 of area under the curve (AUC), respectively. The Kaplan-Meier survival curve showed that patients with high Drp1, phospho-Drp1Ser637 and CaMKI levels had significantly poorer progression free survival (PFS) (p = 0.003, p < 0.001 and p = 0.017, respectively). Using multivariate analyses, phospho-Drp1Ser637 was significantly associated with PFS [p = 0.043, hazard ratio (HR) 3.151, 95% confidence interval (CI) 1.039-9.561]. CONCLUSIONS: Drp1 and CaMKI are novel potential candidates for the detection and prognosis of epithelial OVCA and as such further studies should be performed to exploit their therapeutic significance.


Assuntos
Adenocarcinoma de Células Claras/patologia , Adenocarcinoma Mucinoso/patologia , Biomarcadores Tumorais/metabolismo , Cistadenocarcinoma Seroso/patologia , Dinaminas/metabolismo , Neoplasias do Endométrio/patologia , Neoplasias Ovarianas/patologia , Adenocarcinoma de Células Claras/metabolismo , Adenocarcinoma de Células Claras/terapia , Adenocarcinoma Mucinoso/metabolismo , Adenocarcinoma Mucinoso/terapia , Adulto , Idoso , Idoso de 80 Anos ou mais , Terapia Combinada , Cistadenocarcinoma Seroso/metabolismo , Cistadenocarcinoma Seroso/terapia , Neoplasias do Endométrio/metabolismo , Neoplasias do Endométrio/terapia , Feminino , Seguimentos , Humanos , Pessoa de Meia-Idade , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/terapia , Prognóstico , Estudos Retrospectivos , Taxa de Sobrevida
3.
Adv Exp Med Biol ; 1131: 649-679, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31646529

RESUMO

Multifunctional calcium/calmodulin-stimulated protein kinases control a broad range of cellular functions in a multitude of cell types. This family of kinases contain several structural similarities and all are regulated by phosphorylation, which either activates, inhibits or modulates their kinase activity. As these protein kinases are widely or ubiquitously expressed, and yet regulate a broad range of different cellular functions, additional levels of regulation exist that control these cell-specific functions. Of particular importance for this specificity of function for multifunctional kinases is the expression of specific binding proteins that mediate molecular targeting. These molecular targeting mechanisms allow pools of kinase in different cells, or parts of a cell, to respond differently to activation and produce different functional outcomes.


Assuntos
Proteínas Quinases Dependentes de Cálcio-Calmodulina , Regulação Enzimológica da Expressão Gênica , Terapia de Alvo Molecular , Proteínas Quinases Dependentes de Cálcio-Calmodulina/genética , Proteínas Quinases Dependentes de Cálcio-Calmodulina/metabolismo , Ativação Enzimática , Fosforilação
4.
Arch Biochem Biophys ; 668: 29-38, 2019 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-31071303

RESUMO

Ca2+/calmodulin-dependent protein kinase I isoforms (CaMKIα, ß, γ, and δ) play important roles in Ca2+ signaling in eukaryotic cells by being activated by CaMK kinase (CaMKK) through phosphorylation at a Thr residue in the activation loop. However, we have recently found that, unlike rat CaMKIα (rCaMKIα), C-terminally truncated fragments of zebrafish and mouse CaMKIδ [zCaMKIδ(1-299) and mCaMKIδ(1-297)] produced by Escherichia coli exhibit almost full activity in the absence of CaMKK. To address the CaMKK-independent activation mechanism of CaMKIδ in E. coli cells, here we performed comparative analyses between recombinant zCaMKIδ(1-299) and rCaMKIα(1-294) in vitro. By using a kinase-dead mutant of zCaMKIδ(1-299) and λ phosphatase coexpression method, we elucidated that zCaMKIδ(1-299) was highly autophosphorylated and activated in E. coli during cell culture, but rCaMKIα(1-294) was not. The major autophosphorylation site leading to activation of the kinase was Ser296, determined using mass spectrometry analysis in conjunction with site-directed mutagenesis. Furthermore, mimicking phosphorylation at Ser296 in full-length zCaMKIδ resulted in additional activation of the kinase compared with CaMKI fully activated by CaMKK. Our results provide the first evidence that CaMKIδ is activated through CaMKK-independent phosphorylation at Ser296, which might be a clue to understand the physiological regulation of CaMKIδ isoform.


Assuntos
Quinase da Proteína Quinase Dependente de Cálcio-Calmodulina/metabolismo , Proteína Quinase Tipo 1 Dependente de Cálcio-Calmodulina/metabolismo , Ativação Enzimática/fisiologia , Proteínas de Peixe-Zebra/metabolismo , Sequência de Aminoácidos , Animais , Proteína Quinase Tipo 1 Dependente de Cálcio-Calmodulina/química , Proteína Quinase Tipo 1 Dependente de Cálcio-Calmodulina/genética , Escherichia coli/enzimologia , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/metabolismo , Camundongos Endogâmicos BALB C , Mutagênese Sítio-Dirigida , Mutação , Fosforilação , Processamento de Proteína Pós-Traducional , Ratos , Alinhamento de Sequência , Serina/química , Peixe-Zebra , Proteínas de Peixe-Zebra/química , Proteínas de Peixe-Zebra/genética
5.
J Biol Chem ; 291(26): 13802-8, 2016 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-27151216

RESUMO

Ca(2+)/calmodulin-dependent protein kinase kinase ß (CaMKKß) is a known activating kinase for AMP-activated protein kinase (AMPK). In vitro, CaMKKß phosphorylates Thr(172) in the AMPKα subunit more efficiently than CaMKKα, with a lower Km (∼2 µm) for AMPK, whereas the CaMKIα phosphorylation efficiencies by both CaMKKs are indistinguishable. Here we found that subdomain VIII of CaMKK is involved in the discrimination of AMPK as a native substrate by measuring the activities of various CaMKKα/CaMKKß chimera mutants. Site-directed mutagenesis analysis revealed that Leu(358) in CaMKKß/Ile(322) in CaMKKα confer, at least in part, a distinct recognition of AMPK but not of CaMKIα.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Quinase da Proteína Quinase Dependente de Cálcio-Calmodulina/metabolismo , Proteínas Quinases Ativadas por AMP/genética , Substituição de Aminoácidos , Animais , Quinase da Proteína Quinase Dependente de Cálcio-Calmodulina/genética , Linhagem Celular Tumoral , Ativação Enzimática/fisiologia , Humanos , Mutagênese Sítio-Dirigida , Ratos
6.
Dev Cell ; 58(21): 2249-2260.e9, 2023 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-37647895

RESUMO

In multicellular lives, the differentiation of stem cells and progenitor cells is often accompanied by a transition from glycolysis to mitochondrial oxidative phosphorylation (OXPHOS). However, the underlying mechanism of this metabolic transition remains largely unknown. In this study, we investigate the role of mechanical stress in activating OXPHOS during differentiation of the female germline cyst in Drosophila. We demonstrate that the surrounding somatic cells flatten the 16-cell differentiating cyst, resulting in an increase of the membrane tension of germ cells inside the cyst. This mechanical stress is necessary to maintain cytosolic Ca2+ concentration in germ cells through a mechanically activated channel, transmembrane channel-like. The sustained cytosolic Ca2+ triggers a CaMKI-Fray-JNK signaling relay, leading to the transcriptional activation of OXPHOS in differentiating cysts. Our findings demonstrate a molecular link between cell mechanics and mitochondrial energy metabolism, with implications for other developmentally orchestrated metabolic transitions in mammals.


Assuntos
Proteínas de Drosophila , Drosophila , Animais , Drosophila/metabolismo , Células Germinativas/metabolismo , Metabolismo Energético , Diferenciação Celular , Proteínas de Drosophila/metabolismo , Mamíferos/metabolismo
7.
J Cell Immunol ; 3(3): 144-150, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34263253

RESUMO

Ca2+/calmodulin (CaM) signaling is important for a wide range of cellular functions. It is not surprised the role of this signaling has been recognized in tumor progressions, such as proliferation, invasion, and migration. However, its role in leukemia has not been well appreciated. The multifunctional Ca2+/CaM-dependent protein kinases (CaMKs) are critical intermediates of this signaling and play key roles in cancer development. The most investigated CaMKs in leukemia, especially myeloid leukemia, are CaMKI, CaMKII, and CaMKIV. The function and mechanism of these kinases in leukemia development are summarized in this study.

8.
Pharmaceuticals (Basel) ; 12(1)2019 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-30621060

RESUMO

The importance of Ca2+ signalling in key events of cancer cell function and tumour progression, such as proliferation, migration, invasion and survival, has recently begun to be appreciated. Many cellular Ca2+-stimulated signalling cascades utilise the intermediate, calmodulin (CaM). The Ca2+/CaM complex binds and activates a variety of enzymes, including members of the multifunctional Ca2+/calmodulin-stimulated protein kinase (CaMK) family. These enzymes control a broad range of cancer-related functions in a multitude of tumour types. Herein, we explore the cancer-related functions of these kinases and discuss their potential as targets for therapeutic intervention.

9.
Curr Biol ; 29(22): 3887-3898.e4, 2019 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-31679932

RESUMO

Critical to evolutionary fitness, animals regulate social behaviors by integrating signals from both their external environments and internal states. Here, we find that population density modulates the courtship behavior of male Drosophila melanogaster in an age-dependent manner. In a competitive mating assay, males reared in a social environment have a marked advantage in courting females when pitted against males reared in isolation. Group housing promotes courtship in mature (7-day) but not immature (2-day) males; this behavioral plasticity requires the Or47b pheromone receptor. Using single-sensillum recordings, we find that group housing increases the response of Or47b olfactory receptor neurons (ORNs) only in mature males. The effect of group housing on olfactory response and behavior can be mimicked by chronically exposing single-housed males to an Or47b ligand. At the molecular level, group housing elevates Ca2+ levels in Or47b ORNs, likely leading to CaMKI-mediated activation of the histone-acetyl transferase CBP. This signaling event in turn enhances the efficacy of juvenile hormone, an age-related regulator of reproductive maturation in flies. Furthermore, the male-specific Fruitless isoform (FruM) is required for the sensory plasticity, suggesting that FruM functions as a downstream genomic coincidence detector in Or47b ORNs-integrating reproductive maturity, signaled by juvenile hormone, and population density, signaled by CBP. In all, we identify a neural substrate and activity-dependent mechanism by which social context can directly influence pheromone sensitivity, thereby modulating social behavior according to animals' life-history stage.


Assuntos
Feromônios/metabolismo , Comportamento Sexual Animal/fisiologia , Fatores Etários , Animais , Comportamento Animal/fisiologia , Proteína Quinase Tipo 1 Dependente de Cálcio-Calmodulina/metabolismo , Copulação/fisiologia , Corte , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Feminino , Histona Acetiltransferases/metabolismo , Masculino , Proteínas do Tecido Nervoso/genética , Neurônios Receptores Olfatórios/fisiologia , Feromônios/fisiologia , Densidade Demográfica , Isoformas de Proteínas , Olfato/fisiologia , Comportamento Social , Meio Social , Fatores de Transcrição/genética
10.
Reprod Toxicol ; 81: 229-236, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30125682

RESUMO

Exposure to radiofrequency fields (RF) has been reported to induce adverse effects on testosterone production and its daily rhythm. However, the mechanisms underneath this effect remain unknown. In this study, male mice were exposed to 1800 MHz radiofrequency fields (RF, 40 µW/cm2 power intensity and 0.0553 W/Kg SAR) 2 h per day for 32 days. The data suggested that RF exposure: (i) significantly reduced testosterone levels, (ii) altered the expression of genes involved in its synthesis (Star, P450scc, P450c17 and 3ß-Hsd) in testicular tissue, (iii) significantly reduced regulatory protein CaMKI/RORα. Similar observations were also made in cultured primary Leydig cells exposed in vitro to RF. However, all of these observations were blocked by CaMK inhibitor, KN-93, and ionomycin reversed the down-regulation effects on intracellular [Ca2+]i and CaMKI/RORα expression induced by RF exposure. Thus, the data provided the evidence that RF-induced inhibition of testosterone synthesis might be mediated through CaMKI/RORα signaling pathway. Capsule: CaMKI/RORα signaling pathway was involved in the inhibition of testosterone synthesis induced by RF exposure.


Assuntos
Proteína Quinase Tipo 1 Dependente de Cálcio-Calmodulina/metabolismo , Membro 1 do Grupo F da Subfamília 1 de Receptores Nucleares/metabolismo , Ondas de Rádio , Testosterona/metabolismo , Animais , Benzilaminas/farmacologia , Proteína Quinase Tipo 1 Dependente de Cálcio-Calmodulina/genética , Células Cultivadas , Ionomicina/farmacologia , Células Intersticiais do Testículo/metabolismo , Células Intersticiais do Testículo/efeitos da radiação , Masculino , Camundongos Endogâmicos C57BL , Membro 1 do Grupo F da Subfamília 1 de Receptores Nucleares/genética , Transdução de Sinais/efeitos da radiação , Sulfonamidas/farmacologia
11.
Elife ; 42015 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-26335407

RESUMO

Information about nutrient availability is assessed via largely unknown mechanisms to drive developmental decisions, including the choice of Caenorhabditis elegans larvae to enter into the reproductive cycle or the dauer stage. In this study, we show that CMK-1 CaMKI regulates the dauer decision as a function of feeding state. CMK-1 acts cell-autonomously in the ASI, and non cell-autonomously in the AWC, sensory neurons to regulate expression of the growth promoting daf-7 TGF-ß and daf-28 insulin-like peptide (ILP) genes, respectively. Feeding state regulates dynamic subcellular localization of CMK-1, and CMK-1-dependent expression of anti-dauer ILP genes, in AWC. A food-regulated balance between anti-dauer ILP signals from AWC and pro-dauer signals regulates neuroendocrine signaling and dauer entry; disruption of this balance in cmk-1 mutants drives inappropriate dauer formation under well-fed conditions. These results identify mechanisms by which nutrient information is integrated in a small neuronal network to modulate neuroendocrine signaling and developmental plasticity.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/crescimento & desenvolvimento , Proteína Quinase Tipo 1 Dependente de Cálcio-Calmodulina/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Células Receptoras Sensoriais/enzimologia , Transdução de Sinais , Animais , Insulinas , Receptor de Insulina/metabolismo , Células Receptoras Sensoriais/fisiologia , Fator de Crescimento Transformador beta/metabolismo
12.
Neurobiol Aging ; 35(6): 1325-33, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24461366

RESUMO

The molecular basis of selective neuronal vulnerability in Alzheimer's disease (AD) remains poorly understood. Using basal forebrain cholinergic neurons (BFCNs) as a model and immunohistochemistry, we have demonstrated significant age-related loss of the calcium-binding protein calbindin-D(28K) (CB) from BFCN, which was associated with tangle formation and degeneration in AD. Here, we determined alterations in RNA and protein for CB and the Ca(2+)-responsive proteins Ca(2+)/calmodulin-dependent protein kinase I (CaMKI), growth-associated protein-43 (GAP43), and calpain in the BF. We observed progressive downregulation of CB and CaMKI RNA in laser-captured BFCN in the normal-aged-AD continuum. We also detected progressive loss of CB, CaMKIδ, and GAP43 proteins in BF homogenates in aging and AD. Activated µ-calpain, a calcium-sensitive protease that degrades CaMKI and GAP43, was significantly increased in the normal aged BF and was 10 times higher in AD BF. Overactivation of µ-calpain was confirmed using proteolytic fragments of its substrate spectrin. Substantial age- and AD-related alterations in Ca(2+)-sensing proteins most likely contribute to selective vulnerability of BFCN to degeneration in AD.


Assuntos
Envelhecimento/genética , Doença de Alzheimer/genética , Calbindina 1/deficiência , Calbindina 1/metabolismo , Neurônios Colinérgicos/metabolismo , Prosencéfalo/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Envelhecimento/patologia , Doença de Alzheimer/patologia , Calbindina 1/genética , Proteína Quinase Tipo 1 Dependente de Cálcio-Calmodulina/genética , Proteína Quinase Tipo 1 Dependente de Cálcio-Calmodulina/metabolismo , Calpaína/metabolismo , Neurônios Colinérgicos/patologia , Feminino , Proteína GAP-43/metabolismo , Humanos , Imuno-Histoquímica , Masculino , Pessoa de Meia-Idade , Degeneração Neural/genética , Degeneração Neural/metabolismo , Degeneração Neural/patologia , Emaranhados Neurofibrilares/metabolismo , Emaranhados Neurofibrilares/patologia , Prosencéfalo/patologia , RNA/metabolismo , Adulto Jovem
13.
Cell Signal ; 25(10): 2047-59, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23707388

RESUMO

Cell cycle progression through its regulatory control by changes in intracellular Ca(2+) levels at the G1/S transition mediates cellular proliferation and viability. Ca(2+)/CaM-dependent kinase 1 (CaMKI) appears critical in regulating the assembly of the cyclin D1/cdk4 complex essential for G1 progression, but how this occurs is unknown. Cyclin D1/cdk4 assembly in the early G1 phase is also regulated via binding to p27. Here, we show that a ubiquitin E3 ligase component, F-box protein Fbxl12, mediates CaMKI degradation via a proteasome-directed pathway leading to disruption of cyclin D1/cdk4 complex assembly and resultant G1 arrest in lung epithelia. We also demonstrate that i) CaMKI phosphorylates p27 at Thr(157) and Thr(198) in human cells and at Thr(170) and Thr(197) in mouse cells to modulate its subcellular localization; ii) Fbxl12-induced CaMKI degradation attenuates p27 phosphorylation at these sites in early G1 and iii) activation of CaMKI during G1 transition followed by p27 phosphorylation appears to be upstream to other p27 phosphorylation events, an effect abrogated by Fbxl12 overexpression. Lastly, known inducers of G1 arrest significantly increase Fbxl12 levels in cells. Thus, Fbxl12 may be a previously uncharacterized, functional growth inhibitor regulating cell cycle progression that might be used for mechanism-based therapy.


Assuntos
Sinalização do Cálcio/genética , Proteínas Quinases Dependentes de Cálcio-Calmodulina/metabolismo , Ciclina D1/metabolismo , Proteínas F-Box/metabolismo , Pontos de Checagem da Fase G1 do Ciclo Celular/genética , Animais , Proteínas Quinases Dependentes de Cálcio-Calmodulina/genética , Pontos de Checagem do Ciclo Celular/genética , Ciclina D1/genética , Quinase 4 Dependente de Ciclina/genética , Quinase 4 Dependente de Ciclina/metabolismo , Proteínas F-Box/genética , Regulação da Expressão Gênica , Humanos , Camundongos , Complexo de Endopeptidases do Proteassoma/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteólise
14.
Vasc Health Risk Manag ; 6: 723-34, 2010 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-20859543

RESUMO

The urotensin II receptor, bound by the ligand urotensin II, generates second messengers, ie, inositol triphosphate and diacylglycerol, which stimulate the subsequent release of calcium (Ca(2+)) in vascular smooth muscle cells. Ca(2+) influx leads to the activation of Ca(2+)-dependent kinases (CaMK) via calmodulin binding, resulting in cellular proliferation. We hypothesize that urotensin II signaling in pulmonary arterial vascular smooth muscle cells (Pac1) and primary aortic vascular smooth muscle cells (PAVSMC) results in phosphorylation of Ca(2+)/calmodulin-dependent kinases leading to cellular proliferation. Exposure of Pac1 cultures to urotensin II increased intracellular Ca(2+), subsequently activating Ca(2+)/calmodulin-dependent kinase kinase (CaMKK), and Ca(2+)/calmodulin-dependent kinase Type I (CaMKI), extracellular signal-regulated kinase (ERK 1/2), and protein kinase D. Treatment of Pac1 and PAVSMC with urotensin II increased proliferation as measured by (3)H-thymidine uptake. The urotensin II-induced increase in (3)H-thymidine incorporation was inhibited by a CaMKK inhibitor. Taken together, our results demonstrate that urotensin II stimulation of smooth muscle cells leads to a Ca(2+)/calmodulin-dependent kinase-mediated increase in cellular proliferation.


Assuntos
Músculo Liso Vascular/crescimento & desenvolvimento , Transdução de Sinais/fisiologia , Urotensinas/fisiologia , Animais , Aorta/fisiologia , Western Blotting , Sinalização do Cálcio/fisiologia , Proteína Quinase Tipo 1 Dependente de Cálcio-Calmodulina/metabolismo , Proliferação de Células , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Expressão Gênica/fisiologia , Músculo Liso Vascular/fisiologia , Fosforilação , Proteína Quinase C/metabolismo , Artéria Pulmonar/fisiologia , Ratos , Ratos Sprague-Dawley , Receptores Acoplados a Proteínas G/biossíntese , Receptores Acoplados a Proteínas G/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA