Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Clin Infect Dis ; 76(3): e1320-e1327, 2023 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-35883256

RESUMO

BACKGROUND: Cache Valley virus (CVV) is a mosquito-borne virus that is a rare cause of disease in humans. In the fall of 2020, a patient developed encephalitis 6 weeks following kidney transplantation and receipt of multiple blood transfusions. METHODS: After ruling out more common etiologies, metagenomic next-generation sequencing (mNGS) of cerebrospinal fluid (CSF) was performed. We reviewed the medical histories of the index kidney recipient, organ donor, and recipients of other organs from the same donor and conducted a blood traceback investigation to evaluate blood transfusion as a possible source of infection in the kidney recipient. We tested patient specimens using reverse-transcription polymerase chain reaction (RT-PCR), the plaque reduction neutralization test, cell culture, and whole-genome sequencing. RESULTS: CVV was detected in CSF from the index patient by mNGS, and this result was confirmed by RT-PCR, viral culture, and additional whole-genome sequencing. The organ donor and other organ recipients had no evidence of infection with CVV by molecular or serologic testing. Neutralizing antibodies against CVV were detected in serum from a donor of red blood cells received by the index patient immediately prior to transplant. CVV neutralizing antibodies were also detected in serum from a patient who received the co-component plasma from the same blood donation. CONCLUSIONS: Our investigation demonstrates probable CVV transmission through blood transfusion. Clinicians should consider arboviral infections in unexplained meningoencephalitis after blood transfusion or organ transplantation. The use of mNGS might facilitate detection of rare, unexpected infections, particularly in immunocompromised patients.


Assuntos
Vírus Bunyamwera , Transplante de Rim , Meningoencefalite , Humanos , Anticorpos Neutralizantes , Transfusão de Sangue , Transplante de Rim/efeitos adversos , Meningoencefalite/diagnóstico
2.
Emerg Infect Dis ; 28(2): 303-313, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35075998

RESUMO

Cache Valley virus (CVV) is a mosquitoborne virus that infects livestock and humans. We report results of surveillance for CVV in New York, USA, during 2000-2016; full-genome analysis of selected CVV isolates from sheep, horse, humans, and mosquitoes from New York and Canada; and phenotypic characterization of selected strains. We calculated infection rates by using the maximum-likelihood estimation method by year, region, month, and mosquito species. The highest maximum-likelihood estimations were for Anopheles spp. mosquitoes. Our phylogenetic analysis identified 2 lineages and found evidence of segment reassortment. Furthermore, our data suggest displacement of CVV lineage 1 by lineage 2 in New York and Canada. Finally, we showed increased vector competence of An. quadrimaculatus mosquitoes for lineage 2 strains of CVV compared with lineage 1 strains.


Assuntos
Anopheles , Vírus Bunyamwera , Animais , Vírus Bunyamwera/genética , Cavalos , Mosquitos Vetores , New York/epidemiologia , Filogenia , Ovinos
3.
Clin Infect Dis ; 73(9): 1700-1702, 2021 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-33630998

RESUMO

An adult male from Missouri sought care for fever, fatigue, and gastrointestinal symptoms. He had leukopenia and thrombocytopenia and was treated for a presumed tickborne illness. His condition deteriorated with respiratory and renal failure, lactic acidosis, and hypotension. Next-generation sequencing and phylogenetic analysis identified a reassortant Cache Valley virus.


Assuntos
Vírus Bunyamwera , Infecções por Bunyaviridae , Adulto , Infecções por Bunyaviridae/diagnóstico , Infecções por Bunyaviridae/epidemiologia , Febre , Humanos , Masculino , Missouri/epidemiologia , Filogenia
4.
Emerg Infect Dis ; 24(3): 553-557, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29460762

RESUMO

We detected Cache Valley virus in Aedes japonicus, a widely distributed invasive mosquito species, in an Appalachian forest in the United States. The forest contained abundant white-tailed deer, a major host of the mosquito and virus. Vector competence trials indicated that Ae. j. japonicus mosquitoes can transmit this virus in this region.


Assuntos
Aedes/virologia , Vírus Bunyamwera , Infecções por Bunyaviridae/epidemiologia , Infecções por Bunyaviridae/transmissão , Animais , Região dos Apalaches/epidemiologia , Vírus Bunyamwera/classificação , Vírus Bunyamwera/genética , Infecções por Bunyaviridae/virologia , Geografia , Humanos , Vigilância em Saúde Pública
5.
Emerg Infect Dis ; 23(8): 1325-1331, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28726602

RESUMO

Despite the lack of evidence for symptomatic human infection with Maguari virus (MAGV), its close relation to Cache Valley virus (CVV), which does infect humans, remains a concern. We sequenced the complete genome of a MAGV-like isolate (OBS6657) obtained from a febrile patient in Pucallpa, Ucayali, Peru, in 1998. To facilitate its classification, we generated additional full-length sequences for the MAGV prototype strain, 3 additional MAGV-like isolates, and the closely related CVV (7 strains), Tlacotalpan (1 strain), Playas (3 strains), and Fort Sherman (1 strain) viruses. The OBS6657 isolate is similar to the MAGV prototype, whereas 2 of the other MAGV-like isolates are located on a distinct branch and most likely warrant classification as a separate virus species and 1 is, in fact, a misclassified CVV strain. Our findings provide clear evidence that MAGV can cause human disease.


Assuntos
Infecções por Bunyaviridae/epidemiologia , Infecções por Bunyaviridae/virologia , Orthobunyavirus/classificação , Orthobunyavirus/genética , Geografia Médica , Humanos , Orthobunyavirus/imunologia , Filogenia , Filogeografia , RNA Viral , Análise de Sequência de DNA , Sorotipagem , Sequenciamento Completo do Genoma
6.
Parasit Vectors ; 17(1): 270, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38926834

RESUMO

BACKGROUND: Cache Valley virus (CVV) is an understudied Orthobunyavirus with a high spillover transmission potential due to its wide geographical distribution and large number of associated hosts and vectors. Although CVV is known to be widely distributed throughout North America, no studies have explored its geography or employed computational methods to explore the mammal and mosquito species likely participating in the CVV sylvatic cycle. METHODS: We used a literature review and online databases to compile locality data for CVV and its potential vectors and hosts. We linked location data points with climatic data via ecological niche modeling to estimate the geographical range of CVV and hotspots of transmission risk. We used background similarity tests to identify likely CVV mosquito vectors and mammal hosts to detect ecological signals from CVV sylvatic transmission. RESULTS: CVV distribution maps revealed a widespread potential viral occurrence throughout North America. Ecological niche models identified areas with climate, vectors, and hosts suitable to maintain CVV transmission. Our background similarity tests identified Aedes vexans, Culiseta inornata, and Culex tarsalis as the most likely vectors and Odocoileus virginianus (white-tailed deer) as the most likely host sustaining sylvatic transmission. CONCLUSIONS: CVV has a continental-level, widespread transmission potential. Large areas of North America have suitable climate, vectors, and hosts for CVV emergence, establishment, and spread. We identified geographical hotspots that have no confirmed CVV reports to date and, in view of CVV misdiagnosis or underreporting, can guide future surveillance to specific localities and species.


Assuntos
Vírus Bunyamwera , Ecossistema , Mosquitos Vetores , Animais , Mosquitos Vetores/virologia , América do Norte/epidemiologia , Culicidae/virologia , Infecções por Bunyaviridae/transmissão , Infecções por Bunyaviridae/epidemiologia , Infecções por Bunyaviridae/virologia , Geografia , Culex/virologia , Aedes/virologia , Mamíferos/virologia , Cervos/virologia , Humanos , Ecologia
7.
Emerg Infect Dis ; 19(6): 886-91, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23731788

RESUMO

During outbreaks of infectious diseases or in cases of severely ill patients, it is imperative to identify the causative agent. This report describes several events in which virus isolation and identification by electron microscopy were critical to initial recognition of the etiologic agent, which was further analyzed by additional laboratory diagnostic assays. Examples include severe acute respiratory syndrome coronavirus, and Nipah, lymphocytic choriomeningitis, West Nile, Cache Valley, and Heartland viruses. These cases illustrate the importance of the techniques of cell culture and electron microscopy in pathogen identification and recognition of emerging diseases.


Assuntos
Viroses/diagnóstico , Vírus/isolamento & purificação , Vírus/ultraestrutura , Arenaviridae/isolamento & purificação , Arenaviridae/ultraestrutura , Bunyaviridae/isolamento & purificação , Bunyaviridae/ultraestrutura , Técnicas de Cultura de Células , Coronaviridae/isolamento & purificação , Coronaviridae/ultraestrutura , Flaviviridae/isolamento & purificação , Flaviviridae/ultraestrutura , Humanos , Microscopia Eletrônica , Paramyxoviridae/isolamento & purificação , Paramyxoviridae/ultraestrutura , Estados Unidos/epidemiologia , Viroses/epidemiologia , Viroses/virologia
8.
Viral Immunol ; 36(1): 41-47, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36622942

RESUMO

Cache Valley virus (CVV) is a mosquito-borne bunyavirus that is enzootic throughout the new world. Although CVV is known as an important agricultural pathogen, primarily associated with embryonic lethality and abortions in ruminants, it has recently been recognized for its expansion as a zoonotic pathogen. With the increased emergence of bunyaviruses with human and veterinary importance, there have been significant efforts dedicated to the development of bunyavirus vaccines. In this study, the immunogenicity of a candidate live-attenuated vaccine (LAV) for CVV, which contains the deletion of the nonstructural small (NSs) and nonstructural medium (NSm) genes (2delCVV), was evaluated and compared with an autogenous candidate vaccine created through the inactivation of CVV using binary ethylenimine (BEI) with an aluminum hydroxide adjuvant (BEI-CVV) in sheep. Both 2delCVV and BEI-CVV produced a neutralizing antibody response that exceeds the correlate of protection, that is, plaque reduction neutralization test titer >10. However, on day 63 postinitial immunization, 2delCVV was more immunogenic than BEI-CVV. These results warrant further development of 2delCVV as a candidate LAV and demonstrate that the double deletion of the NSs and NSm genes can be applied to the development of vaccines and as a common attenuation strategy for orthobunyaviruses.


Assuntos
Vírus Bunyamwera , Vacinas Virais , Gravidez , Feminino , Animais , Humanos , Ovinos , Vírus Bunyamwera/fisiologia , Vacinas Atenuadas , Vacinas de Produtos Inativados , Anticorpos Neutralizantes
9.
Vector Borne Zoonotic Dis ; 22(11): 553-558, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36354965

RESUMO

Background: The emergence or re-emergence of several orthobunyaviruses (order: Bunyavirales; family: Peribunyaviridae), including Cache Valley virus (CVV) and Oropouche virus, warrants the development and evaluation of candidate live-attenuated vaccines (LAVs). Ideally, these vaccines would elicit long-lasting immunity with one single immunization. Materials and Methods: Since the deletion of two virulence factors, NSs and NSm, has been shown to attenuate the virulence phenotype of orthobunyaviruses, phleboviruses, and nairoviruses, genetic manipulation of the viral genome is considered an effective strategy for the rational design of candidate LAVs for bunyaviruses across multiple families. In addition, the deletion of Rift Valley fever virus NSs and NSm genes has been shown to reduce transmission by mosquitoes. Results: In this study, the ability of a CVV mutant lacking the NSs and NSm genes (2delCVV) to replicate in intrathoracically injected Aedes albopictus was compared with the parental wild-type CVV (wtCVV) 6V633 strain. In contrast to the robust replication of wtCVV in injected mosquitoes, the multiplication kinetics of the 2delCVV mutant was reduced by more than a 100-fold. Conclusion: These results suggest that the deletion of NSm and NSs genes is a feasible approach to rationally design candidate orthobunyavirus LAVs that are highly attenuated in mosquitoes and, therefore, pose little risk of reversion to virulence and transmission.


Assuntos
Aedes , Vírus Bunyamwera , Febre do Vale de Rift , Vírus da Febre do Vale do Rift , Vacinas Virais , Animais , Vacinas Atenuadas , Cinética , Vírus da Febre do Vale do Rift/genética , Replicação Viral
10.
Emerg Microbes Infect ; 11(1): 741-748, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35179429

RESUMO

We report surveillance results of Cache Valley virus (CVV; Peribunyaviridae, Orthobunyavirus) from 2017 to 2020 in New York State (NYS). Infection rates were calculated using the maximum likelihood estimation (MLE) method by year, region, and mosquito species. The highest infection rates were identified among Anopheles spp. mosquitoes and we detected the virus in Aedes albopictus for the first time in NYS. Based on our previous Anopheles quadrimaculatus vector competence results for nine CVV strains, we selected among them three stains for further characterization. These include two CVV reassortants (PA and 15041084) and one CVV lineage 2 strain (Hu-2011). We analyzed full genomes, compared in vitro growth kinetics and assessed vector competence of Aedes albopictus. Sequence analysis of the two reassortant strains (PA and 15041084) revealed 0.3%, 0.4%, and 0.3% divergence; and 1, 10, and 6 amino acid differences for the S, M, and L segments, respectively. We additionally found that the PA strain was attenuated in vertebrate (Vero) and mosquito (C6/36) cell culture. Furthemore, Ae. albopictus mosquitoes are competent vectors for CVV Hu-2011 (16.7-62.1% transmission rates) and CVV 15041084 (27.3-48.0% transmission rates), but not for the human reassortant (PA) isolate, which did not disseminate from the mosquito midgut. Together, our results demonstrate significant phenotypic variability among strains and highlight the capacity for Ae. albopictus to act as a vector of CVV.


Assuntos
Aedes , Vírus Bunyamwera , Animais , Vírus Bunyamwera/genética , Vetores de Doenças , Humanos , Mosquitos Vetores , New York
11.
Emerg Microbes Infect ; 10(1): 1649-1659, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34353229

RESUMO

Cache Valley virus (CVV) is a prevalent emerging pathogen of significant importance to agricultural and human health in North America. Emergence in livestock can result in substantial agroeconomic losses resulting from the severe embryonic lethality associated with infection during pregnancy. Although CVV pathogenesis has been well described in ruminants, small animal models are still unavailable, which limits our ability to study its pathogenesis and perform preclinical testing of therapeutics. Herein, we explored CVV pathogenesis, tissue tropism, and disease outcomes in a variety of murine models, including immune -competent and -compromised animals. Our results show that development of CVV disease in mice is dependent on innate immune responses, and type I interferon signalling is essential for preventing infection in mice. IFN-αßR-/- mice infected with CVV present with significant disease and lethal infections, with minimal differences in age-dependent pathogenesis, suggesting this model is appropriate for pathogenesis-related, and short- and long-term therapeutic studies. We also developed a novel CVV in utero transmission model that showed high rates of transmission, spontaneous abortions, and congenital malformations during infection. CVV infection presents a wide tissue tropism, with significant amplification in liver, spleen, and placenta tissues. Immune-competent mice are generally resistant to infection, and only show disease in an age dependent manner. Given the high seropositivity rates in regions of North America, and the continuing geographic expansion of competent mosquito vectors, the risk of epidemic and epizootic emergence of CVV is high, and interventions are needed for this important pathogen.


Assuntos
Vírus Bunyamwera/patogenicidade , Infecções por Bunyaviridae/transmissão , Infecções por Bunyaviridae/virologia , Modelos Animais de Doenças , Transmissão Vertical de Doenças Infecciosas , Camundongos , Animais , Feminino , Mosquitos Vetores/virologia , Gravidez
12.
Parasit Vectors ; 13(1): 188, 2020 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-32276649

RESUMO

BACKGROUND: Vector-borne diseases are a major public health concern and cause significant morbidity and mortality. Zika virus (ZIKV) is the etiologic agent of a massive outbreak in the Americas that originated in Brazil in 2015 and shows a strong association with congenital ZIKV syndrome in newborns. Cache Valley virus (CVV) is a bunyavirus that causes mild to severe illness in humans and ruminants. In this study, we investigated the vector competence of Virginia mosquitoes for ZIKV and CVV to explore their abilities to contribute to potential outbreaks. METHODS: To determine vector competence, mosquitoes were fed a blood meal comprised of defibrinated sheep blood and virus. The presence of midgut or salivary gland barriers to ZIKV infection were determined by intrathoracic inoculation vs oral infection. After 14-days post-exposure, individual mosquitoes were separated into bodies, legs and wings, and saliva expectorant. Virus presence was detected by plaque assay to determine midgut infection, dissemination, and transmission rates. RESULTS: Transmission rates for Ae. albopictus orally infected (24%) and intrathoracically inoculated (63%) with ZIKV was similar to Ae. aegypti (48% and 71%, respectively). Transmission rates of ZIKV in Ae. japonicus were low, and showed evidence of a midgut infection barrier demonstrated by low midgut infection and dissemination rates from oral infection (3%), but increased transmission rates after intrathoracic inoculation (19%). Aedes triseriatus was unable to transmit ZIKV following oral infection or intrathoracic inoculation. CVV transmission was dose-dependent where mosquitoes fed high titer (ht) virus blood meals developed higher rates of midgut infection, dissemination, and transmission compared to low titer (lt) virus blood meals. CVV was detected in the saliva of Ae. albopictus (ht: 68%, lt: 24%), Ae. triseriatus (ht: 52%, lt: 7%), Ae. japonicus (ht: 22%, lt: 0%) and Ae. aegypti (ht: 10%; lt: 7%). Culex pipiens and Cx. restuans were not competent for ZIKV or CVV. CONCLUSIONS: This laboratory transmission study provided further understanding of potential ZIKV and CVV transmission cycles with Aedes mosquitoes from Virginia. The ability for these mosquitoes to transmit ZIKV and CVV make them a public health concern and suggest targeted control programs by mosquito and vector abatement districts.


Assuntos
Vírus Bunyamwera/isolamento & purificação , Mosquitos Vetores/virologia , Zika virus/isolamento & purificação , Aedes/virologia , Animais , Bioensaio , Sangue/virologia , Infecções por Bunyaviridae/transmissão , Culex/virologia , Vetores de Doenças , Humanos , Intestinos/virologia , Saliva/virologia , Estados Unidos , Carga Viral , Virginia , Infecção por Zika virus/transmissão
13.
Parasit Vectors ; 12(1): 384, 2019 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-31366369

RESUMO

BACKGROUND: Cache Valley virus (CVV; Bunyavirales, Peribunyaviridae) is a mosquito-borne arbovirus endemic in North America. Although severe diseases are mainly observed in pregnant ruminants, CVV has also been recognized as a zoonotic pathogen that can cause fatal encephalitis in humans. Human exposures to CVV and its related subtypes occur frequently under different ecological conditions in the New World; however, neurotropic disease is rarely reported. High prevalence rates of neutralizing antibodies have been detected among residents in several Latin American cities. However, zoophilic mosquito species involved in the enzootic transmission are unlikely to be responsible for the transmission leading to human exposures to CVV. Mechanisms that lead to frequent human exposures to CVV remain largely unknown. In this study, competence of two anthropophilic mosquitoes, Aedes albopictus and Ae. aegypti, for CVV was determined using per os infection to determine if these species could play a role in the transmission of CVV in the domestic and peridomestic settings of urban and suburban areas. RESULTS: Aedes albopictus were highly susceptible to CVV whereas infection of Ae. aegypti occurred at a significantly lower frequency. Whilst the dissemination rates of CVV were comparable in the two species, the relatively long period to attain maximal infectious titer in Ae. aegypti demonstrated a significant difference in the replication kinetics of CVV in these species. Detection of viral RNA in saliva suggests that both Ae. albopictus and Ae. aegypti are competent vectors for CVV under laboratory conditions. CONCLUSIONS: Differential susceptibility to CVV was observed in Ae. albopictus and Ae. aegypti, reflecting their relatively different capacities for vectoring CVV in nature. The high susceptibility of Ae. albopictus to CVV observed in this study suggests its potential role as an efficient vector for CVV. Complemented by the reports of multiple CVV isolates derived from Ae. albopictus, our finding provides the basis for how the dispersal of Ae. albopictus across the New World may have a significant impact on the transmission and ecology of CVV.


Assuntos
Aedes/virologia , Vírus Bunyamwera/fisiologia , Infecções por Bunyaviridae/transmissão , Mosquitos Vetores/virologia , Zoonoses/transmissão , Zoonoses/virologia , Aedes/fisiologia , Animais , Infecções por Bunyaviridae/virologia , Cidades , Feminino , Humanos , América do Norte , RNA Viral/análise , Saliva/virologia , Carga Viral , Replicação Viral
14.
Infect Genet Evol ; 73: 205-209, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31048078

RESUMO

During 2013, in Argentina, three new isolates of serogroup Bunyamwera virus (genus Orthobunyavirus, family Peribunyaviridae) were recovered from two horses with encephalitis, and from an aborted equine fetus. In the present study, we report the complete genome sequence, genetic characterization, and phylogenetic analysis of three new strains isolated in Argentina to clarifying their relationship within the Bunyamwera serogroup virus and to investigate the evolutionary history of viruses with segmented genomes.


Assuntos
Infecções por Bunyaviridae/veterinária , Genoma Viral , Genômica , Gado/virologia , Orthobunyavirus/genética , Animais , Infecções por Bunyaviridae/virologia , Filogenia
15.
Parasit Vectors ; 11(1): 519, 2018 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-30236148

RESUMO

BACKGROUND: Cache Valley virus (CVV) is a mosquito-borne orthobunyavirus endemic in North America. The virus is an important agricultural pathogen leading to abortion and embryonic lethality in ruminant species, especially sheep. The importance of CVV in human public health has recently increased because of the report of severe neurotropic diseases. However, mosquito species responsible for transmission of the virus to humans remain to be determined. In this study, vector competence of three Culex species mosquitoes of public health importance, Culex pipiens, Cx. tarsalis and Cx. quinquefasciatus, was determined in order to identify potential bridge vector species responsible for the transmission of CVV from viremic vertebrate hosts to humans. RESULTS: Variation of susceptibility to CVV was observed among selected Culex species mosquitoes tested in this study. Per os infection resulted in the establishment of infection and dissemination in Culex tarsalis, whereas Cx. pipiens and Cx. quinquefasciatus were highly refractory to CVV. Detection of viral RNA in saliva collected from infected Cx. tarsalis provided evidence supporting its role as a competent vector. CONCLUSIONS: Our study provided further understanding of the transmission cycles of CVV and identifies Cx. tarsalis as a competent vector.


Assuntos
Vírus Bunyamwera/fisiologia , Infecções por Bunyaviridae/transmissão , Culex/virologia , Mosquitos Vetores/virologia , Doenças dos Ovinos/transmissão , Animais , Infecções por Bunyaviridae/virologia , Chlorocebus aethiops , Feminino , Humanos , Masculino , América do Norte , Saúde Pública , RNA Viral/isolamento & purificação , Saliva/virologia , Ovinos , Doenças dos Ovinos/virologia , Especificidade da Espécie , Células Vero
16.
J Am Mosq Control Assoc ; 34(1): 1-10, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-31442119

RESUMO

Seasonal abundance of mosquitoes, their viruses, and blood-feeding habits were determined at an open-faced quarry in North Branford, CT, in 2010 and 2011. This unique habitat had not previously been sampled for mosquitoes and mosquito-borne viruses. Thirty species of mosquitoes were identified from 41,719 specimens collected. Coquillettidia perturbans, Aedes trivittatus, and Ae. vexans were the most abundant species and represented 34.5%, 17.7%, and 14.8% of the totals, respectively. Jamestown Canyon virus was isolated from 6 species of mosquitoes collected from mid-June through July: Cq. perturbans (3 pools), Ae. cantator (3), Ae. trivittatus (2), Ae. aurifer (1), Ae. excrucians (1), and Culex pipiens (1). West Nile virus was cultured from 8 pools of Cx. pipiens and from 1 pool of Culiseta melanura collected from mid-August through late September. Cache Valley virus was isolated from 4 species of mosquitoes in 3 genera from about mid-August through late September 2011: Cq. perturbans (5 pools), Ae. trivittatus (2), Anopheles punctipennis (1), and An. quadrimaculatus (1). Nine different mammalian hosts were identified as sources of blood for 13 species of mosquitoes. White-tailed deer, Odocoileus virginianus, were the most common mammalian hosts (90.8%), followed by raccoon, Procyon lotor (3.1%), coyote, Canis latrans (2.4%), and human, Homo sapiens (1.2%). Exclusive mammalian blood-feeding mosquitoes included: Ae. canadensis, Ae. cantator, Ae. excrucians, Ae. japonicus, Ae. vexans, An. punctipennis, and Cx. salinarius. Fourteen species of birds, mostly Passeriformes, were identified as sources of blood from 6 mosquito species. Five species that fed on mammals (Ae. thibaulti, Ae. trivittatus, Ae. cinereus, Cq. perturbans, and Cx. pipiens) also fed on birds.


Assuntos
Distribuição Animal , Arbovírus/isolamento & purificação , Culicidae/fisiologia , Animais , Connecticut , Culicidae/virologia , Dieta , Comportamento Alimentar , Feminino , Dinâmica Populacional , Estações do Ano
17.
Vector Borne Zoonotic Dis ; 15(11): 683-93, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26565774

RESUMO

A cross-sectional study was performed to identify operation-level risk factors associated with prevalence of antibody to Bunyamwera (BUN) serogroup viruses in sheep in the United States. Sera were obtained from 5150 sheep in 270 operations located in 22 states (three in the west, nine central states, and 10 in the east) and tested at a dilution of 1:20 by a plaque reduction neutralization test (PRNT) using Cache Valley virus (CVV). Antibodies that neutralized CVV were identified in 1455 (28%) sheep. Animal-level seroprevalence was higher in the east (49%) than the central (17%) and western (10%) states. A convenient subset (n = 509) of sera with antibodies that neutralized CVV was titrated and further analyzed by PRNT using all six BUN serogroup viruses that occur in the United States: CVV, Lokern virus (LOKV), Main Drain virus (MDV), Northway virus (NORV), Potosi virus (POTV), and Tensaw virus (TENV). Antibodies to CVV and LOKV were identified in sheep in all three geographic regions; MDV and POTV activity was detected in the central and eastern states, NORV activity was restricted to the west, and antibodies to TENV were not detected in any sheep. Several management factors were significantly associated with the presence of antibodies to BUN serogroup viruses. For instance, sheep housed during the lambing season inside structures that contained four walls and a roof and a door closed most of the time were more likely to be seropositive than other sheep. In contrast, herded/open-range sheep were less likely to be seropositive than their counterparts. These data can be used by producers to implement strategies to reduce the likelihood of BUN serogroup virus infection and improve the health and management practices of sheep.


Assuntos
Vírus Bunyamwera/imunologia , Infecções por Bunyaviridae/veterinária , Doenças dos Ovinos/imunologia , Criação de Animais Domésticos , Animais , Anticorpos Antivirais/sangue , Infecções por Bunyaviridae/epidemiologia , Infecções por Bunyaviridae/imunologia , Estudos Transversais , Prevalência , Estudos Soroepidemiológicos , Ovinos , Doenças dos Ovinos/epidemiologia , Carneiro Doméstico , Estados Unidos/epidemiologia
18.
Vector Borne Zoonotic Dis ; 14(10): 763-73, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25325321

RESUMO

Cache Valley virus (CVV) is a mosquito-borne bunyavirus (family Bunyaviridae, genus Orthobunyavirus) that is enzootic throughout much of North and Central America. White-tailed deer (Odocoileus virginianus) have been incriminated as important reservoir and amplification hosts. CVV has been found in a diverse array of mosquito species, but the principal vectors are unknown. A 16-year study was undertaken to identify the primary mosquito vectors in Connecticut, quantify seasonal prevalence rates of infection, and define the spatial geographic distribution of CVV in the state as a function of land use and white-tailed deer populations, which have increased substantially over this period. CVV was isolated from 16 mosquito species in seven genera, almost all of which were multivoltine and mammalophilic. Anopheles (An.) punctipennis was incriminated as the most consistent and likely vector in this region on the basis of yearly isolation frequencies and the spatial geographic distribution of infected mosquitoes. Other species exhibiting frequent temporal and moderate spatial geographic patterns of virus isolation within the state included Ochlerotatus (Oc.) trivittatus, Oc. canadensis, Aedes (Ae.) vexans, and Ae. cinereus. New isolation records for CVV were established for An. walkeri, Culiseta melanura, and Oc. cantator. Other species from which CVV was isolated included An. quadrimaculatus, Coquillettidia perturbans, Culex salinarius, Oc. japonicus, Oc. sollicitans, Oc. taeniorhynchus, Oc. triseriatus, and Psorophora ferox. Mosquitoes infected with CVV were equally distributed throughout urban, suburban, and rural locales, and infection rates were not directly associated with the localized abundance of white-tailed deer, possibly due to their saturation throughout the region. Virus activity in mosquitoes was episodic with no consistent pattern from year-to-year, and fluctuations in yearly seasonal infection rates did not appear to be directly impacted by overall mosquito abundance. Virus infection in mosquitoes occurred late in the season that mostly extended from mid-August through September, when adult mosquito populations were visibly declining and were comparatively low. Findings argue for a limited role for vertical transmission for the perpetuation of CVV as occurs with other related bunyaviruses.


Assuntos
Vírus Bunyamwera/isolamento & purificação , Infecções por Bunyaviridae/veterinária , Culicidae/virologia , Cervos/virologia , Insetos Vetores/virologia , Animais , Vírus Bunyamwera/classificação , Vírus Bunyamwera/genética , Infecções por Bunyaviridae/epidemiologia , Infecções por Bunyaviridae/virologia , Chlorocebus aethiops , Connecticut/epidemiologia , Culicidae/classificação , Reservatórios de Doenças , Feminino , Geografia , Humanos , Insetos Vetores/classificação , Dinâmica Populacional , Prevalência , Estações do Ano , Análise de Sequência de DNA/veterinária , Análise Espaço-Temporal , Células Vero
19.
Vet Rec Open ; 1(1): e000071, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-26392881

RESUMO

INTRODUCTION: A serological and entomological investigation was performed to monitor for potential Bunyamwera (BUN) serogroup virus activity in Montana. RESULTS: To facilitate the serological investigation, sera were collected from 104 sheep in 2013 and 2014 and assayed by plaque reduction neutralization test using all six BUN serogroup viruses known to occur in the United States: Cache Valley virus (CVV), Lokern virus (LOKV), Main Drain virus (MDV), Northway virus, Potosi virus and Tensaw virus. BUN serogroup virus-specific antibodies were detected in 41 (39%) sheep. Of these, three were seropositive for MDV, one was seropositive for CVV, one was seropositive for LOKV and 36 had antibodies to an undetermined BUN serogroup virus. Additionally, 30,606 Culicoides sonorensis were collected in 2013 using Centers for Disease Control and Prevention (CDC) light traps and assayed for cytopathic virus by virus isolation in African Green Monkey kidney (Vero) cells. All midges were negative. Almost one-third of the midges were further tested by reverse transcription-polymerase chain reaction using BUN serogroup virus-reactive primers and all were negative. CONCLUSIONS: We provide evidence of BUN serogroup virus infection in sheep but not C. sonorensis in Montana in 2013-2014. This study also provides the first evidence of CVV, MDV and LOKV activity in Montana.

20.
Infect Genet Evol ; 20: 124-30, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23988729

RESUMO

Ilesha virus is an arthropod-borne virus belonging to the genus Orthobunyavirus of the Bunyaviridae family. Ilesha virus has been isolated from humans in several African countries, mostly in relation with febrile illness and erythema, though there are reported cases of fatal meningoencephalitis and hemorrhagic fever. In the present study, we report the complete genomic sequence of all three Ilesha virus segments (S, M, L) and characterize the open reading frames. The nucleoprotein encoded by segment S contains 59 conserved orthobunyavirus amino acids putatively critical for protein function. For the polyprotein encoded by segment M, potential proteolytic cleavage sites and N-glycosylation sites as well as conserved cysteines are described in reference to other orthobunyaviruses. Within the C terminal glycoprotein Gc a putative fusion peptide could be localized. In the RNA-dependent RNA polymerase encoded by segment L, all strictly conserved amino acids within the four conserved regions known to be catalytically active are present. Phylogenetic analyses conducted for each Ilesha virus genomic segment confirm the classification of Ilesha virus within the Bunyamwera serogroup of orthobunyaviruses. Ilesha virus segments S and L exhibit highest genetic conservation with Bunyamwera virus and Ngari virus, with maximum sequence identities of 88% for segment S and 82% for segment L. However, the M segment was found to be more diverse with a maximum nucleotide identity of 72% to Bunyamwera serogroup viruses.


Assuntos
Infecções por Bunyaviridae/virologia , Genoma Viral/genética , Orthobunyavirus/genética , África , Sequência de Aminoácidos , Sequência de Bases , Humanos , Dados de Sequência Molecular , Proteínas do Nucleocapsídeo/genética , Orthobunyavirus/classificação , Orthobunyavirus/isolamento & purificação , Filogenia , RNA Viral/genética , RNA Polimerase Dependente de RNA/genética , Alinhamento de Sequência , Análise de Sequência de DNA , Proteínas Virais de Fusão/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA