Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
1.
FASEB J ; 37(7): e23044, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37342905

RESUMO

RUNX1T1 (Runt-related transcription factor 1, translocated to 1) plays a wide-ranging and diverse role in cellular development, including hematopoiesis and adipogenesis. However, little is known about the function of RUNX1T1 in the skeletal muscle development. Here, we assessed the impact of RUNX1T1 on the proliferation and myogenic differentiation of goat primary myoblasts (GPMs). It was observed that RUNX1T1 is highly expressed during the early stages of myogenic differentiation and the fetal stage. Moreover, the knockdown of RUNX1T1 promotes the proliferation and inhibits myogenic differentiation and mitochondrial biogenesis of GPMs. RNA sequencing analysis revealed that significantly differentially expressed genes in RUNX1T1 knockdown cells were enriched in the calcium signaling pathway. Additionally, we discovered that RUNX1T1 regulates alternative splicing (AS) events involved in myogenesis. We also show that silencing RUNX1T1 blocked the Ca2+ -CAMK signaling pathway and reduced the expression levels of muscle-specific isoforms of recombinant rho associated coiled coil containing crotein kinase 2 (ROCK2) during myogenic differentiation, partially explaining why RUNX1T1 deficiency leads to the impairment of myotube formation. These findings suggest that RUNX1T1 is a novel regulator of myogenic differentiation that regulates the calcium signaling pathway and AS of ROCK2. Overall, our results highlight the critical role of RUNX1T1 in myogenesis and broaden our understanding of myogenic differentiation.


Assuntos
Processamento Alternativo , Sinalização do Cálcio , Diferenciação Celular/genética , Desenvolvimento Muscular/genética , Fibras Musculares Esqueléticas/metabolismo , Cabras , Animais
2.
Pharmacol Res ; 204: 107194, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38663526

RESUMO

Antibiotic related intestinal injury in early life affects subsequent health and susceptibility. Here, we employed weaned piglets as a model to investigate the protective effects of baicalin against early-life antibiotic exposure-induced microbial dysbiosis. Piglets exposed to lincomycin showed a marked reduction in body weight (p < 0.05) and deterioration of jejunum intestinal morphology, alongside an increase in antibiotic-resistant bacteria such as Staphylococcus, Dolosicoccus, Escherichia-Shigella, and Raoultella. In contrast, baicalin treatment resulted in body weights, intestinal morphology, and microbial profiles that closely resembled those of the control group (p > 0.05), with a significant increase in norank_f_Muribaculaceae and Prevotellaceae_NK3B31_group colonization compared with lincomycin group (p < 0.05). Further analysis through fecal microbial transplantation into mice revealed that lincomycin exposure led to significant alterations in intestinal morphology and microbial composition, notably increasing harmful microbes and decreasing beneficial ones such as norank_Muribaculaceae and Akkermansia (p < 0.05). This shift was associated with an increase in harmful metabolites and disruption of the calcium signaling pathway gene expression. Conversely, baicalin supplementation not only counteracted these effects but also enhanced beneficial metabolites and regulated genes within the MAPK signaling pathway (MAP3K11, MAP4K2, MAPK7, MAPK13) and calcium channel proteins (ORA13, CACNA1S, CACNA1F and CACNG8), suggesting a mechanism through which baicalin mitigates antibiotic-induced intestinal and microbial disturbances. These findings highlight baicalin's potential as a plant extract-based intervention for preventing antibiotic-related intestinal injury and offer new targets for therapeutic strategies.


Assuntos
Antibacterianos , Flavonoides , Microbioma Gastrointestinal , Lincomicina , Sistema de Sinalização das MAP Quinases , Animais , Flavonoides/farmacologia , Flavonoides/uso terapêutico , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Microbioma Gastrointestinal/efeitos dos fármacos , Suínos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Lincomicina/farmacologia , Camundongos , Disbiose/induzido quimicamente , Disbiose/tratamento farmacológico , Masculino , Intestinos/efeitos dos fármacos , Intestinos/patologia
3.
Appl Microbiol Biotechnol ; 108(1): 317, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38700737

RESUMO

Perylenequinones (PQs) are natural photosensitizing compounds used as photodynamic therapy, and heat stress (HS) is the main limiting factor of mycelial growth and secondary metabolism of fungi. This study aimed to unravel the impact of HS-induced Ca2+ and the calcium signaling pathway on PQ biosynthesis of Shiraia sp. Slf14(w). Meanwhile, the intricate interplay between HS-induced NO and Ca2+ and the calcium signaling pathway was investigated. The outcomes disclosed that Ca2+ and the calcium signaling pathway activated by HS could effectively enhance the production of PQs in Shiraia sp. Slf14(w). Further investigations elucidated the specific mechanism through which NO signaling molecules induced by HS act upon the Ca2+/CaM (calmodulin) signaling pathway, thus propelling PQ biosynthesis in Shiraia sp. Slf14(w). This was substantiated by decoding the downstream positioning of the CaM/CaN (calcineurin) pathway in relation to NO through comprehensive analyses encompassing transcript levels, enzyme assays, and the introduction of chemical agents. Concurrently, the engagement of Ca2+ and the calcium signaling pathway in heat shock signaling was also evidenced. The implications of our study underscore the pivotal role of HS-induced Ca2+ and the calcium signaling pathway, which not only participate in heat shock signal transduction but also play an instrumental role in promoting PQ biosynthesis. Consequently, our study not only enriches our comprehension of the mechanisms driving HS signaling transduction in fungi but also offers novel insights into the PQ synthesis paradigm within Shiraia sp. Slf14(w). KEY POINTS: • The calcium signaling pathway was proposed to participate in PQ biosynthesis under HS. • HS-induced NO was revealed to act upon the calcium signaling pathway for the first time.


Assuntos
Ascomicetos , Sinalização do Cálcio , Perileno , Perileno/análogos & derivados , Quinonas , Ascomicetos/metabolismo , Ascomicetos/genética , Ascomicetos/crescimento & desenvolvimento , Quinonas/metabolismo , Perileno/metabolismo , Óxido Nítrico/metabolismo , Resposta ao Choque Térmico , Cálcio/metabolismo , Temperatura Alta
4.
J Appl Toxicol ; 44(3): 344-354, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37718569

RESUMO

Narcissin is a natural flavonoid from some edible and traditional medicinal plants. It has been proven to have multiple biological functions and exhibits potential therapeutic effects on hypertension, cancer, and Alzheimer's disease. However, the toxicity of narcissin is largely unknown. Here, we revealed that narcissin treatment led to reduced hatchability, increased malformation rate, shorter body length, and slowed blood flow in zebrafish. Furthermore, bradycardia, pericardial edema, increased SV-BA distance, diminished stroke volume, ejection fraction, and ventricular short-axis shortening rate were also found. A large accumulation of ROS, increased apoptotic cells, and histopathological changes were detected in the heart region. Moreover, the gene expression profiles and molecular docking analysis indicated that Nrf2/HO-1 and calcium signaling pathways were involved in narcissin-induced toxicity. In conclusion, here we provide the first evidence that demonstrates narcissin-induced developmental toxicity and cardiotoxicity in zebrafish via Nrf2/HO-1 and calcium signaling pathways for the first time.


Assuntos
Flavonóis , Fator 2 Relacionado a NF-E2 , Peixe-Zebra , Animais , Peixe-Zebra/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Cardiotoxicidade , Sinalização do Cálcio , Simulação de Acoplamento Molecular , Embrião não Mamífero , Estresse Oxidativo
5.
J Appl Toxicol ; 44(6): 919-932, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38400677

RESUMO

Isobavachalcone (IBC) is a flavonoid component derived from Psoraleae Fructus that can increase skin pigmentation and treat vitiligo. However, IBC has been reported to be hepatotoxic. Current studies on IBC hepatotoxicity are mostly on normal organisms but lack studies on hepatotoxicity in patients. This study established the depigmented zebrafish model by using phenylthiourea (PTU) and investigated the difference in hepatotoxicity between normal and depigmented zebrafish caused by IBC and the underlying mechanism. Morphological, histological, and ultrastructural examination and RT-qPCR verification were used to evaluate the effects of IBC on the livers of zebrafish larvae. IBC significantly decreased liver volume, altered lipid metabolism, and induced pathological and ultrastructural changes in the livers of zebrafish with depigmentation compared with normal zebrafish. The RNA-sequencing and RT-qPCR results showed that the difference in hepatotoxicity between normal and depigmented zebrafish caused by IBC was closely related to the calcium signaling pathway, lipid decomposition and metabolism, and oxidative stress. This work delved into the mechanism of the enhanced IBC-induced hepatotoxicity in depigmented zebrafish and provided a new insight into the hepatotoxicity of IBC.


Assuntos
Sinalização do Cálcio , Chalconas , Doença Hepática Induzida por Substâncias e Drogas , Peixe-Zebra , Animais , Chalconas/toxicidade , Sinalização do Cálcio/efeitos dos fármacos , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/patologia , Transtornos do Metabolismo dos Lipídeos/induzido quimicamente , Transtornos do Metabolismo dos Lipídeos/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Metabolismo dos Lipídeos/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos
6.
Biochem Biophys Res Commun ; 671: 215-224, 2023 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-37307704

RESUMO

Muscle fiber is the basic unit of skeletal muscle with strong self-adaptability, and its type is closely related to meat quality. Myod family inhibitor (Mdfi) has the function of regulating myogenic regulatory factors during cell differentiation, but how Mdfi regulates muscle fiber type transformation in myoblasts is still unclear. In the present study, we constructed overexpressing and interfering with Mdfi C2C12 cell models by lipofection. The immunofluorescence, quantitative real-time PCR (qPCR), and western blot results show that the elevated MDFI promoted mitochondrial biogenesis, aerobic metabolism and the calcium level by activating CaMKK2 and AMPK phosphorylation and then stimulated the conversion of C2C12 cells from fast glycolytic to slow oxidative type. In addition, after inhibiting IP3R and RYR channels, the higher MDFI reversed the blockage of calcium release from the endoplasmic reticulum by calcium channel receptor inhibitors and increased intracellular calcium levels. Therefore, we propose that the higher MDFI promotes muscle fiber types conversion through the calcium signaling pathway. These findings further broaden our understanding of the regulatory mechanism of MDFI in muscle fiber type transformation. Furthermore, our results suggest potential therapeutic targets for skeletal muscle and metabolic-related diseases.


Assuntos
Sinalização do Cálcio , Cálcio , Cálcio/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Diferenciação Celular
7.
Appl Environ Microbiol ; 89(11): e0117023, 2023 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-37874299

RESUMO

IMPORTANCE: Calcium ions are ubiquitous intracellular signaling molecules for many signaling pathways regulating the fungal response to stress and antifungal drugs. The concentration of intracellular calcium is tightly regulated in its storage, release, and distribution. CrzA is the best-studied transcription factor that regulates this process under sufficient calcium or other external signals. However, CrzA was excluded from nuclei and then lost transcriptional activation under calcium-limited conditions. The regulators in the Ca2+ signaling pathway under calcium-limited conditions remain unclear. Here, we identified SltA as a key regulator in the Ca2+ signaling pathway under calcium-limited conditions, and the underlying mechanisms were further explored in Aspergillus fumigatus. These findings reveal a transcriptional control pathway that precisely regulates calcium homeostasis under calcium-limited conditions.


Assuntos
Cálcio , Fatores de Transcrição , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Cálcio/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Aspergillus fumigatus/genética , Aspergillus fumigatus/metabolismo , Homeostase
8.
Mol Biol Rep ; 50(10): 8237-8247, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37572211

RESUMO

BACKGROUND: Aflatoxin B1 (AFB1), one of the most prevalent contaminants in human and animal food, impairs the immune system, but information on the mechanisms of AFB1-mediated macrophage toxicity is still lacking. METHODS AND RESULTS: In this study, for the first time, we employed whole transcriptome sequencing technology to explore the molecular mechanism by which AFB1 affects the growth of porcine alveolar macrophages (PAM). We found that AFB1 exposure reduced the proliferative capacity of PAM and prevented cell cycle progression. Based on whole transcriptome analysis, RT-qPCR, ICC and RNAi, we verified the role and regulatory mechanism of the competing endogenous RNA (ceRNA) network in the process of AFB1 exposure affecting the growth of PAM. CONCLUSIONS: We found that AFB1 induced MSTRG.43,583, MSTRG.67,490, MSTRG.84,995, and MSTRG.89,935 to competitively bind miR-219a, miR-30b-3p, and miR-30c-1-3p, eliminating the inhibition of its target genes CACNA1S, RYR3, and PRKCG. This activated the calcium signaling pathway to regulate the growth of PAM. These results provide valuable information on the mechanism of AFB1 exposure induced impairment of macrophage function in humans and animals.


Assuntos
Aflatoxina B1 , MicroRNAs , Humanos , Animais , Suínos , Aflatoxina B1/toxicidade , Aflatoxina B1/metabolismo , Macrófagos Alveolares/metabolismo , Sinalização do Cálcio , Macrófagos/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo
9.
World J Surg Oncol ; 20(1): 142, 2022 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-35509066

RESUMO

BACKGROUND: Microcystic adnexal carcinoma (MAC) is a skin cancer with challenges in diagnosis and management. This study was aimed to detect molecular alterations of MAC and guide its pathologic diagnosis and treatment. METHODS: We performed transcriptome analysis on 5 MAC and 5 normal skin tissues, identified the differentially expressed genes, and verified them by immunohistochemistry. RESULTS: Three hundred four differentially expressed genes (DEGs) in MAC were identified by next-generation transcriptome sequencing, among which 225 genes were upregulated and 79 genes were downregulated. Four genes of the calcium signaling pathway, including calcium voltage-gated channel subunit alpha 1 S (CACNA1S), ATPase sarcoplasmic/endoplasmic reticulum Ca2+ transporting 1 (ATP2A1), ryanodine receptor 1 (RYR1), and myosin light chain kinase 3 (MYLK3), were upregulated and then been verified by immunohistochemistry. The expression of CACNA1S, ATP2A1, RYR1, and MYLK3 was upregulated in MAC compared with normal sweat glands and syringoma tumor cells and was generally negative in trichoepithelioma and infundibulocystic type basal cell carcinoma. CONCLUSIONS: The four genes of the calcium signaling pathway were upregulated in MAC at both RNA and protein levels. CACNA1S, ATP2A1, RYR1, and MYLK3 may be new diagnostic molecular markers and therapeutic targets for MAC.


Assuntos
Canal de Liberação de Cálcio do Receptor de Rianodina , Neoplasias Cutâneas , Sinalização do Cálcio , Carcinoma Basocelular , Perfilação da Expressão Gênica , Humanos , Neoplasias de Anexos e de Apêndices Cutâneos , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Neoplasias Cutâneas/patologia
10.
J Proteome Res ; 20(7): 3444-3454, 2021 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-34056907

RESUMO

Lung cancer (LC) is one of the most malignant cancers in the world, but currently, it lacks effective noninvasive biomarkers to assist its early diagnosis. Our study aims to discover potential serum diagnostic biomarkers for LC. In our study, untargeted serum metabolomics of a discovery cohort and targeted analysis of a test cohort were performed based on gas chromatography-mass spectrometry. Both univariate and multivariate statistical analyses were employed to screen for differential metabolites between LC and healthy control (HC), followed by the selection of candidate biomarkers through multiple algorithms. The results showed that 15 metabolites were significantly dysregulated between LC and HC, and a panel, comprising cholesterol, oleic acid, myo-inositol, 2-hydroxybutyric acid, and 4-hydroxybutyric acid, was demonstrated to have excellent differentiating capability for LC based on multiple classification modelings. In addition, the molecular interaction analysis combined with transcriptomics revealed a close correlation between the candidate biomarkers and LC proliferation via a Ca2+ signaling pathway. Our study discovered that cholesterol, oleic acid, myo-inositol, 2-hydroxybutyric acid, and 4-hydroxybutyric acid in combination could be a promising diagnostic biomarker for LC, and most importantly, our results will shed some light on the pathophysiological mechanism underlying LC to understand it deeply. The data that support the findings of this study are openly available in MetaboLights at https://www.ebi.ac.uk/metabolights/, reference number MTBLS1517.


Assuntos
Neoplasias Pulmonares , Transcriptoma , Biomarcadores/metabolismo , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Sinalização do Cálcio , Proliferação de Células , Humanos , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/genética , Metabolômica
11.
Mol Biol Evol ; 37(4): 952-968, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-31846031

RESUMO

Knowledge of the physiological and morphological evolution and adaptation of nonhuman primates is critical to understand hominin origins, physiological ecology, morphological evolution, and applications in biomedicine. Particularly, limestone langurs represent a direct example of adaptations to the challenges of exploiting a high calcium and harsh environment. Here, we report a de novo genome assembly (Tfra_2.0) of a male François's langur (Trachypithecus francoisi) with contig N50 of 16.3 Mb and resequencing data of 23 individuals representing five limestone and four forest langur species. Comparative genomics reveals evidence for functional evolution in genes and gene families related to calcium signaling in the limestone langur genome, probably as an adaptation to naturally occurring high calcium levels present in water and plant resources in karst habitats. The genomic and functional analyses suggest that a single point mutation (Lys1905Arg) in the α1c subunit of the L-type voltage-gated calcium channel Cav1.2 (CACNA1C) attenuates the inward calcium current into the cells in vitro. Population genomic analyses and RNA-sequencing indicate that EDNRB is less expressed in white tail hair follicles of the white-headed langur (T. leucocephalus) compared with the black-colored François's langur and hence might be responsible for species-specific differences in body coloration. Our findings contribute to a new understanding of gene-environment interactions and physiomorphological adaptative mechanisms in ecologically specialized primate taxa.


Assuntos
Adaptação Biológica/genética , Evolução Biológica , Genoma , Presbytini/genética , Distribuição Animal , Animais , Sudeste Asiático , Sinalização do Cálcio/genética , Ecossistema , Cor de Cabelo/genética , Masculino , Família Multigênica , Filogeografia , Presbytini/anatomia & histologia , Seleção Genética
12.
Plant Cell Rep ; 40(10): 1907-1922, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34322731

RESUMO

KEY MESSAGE: MsCML46 enhances tolerance to abiotic stresses through alleviating osmotic stress and oxidative damage by regulating the expression of stress-related genes to optimize osmolytes levels and antioxidant enzyme activity in transgenic tobacco. Abiotic stresses are major environmental factors that constraint crop productivity worldwide. Various stimuli regulate intracellular calcium levels and calcium-mediated signal transduction, and cellular responses. Ca2+ signals are perceived by different Ca2+ receptors. Calmodulin-like protein (CML) is one of the best-characterized Ca2+ sensors which shares sequence similarity with highly conserved calmodulin (CaM) ubiquitously expressed in plants. Currently, the molecular and physiological functions of CMLs are largely unknown. In this study, the MsCML46 was characterized in alfalfa (Medicago sativa cv. Zhaodong) under freezing stress. Results showed that MsCML46 was localized to the cytoplasm of Arabidopsis, and its expression was strongly elevated by cold, drought, salt, saline-alkali, and ABA treatments. Overexpressing MsCML46 in tobacco enhanced tolerance to freezing, drought, and salt stresses as evidenced by improved contents of osmotic regulatory solutes and antioxidant enzyme activity but decreased reactive oxygen species (ROS) accumulation. Furthermore, cold, drought, and salt stresses increased the expression of stress-related genes in transgenic tobacco. MsCML46 binds free Ca2+ to promote signal transduction and maintain higher K+/Na+ ratio. In this way, it protects intracellular homeostasis under sodium ion toxicity. These results suggest that MsCML46 plays a crucial role in resisting abiotic stresses and can be exploited in genetic engineering for crops.


Assuntos
Medicago sativa/genética , Nicotiana/fisiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Antioxidantes/metabolismo , Calmodulina , Resposta ao Choque Frio/genética , Citoplasma/metabolismo , Secas , Enzimas/genética , Enzimas/metabolismo , Regulação da Expressão Gênica de Plantas , Peróxido de Hidrogênio/metabolismo , Filogenia , Plantas Geneticamente Modificadas , Estresse Salino/genética , Estresse Fisiológico , Nicotiana/genética
13.
J Appl Toxicol ; 41(5): 736-744, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33058231

RESUMO

Ethanol has a complex effect on the cardiovascular system in humans, but the systemic effects of ethanol to endothelial cells were rarely investigated. In this study, we exposed human umbilical vein endothelial cells (HUVECs) to 5- or 50-mM ethanol and performed transcriptomics to investigate the systemic effects of ethanol. While these concentrations of ethanol did not significantly affect HUVEC viability, 5-mM ethanol significantly upregulated and downregulated 59 and 73 genes, respectively, whereas 50-mM ethanol significantly upregulated and downregulated 50 and 80 genes, respectively. Totally, 37 genes were shared by the two concentrations of ethanol. The most significantly altered gene ontology (GO) term and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway after 5-mM ethanol treatment were nucleic acid binding (GO:0003676) and Herpes simplex virus 1 infection (ko05168), respectively, whereas the most significantly altered GO term and KEGG pathway by 50-mM ethanol treatment were aryl sulfotransferase activity (GO:0004062) and chemical carcinogenesis (ko05204). We further verified that ethanol treatment downregulated the mRNA levels of CD38 molecule (CD38), ORAI calcium release-activated calcium modulator 2 (ORAI2), cysteinyl leukotriene receptor 2 (CYSLTR2), key genes involved in calcium signaling pathway (ko04020), as well as integrin subunit alpha 2 (ITGA2), and cAMP responsive element binding protein 3 like 2 (CREB3L2), key genes involved in PI3K-Akt signaling pathway (ko04151). The results from this study suggested that ethanol could induce systemic effects and alter signaling pathways in HUVECs.


Assuntos
Etanol/toxicidade , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Humanos , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transcriptoma
14.
Ecotoxicol Environ Saf ; 213: 112025, 2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33578098

RESUMO

The detailed molecular mechanism of wilforine, a novel botanical insecticidal component, remains unclear, except for the knowledge that it affects the calcium signaling pathway. The aim of the current study was to examine the underlying molecular mechanism of wilforine in Mythimna separata (Walker) by transcriptome and RNA interference (RNAi), with chlorantraniliprole as control. RNA sequencing showed that the relative expression of genes related to the calcium signaling pathway and muscle contraction in M. separata treated with wilforine significantly changed and was further validated by qRT-PCR. Interestingly, the expression level of the ryanodine receptor (MsRyR) gene was downregulated by wilforine at relatively high concentrations and long treatment time, contrary to that observed using chlorantraniliprole. Furthermore, a putative MsRyR was cloned using a 16,258-bp contiguous sequence containing a 308-bp 5'-untranslated region and 578-bp 3'-untranslated region by RT-PCR and RACE. The results of the RNAi experiment showed that injection of dsMsRyR significantly reduced MsRyR mRNA levels, and growth and development were inhibited. Importantly, silencing of the MsRyR gene resulted in decreased susceptibility to both wilforine and chlorantraniliprole. Together with the results of our previous studies on toxic symptoms and muscle tissue lesions between wilforine and chlorantraniliprole, we propose that RyR Ca2+ release channel dysfunction is closely related with significant lethal mechanisms of wilforine.


Assuntos
Inseticidas/toxicidade , Lactonas/toxicidade , Mariposas/fisiologia , Piridinas/toxicidade , Animais , Sinalização do Cálcio/efeitos dos fármacos , Larva/metabolismo , Mariposas/metabolismo , RNA Mensageiro/metabolismo , Rianodina , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Transcriptoma/efeitos dos fármacos , ortoaminobenzoatos
15.
J Neurovirol ; 26(2): 201-213, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31933192

RESUMO

Enterovirus A71 (EV-A71) is one of the causative agents causing the hand-foot-mouth disease which associated with fatal neurological complications. Several sporadic outbreaks of EV-A71 infections have been recently reported from Asia-Pacific regions and potentially established endemicity in the area. Currently, there is no effective vaccine or antiviral drug for EV-A71 available. This may be attributable to the limited information about its pathogenesis. In this study, the recombinant nonstructural 2B protein of EV-A71 was successfully produced in human neuroblastoma SH-SY5Y cells and evaluated for its effects on induction of the cell apoptosis and the pathway involved. The EV-A71 2B-transfected SH-SY5Y cells showed significantly higher difference in the cell growth inhibition than the mock and the irrelevant protein controls. The transfected SH-SY5Y cells underwent apoptosis and showed the significant upregulation of caspase-9 (CASP9) and caspase-12 (CASP12) genes at 3- and 24-h post-transfection, respectively. Interestingly, the level of cytosolic Ca2+ was significantly elevated in the transfected SH-SY5Y cells at 6- and 12-h post-transfection. The caspase-9 is activated by mitochondrial signaling pathway while the caspase-12 is activated by ER signaling pathway. The results suggested that EV-A71 2B protein triggered transient increase of the cytosolic Ca2+ level and associated with ER-mitochondrial interactions that drive the caspase-dependent apoptosis pathways. The detailed mechanisms warrant further studies for understanding the implication of EV-A71 infection in neuropathogenesis. The gained knowledge is essential for the development of the effective therapeutics and antiviral drugs.


Assuntos
Apoptose/fisiologia , Enterovirus Humano A/metabolismo , Infecções por Enterovirus/virologia , Neurônios/virologia , Proteínas Virais/metabolismo , Cálcio/metabolismo , Linhagem Celular Tumoral , Citoplasma/metabolismo , Humanos , Neurônios/metabolismo
16.
Ecotoxicol Environ Saf ; 205: 111339, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-32961491

RESUMO

Famoxadone-cymoxanil is a new protective and therapeutic fungicide, but little research has been done on it or its toxicity in aquatic organisms. In this study, we used zebrafish to investigate the cardiotoxicity of famoxadone-cymoxanil and the potential mechanisms involved. Zebrafish embryos were exposed to different concentrations of famoxadone-cymoxanil until 72 h post-fertilization (hpf), then changes of heart morphology in zebrafish embryos were observed. We also detected the levels of oxidative stress, myocardial-cell proliferation and apoptosis, ATPase activity, and the expression of genes related to the cardiac development and calcium-signaling pathway. After famoxadone-cymoxanil exposure, pericardial edema, cardiac linearization, and reductions in the heart rate and cardiac output positively correlated with concentration. Although myocardial-cell apoptosis was not detected, proliferation of the cells was severely reduced and ATPase activity significantly decreased, resulting in a severe deficiency in heart function. In addition, indicators of oxidative stress changed significantly after exposure of the embryos to the fungicide. To better understand the possible molecular mechanisms of cardiovascular toxicity in zebrafish, we studied the transcriptional levels of cardiac development, calcium-signaling pathways, and genes associated with myocardial contractility. The mRNA expression levels of key genes in heart development were significantly down-regulated, while the expression of genes related to the calcium-signaling pathway (ATPase [atp2a1], cardiac troponin C [tnnc1a], and calcium channel [cacna1a]) was significantly inhibited. Expression of klf2a, a major endocardial flow-responsive gene, was also significantly inhibited. Mechanistically, famoxadone-cymoxanil toxicity might be due to the downregulation of genes associated with the calcium-signaling pathway and cardiac muscle contraction. Our results found that famoxadone-cymoxanil exposure causes cardiac developmental toxicity and severe energy deficiency in zebrafish.


Assuntos
Acetamidas/toxicidade , Embrião não Mamífero/efeitos dos fármacos , Fungicidas Industriais/toxicidade , Coração/efeitos dos fármacos , Estrobilurinas/toxicidade , Poluentes Químicos da Água/toxicidade , Peixe-Zebra/metabolismo , Animais , Apoptose/efeitos dos fármacos , Sinalização do Cálcio/efeitos dos fármacos , Sinalização do Cálcio/genética , Cardiotoxicidade , Regulação para Baixo , Embrião não Mamífero/metabolismo , Embrião não Mamífero/patologia , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Coração/embriologia , Frequência Cardíaca/efeitos dos fármacos , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Peixe-Zebra/crescimento & desenvolvimento , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
17.
Med Mycol ; 57(Supplement_2): S233-S238, 2019 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-30816964

RESUMO

The opportunistic fungal pathogen Aspergillus fumigatus, which is one of the primary airborne ascomycete pathogens and allergens worldwide, causes invasive fungal infections, which have high morbidity and mortality rates among immunosuppressed patients. The abuse of azole antifungals results in serious drug resistance in clinical therapy. Thus, a thorough understanding of the azole drug resistance mechanism and screening of antifungal agents with a novel mode of action and new drug targets are required to fight against drug resistance. Current studies suggest that there are three major azole resistance mechanisms in fungal pathogens, including changes of the drug target Cyp51, activation of drug efflux pumps and induction of cellular stress responses. Fungi must adapt to a variety of external environmental stressors to survive. These obstacles include stress to the plasma membrane after azole antifungal treatments, high temperature, pH variation, and oxidative stress. As a filamentous fungus, A. fumigatus has evolved numerous signal-transduction systems to sense and respond to azole stresses to survive and proliferate in harsh environmental conditions. Among these signal-transduction systems, the Ca2+ signaling pathway is one of the most important response systems, which has been verified to be involved in stress adaptation. In this review, we have summarized how the components of the calcium-signaling pathway and their interaction network are involved in azole stress response in A. fumigatus.


Assuntos
Antifúngicos/farmacologia , Aspergillus fumigatus/efeitos dos fármacos , Aspergillus fumigatus/fisiologia , Azóis/farmacologia , Sinalização do Cálcio , Farmacorresistência Fúngica , Transporte Biológico Ativo , Esterol 14-Desmetilase/genética , Esterol 14-Desmetilase/metabolismo , Estresse Fisiológico
18.
Fish Shellfish Immunol ; 91: 1-11, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31085326

RESUMO

The immune mechanism elicited in pufferfish (Takifugu obscurus) against the invasion of Aeromonas hydrophila is still poorly understood. We examined the spleen of pufferfish at the transcriptome and proteome levels by using Illumina-seq and TMT coupled mass spectrometry after 12 h infection by A. hydrophila, respectively. A total of 2,339 genes (1,512 up-regulated and 827 down-regulated) and 537 (237 up-regulated and 300 down-regulated) proteins were identified. GO and KEGG analyses revealed that the responses to stimulus were the main biological processes, intestinal immune network for IgT production and calcium signaling pathway. Fourteen genes (8 up-regulated and 6 down-regulated) and proteins (5 up-regulated and 9 down-regulated) involved immune responses or signal transduction were validated by qRT-PCR and parallel reaction monitoring to confirm the reliability of the transcriptomic and proteomic analyses, respectively. Moreover, qRT-PCR and flow cytometry were used to detect dynamics of the genes in calcium signaling pathway and changes of concentration of cytoplasm Ca2+ in spleen cells within a 72 h challenge. This study provides the findings regarding immune response, especially intestinal immune network for IgT production pathway and calcium signaling pathway at the molecular, protein and cellular in pufferfish after infection by A. hydrophila. These results would provide a new insight and molecular targets into the response to pathogenic infection in pufferfish.


Assuntos
Doenças dos Peixes/imunologia , Proteínas de Peixes/genética , Proteínas de Peixes/imunologia , Regulação da Expressão Gênica/imunologia , Baço/imunologia , Takifugu/genética , Takifugu/imunologia , Aeromonas hydrophila/fisiologia , Animais , Regulação para Baixo , Doenças dos Peixes/microbiologia , Infecções por Bactérias Gram-Negativas/imunologia , Infecções por Bactérias Gram-Negativas/microbiologia , Infecções por Bactérias Gram-Negativas/veterinária , Proteoma/genética , Proteoma/imunologia , Transcriptoma , Regulação para Cima
19.
Alzheimers Dement ; 15(6): 788-798, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30935898

RESUMO

INTRODUCTION: Numerous omics studies have been conducted to understand the molecular networks involved in Alzheimer's disease (AD), but the pathophysiology is still not completely understood; new approaches that enable neuroscientists to better interpret the results of omics analysis are required. METHODS: We have developed advanced methods to analyze and visualize publicly-available genomics and genetics data. The tools include a composite clinical-neuropathological score for defining AD, gene expression maps in the brain, and networks integrating omics data to understand the impact of polymorphisms on AD pathways. RESULTS: We have analyzed over 50 public human gene expression data sets, spanning 19 different brain regions and encompassing three separate cohorts. We integrated genome-wide association studies with expression data to identify important genes in the pathophysiology of AD, which provides further insight into the calcium signaling and calcineurin pathways. DISCUSSION: Biologists can use these freely-available tools to obtain a comprehensive, information-rich view of the pathways in AD.


Assuntos
Doença de Alzheimer/genética , Encéfalo/patologia , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Genômica , Doença de Alzheimer/patologia , Calcineurina , Sinalização do Cálcio , Quinase 2 de Adesão Focal/genética , Humanos , Estudos Longitudinais , Proteínas de Membrana Transportadoras/genética , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial , Polimorfismo de Nucleotídeo Único
20.
Mol Biol Evol ; 32(7): 1880-9, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25788450

RESUMO

Much like other indigenous domesticated animals, Tibetan chickens living at high altitudes (2,200-4,100 m) show specific physiological adaptations to the extreme environmental conditions of the Tibetan Plateau, but the genetic bases of these adaptations are not well characterized. Here, we assembled a de novo genome of a Tibetan chicken and resequenced whole genomes of 32 additional chickens, including Tibetan chickens, village chickens, game fowl, and Red Junglefowl, and found that the Tibetan chickens could broadly be placed into two groups. Further analyses revealed that several candidate genes in the calcium-signaling pathway are possibly involved in adaptation to the hypoxia experienced by these chickens, as these genes appear to have experienced directional selection in the two Tibetan chicken populations, suggesting a potential genetic mechanism underlying high altitude adaptation in Tibetan chickens. The candidate selected genes identified in this study, and their variants, may be useful targets for clarifying our understanding of the domestication of chickens in Tibet, and might be useful in current breeding efforts to develop improved breeds for the highlands.


Assuntos
Adaptação Fisiológica/genética , Altitude , Galinhas/genética , Genoma , Animais , Sinalização do Cálcio/genética , Genética Populacional , Seleção Genética , Tibet
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA