RESUMO
All cells in our body are equipped with receptors to recognize pathogens and trigger a rapid defense response. As a result, foreign molecules are blocked, and cells are alerted to the danger. Among the many molecules produced in response to viral infection are interferon-induced proteins with tetratricopeptide repeats (IFITs). Their role is to recognize foreign mRNA and eliminate it from the translational pool of transcripts. In the present study, we used biophysical methods to characterize the interactions between the IFIT1 protein and its partners IFIT2 and IFIT3. IFIT1 interacts with IFIT3 with nanomolar binding affinity, which did not change significantly in the presence of the preformed IFIT2/3 complex. The interactions between IFIT2 and IFIT3 and IFIT1 and IFIT2 were one order of magnitude weaker. We also present kinetic data of the interactions between the IFIT protein complex and short RNA bearing various modifications at the 5' end. We show kinetic parameters for interaction between the IFIT complex and RNA with m6Am modification. The results show that the cap-adjacent m6Am modification is a stronger signature than cap1 alone. It blocks the formation of a complex between IFIT proteins and m7Gpppm6Am-RNA much more effectively than other cap modifications. In contrast, m6A in the 5'UTR is not recognized by IFIT proteins and does not contribute to translation repression by IFIT proteins. The data obtained are important for understanding the regulation of expression of genetic information. They indicate that 2'-O and m6Am modifications modulate the availability of mRNA molecules for proteins of innate immune response.
Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Ligação Proteica , Proteínas de Ligação a RNA , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Humanos , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Capuzes de RNA/metabolismo , Capuzes de RNA/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas de Transporte/metabolismo , Proteínas de Transporte/genética , Proteínas Reguladoras de Apoptose/metabolismo , Proteínas Reguladoras de Apoptose/genética , Cinética , Proteínas/metabolismo , Proteínas/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genéticaRESUMO
CAP1 (Cyclase-Associated Protein 1) is highly conserved in evolution. Originally identified in yeast as a bifunctional protein involved in Ras-adenylyl cyclase and F-actin dynamics regulation, the adenylyl cyclase component seems to be lost in mammalian cells. Prompted by our recent identification of the Ras-like small GTPase Rap1 as a GTP-independent but geranylgeranyl-specific partner for CAP1, we hypothesized that CAP1-Rap1, similar to CAP-Ras-cyclase in yeast, might play a critical role in cAMP dynamics in mammalian cells. In this study, we report that CAP1 binds and activates mammalian adenylyl cyclase in vitro, modulates cAMP in live cells in a Rap1-dependent manner, and affects cAMP-dependent proliferation. Utilizing deletion and mutagenesis approaches, we mapped the interaction of CAP1-cyclase with CAP's N-terminal domain involving critical leucine residues in the conserved RLE motifs and adenylyl cyclase's conserved catalytic loops (e.g., C1a and/or C2a). When combined with a FRET-based cAMP sensor, CAP1 overexpression-knockdown strategies, and the use of constitutively active and negative regulators of Rap1, our studies highlight a critical role for CAP1-Rap1 in adenylyl cyclase regulation in live cells. Similarly, we show that CAP1 modulation significantly affected cAMP-mediated proliferation in an RLE motif-dependent manner. The combined study indicates that CAP1-cyclase-Rap1 represents a regulatory unit in cAMP dynamics and biology. Since Rap1 is an established downstream effector of cAMP, we advance the hypothesis that CAP1-cyclase-Rap1 represents a positive feedback loop that might be involved in cAMP microdomain establishment and localized signaling.
Assuntos
Adenilil Ciclases/metabolismo , Proteínas do Citoesqueleto/metabolismo , Sequência de Aminoácidos , Animais , Domínio Catalítico , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , AMP Cíclico/metabolismo , Proteínas do Citoesqueleto/química , Regulação para Baixo/efeitos dos fármacos , Ativação Enzimática/efeitos dos fármacos , Fase G1/efeitos dos fármacos , Isoenzimas/metabolismo , Ligação Proteica/efeitos dos fármacos , Ratos , Fase S/efeitos dos fármacos , Tireotropina/farmacologia , Proteínas rap1 de Ligação ao GTP/metabolismoRESUMO
The genome of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) coronavirus has a capping modification at the 5'-untranslated region (UTR) to prevent its degradation by host nucleases. These modifications are performed by the Nsp10/14 and Nsp10/16 heterodimers using S-adenosylmethionine as the methyl donor. Nsp10/16 heterodimer is responsible for the methylation at the ribose 2'-O position of the first nucleotide. To investigate the conformational changes of the complex during 2'-O methyltransferase activity, we used a fixed-target serial synchrotron crystallography method at room temperature. We determined crystal structures of Nsp10/16 with substrates and products that revealed the states before and after methylation, occurring within the crystals during the experiments. Here we report the crystal structure of Nsp10/16 in complex with Cap-1 analog (m7GpppAm2'-O). Inhibition of Nsp16 activity may reduce viral proliferation, making this protein an attractive drug target.
Assuntos
Capuzes de RNA/metabolismo , RNA Mensageiro/metabolismo , RNA Viral/metabolismo , SARS-CoV-2/química , Cristalografia , Metilação , Metiltransferases/química , Metiltransferases/metabolismo , Complexos Multiproteicos/química , Complexos Multiproteicos/metabolismo , Análogos de Capuz de RNA/química , Análogos de Capuz de RNA/metabolismo , Capuzes de RNA/química , RNA Mensageiro/química , RNA Viral/química , S-Adenosil-Homocisteína/química , S-Adenosil-Homocisteína/metabolismo , S-Adenosilmetionina/química , S-Adenosilmetionina/metabolismo , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , Síncrotrons , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/metabolismo , Proteínas Virais Reguladoras e Acessórias/química , Proteínas Virais Reguladoras e Acessórias/metabolismoRESUMO
Adolescent idiopathic scoliosis (AIS) is a complex disease characterized by three-dimensional structural deformities of the spine. Its pathogenesis is associated with osteopenia. Bone-marrow-derived mesenchymal stem cells (BMSCs) play an important role in bone metabolism. We detected 1919 differentially expressed mRNAs and 744 differentially expressed lncRNAs in BMSCs from seven patients with AIS and five patients without AIS via high-throughput sequencing. Multiple analyses identified bone morphogenetic protein-6 (BMP6) as a hub gene that regulates the abnormal osteogenic differentiation of BMSCs in AIS. BMP6 expression was found to be decreased in AIS and its knockdown in human BMSCs significantly altered the degree of osteogenic differentiation. Additionally, CAP1-217 has been shown to be a potential upstream regulatory molecule of BMP6. We showed that CAP1-217 knockdown downregulated the expression of BMP6 and the osteogenic differentiation of BMSCs. Simultaneously, knockout of BMP6 in zebrafish embryos significantly increased the deformity rate. The findings of this study suggest that BMP6 is a key gene that regulates the abnormal osteogenic differentiation of BMSCs in AIS via the CAP1-217/BMP6/RUNX2 axis.
Assuntos
Doenças Ósseas Metabólicas , Escoliose , Humanos , Adolescente , Animais , Escoliose/genética , Escoliose/patologia , Osteogênese/genética , Peixe-Zebra/genética , Coluna Vertebral/metabolismo , Diferenciação Celular/genética , Doenças Ósseas Metabólicas/genética , Doenças Ósseas Metabólicas/metabolismo , Células Cultivadas , Células da Medula Óssea/metabolismo , Proteína Morfogenética Óssea 6/genéticaRESUMO
PURPOSE: Obstructive sleep apnea (OSA) is characterised by increased systemic inflammation, and is often accompanied with type 2 diabetes mellitus (T2DM) and cardiovascular disease. The aim of this investigation was to evaluate gene expression of resistin, its receptor CAP1 and CD36 as the indicators of the inflammatory changes in PBMCs in relation to the severity of OSA, and the presence of type 2 diabetes mellitus (T2DM) in OSA. METHODS: Severity of OSA was defined by the apnea/hypopnea index (AHI): AHI < 30: mild to moderate OSA (MM-OSA), AHI ≥ 30: severe OSA (S-OSA). Presence of T2DM was captured: OSA with T2DM (OSA + T2DM), OSA without T2DM (OSA-T2DM). PBMC resistin, CAP1, and CD36 mRNA were determined by real-time PCR. RESULTS: Resistin mRNA was significantly upregulated in S-OSA (N = 54) compared to the MM-OSA (N = 52, P = 0.043); CAP1 and CD36 mRNA levels did not differ between the groups (P = 0.302; P = 0.166, respectively). Resistin mRNA was significantly upregulated in OSA + T2DM (N = 29) compared to the OSA-T2DM (N = 77, P = 0.029); CAP1 and CD36 mRNA levels did not differ between the groups (P = 0.662; P = 0.108, respectively). AHI and T2DM were independent predictors of resistin mRNA above the 75th percentile (OR = 3.717 [1.152-11.991]; OR = 3.261 [1.000-10.630], P = 0.042 respectively). CONCLUSION: Resistin gene upregulation in S-OSA indicates its possible contribution to increased inflammation in S-OSA and makes it a possible marker of the disease severity. Resistin gene upregulation in OSA + T2DM suggests that a joint effect of these two comorbidities may have a major contribution to increased inflammation and complications that arise from this state.
Assuntos
Diabetes Mellitus Tipo 2 , Apneia Obstrutiva do Sono , Humanos , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/genética , Leucócitos Mononucleares , Regulação para Cima/genética , Resistina/genética , Inflamação/complicações , Apneia Obstrutiva do Sono/complicações , RNA Mensageiro , Expressão Gênica/genéticaRESUMO
This study aimed to explore the influences of SAP2 and CAP1 on itraconazole (ITR) resistance of Candida albicans at different states. A total of 10 ITR-resistant strains and 10 ITR-sensitive strains were used for SAP2 sequencing and CAP1 sequencing. SAP2 sequencing showed no missense mutation, and three synonymous mutations. CAP1 gene sequencing identified two missense mutations M140I (8) and K191Q (4), and 14 synonymous mutations G201A (1), A246C (5), C282T (6), G288A (6), C321T (7), A399C (16), C432T (16), C465T (11), G552A (16), G669T (1), G672A (1), G681T (2), T783C (1), and T819A (2). The biofilm formation capacity of resistant C. albicans strains, including the CAP1∆/∆ strain, was stronger. Afterward, real-time quantitative PCR was used to analyze the expression of SAP2 and CAP1. Compared with the sensitive strains, SAP2 and CAP1 expressions were both significantly upregulated in resistant strains at planktonic and biofilm states (P < 0.05). Compared with the strains at planktonic state, SAP2 was significantly upregulated, while CAP1 was significantly downregulated at biofilm states (P < 0.05). Additionally, SAP2 expression in the CAP1 knocked down strain of C. albicans was significantly upregulated, and SAP2 expression was evidently downregulated in the CAP1∆/∆ strain at biofilm states compared with that at planktonic states (P < 0.05). Loss of CAP1 can increase SAP2 level and may influence the biofilm formation of C. albicans, thus increasing ITR resistance ofC. albicans.
Assuntos
Candida albicans , Proteínas Fúngicas , Candida albicans/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Plâncton , Itraconazol , Biofilmes , Antifúngicos/farmacologiaRESUMO
Srv2p/CAP1 is an essential regulator of actin turnover, but its exact function in regulating actin polymerization, particularly the contribution of its actin nucleotide exchange activity, remains incompletely understood. We found that, although Arabidopsis CAP1 is distributed uniformly in the cytoplasm, its loss of function has differential effects on the actin cytoskeleton within different regions of the pollen tube. Specifically, the F-actin level increases in the shank but decreases in the apical region of cap1 pollen tubes. The reduction in apical F-actin results mainly from impaired polymerization of membrane-originated actin within cap1 pollen tubes. The actin nucleotide exchange activity of CAP1 is involved in apical actin polymerization. CAP1 acts synergistically with pollen ADF and profilin to promote actin turnover in vitro, and it can overcome the inhibitory effects of ADF and synergize with profilin to promote actin nucleotide exchange. Consistent with its role as a shuttle molecule between ADF and profilin, the cytosolic concentration of CAP1 is much lower than that of ADF and profilin in pollen. Thus, CAP1 synergizes with ADF and profilin to drive actin turnover in pollen and promote apical actin polymerization in pollen tubes in a manner that involves its actin nucleotide exchange activity.
Assuntos
Actinas/metabolismo , Proteínas de Arabidopsis/metabolismo , Oligopeptídeos/metabolismo , Tubo Polínico/metabolismo , Citoesqueleto de Actina/metabolismo , Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas/fisiologia , Proteínas dos Microfilamentos/metabolismo , Pólen/metabolismo , Polimerização , Profilinas/metabolismoRESUMO
The serine protease prostasin (CAP1/Prss8, channel-activating protease-1) is a confirmed in vitro and in vivo activator of the epithelial sodium channel ENaC. To test whether proteolytic activity or CAP1/Prss8 abundance itself are required for ENaC activation in the kidney, we studied animals either hetero- or homozygous mutant at serine 238 (S238A; Prss8cat/+ and Prss8cat/cat), and renal tubule-specific CAP1/Prss8 knockout (Prss8PaxLC1) mice. When exposed to varying Na+-containing diets, no changes in Na+ and K+ handling and only minor changes in the expression of Na+ and K+ transporting protein were found in both models. Similarly, the α- or γENaC subunit cleavage pattern did not differ from control mice. On standard and low Na+ diet, Prss8cat/+ and Prss8cat/cat mice exhibited standard plasma aldosterone levels and unchanged amiloride-sensitive rectal potential difference indicating adapted ENaC activity. Upon Na+ deprivation, mice lacking the renal CAP1/Prss8 expression (Prss8PaxLC1) exhibit significantly decreased plasma aldosterone and lower K+ levels but compensate by showing significantly higher plasma renin activity. Our data clearly demonstrated that the catalytic activity of CAP1/Prss8 is dispensable for proteolytic ENaC activation. CAP1/Prss8-deficiency uncoupled ENaC activation from its aldosterone dependence, but Na+ homeostasis is maintained through alternative pathways.
Assuntos
Aldosterona , Sódio , Animais , Canais Epiteliais de Sódio/genética , Canais Epiteliais de Sódio/metabolismo , Rim/metabolismo , Camundongos , Oligopeptídeos , Serina Endopeptidases , Sódio/metabolismoRESUMO
The exact molecular mechanism underlying erythroblast enucleation has been a fundamental biological question for decades. In this study, we found that miR-144/451 critically regulated erythroid differentiation and enucleation. We further identified CAP1, a G-actin-binding protein, as a direct target of miR-144/451 in these processes. During terminal erythropoiesis, CAP1 expression declines along with gradually increased miR-144/451 levels. Enforced CAP1 up-regulation inhibits the formation of contractile actin rings in erythroblasts and prevents their terminal differentiation and enucleation. Our findings reveal a negative regulatory role of CAP1 in miR-144/451-mediated erythropoiesis and thus shed light on how microRNAs fine-tune terminal erythroid development through regulating actin dynamics.
Assuntos
Diferenciação Celular/genética , Células Precursoras Eritroides/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , MicroRNAs/genética , Interferência de RNA , Serina Endopeptidases/genética , Regiões 3' não Traduzidas , Animais , Biomarcadores , Linhagem Celular , Células Cultivadas , Células Precursoras Eritroides/citologia , Eritropoese/genética , Imunofenotipagem , CamundongosRESUMO
BACKGROUND: Obesity induces molecular changes that may favor tumor progression and metastatic spread, leading to impaired survival outcomes in breast cancer. Adenylate cyclase-associated protein 1 (CAP1), an actin regulatory protein and functional receptor for the obesity-associated adipokine resistin, has been implicated with inferior cancer prognosis. Here, the objective was to investigate the interplay between body composition and CAP1 tumor expression regarding breast cancer outcome through long-term survival analyses. METHODS: Among 718 women with primary invasive breast cancer within the large population-based prospective Malmö Diet and Cancer Study, tumor-specific CAP1 levels were assessed following thorough antibody validation and immunohistochemical staining of tumor tissue microarrays. Antibody specificity and functional application validity were determined by CAP1 gene silencing, qRT-PCR, Western immunoblotting, and cell microarray immunostaining. Kaplan-Meier and multivariable Cox proportional hazard models were used to assess survival differences in terms of breast cancer-specific survival (BCSS) and overall survival (OS) according to body composition and CAP1 expression. RESULTS: Study participants were followed for up to 25 years (median 10.9 years), during which 239 deaths were observed. Patients with low CAP1 tumor expression were older at diagnosis, displayed anthropometric measurements indicating a higher adiposity status (wider waist and hip, higher body mass index and body fat percentage), and were more prone to have unfavorable tumor characteristics (higher histological grade, higher Ki67, and estrogen receptor (ER) negativity). Overall, patients with CAP1-low tumors had impaired BCSS (adjusted hazard ratio: HRadj = 0.52, 95% CI 0.31-0.88) and OS (HRadj = 0.64, 95% CI 0.44-0.92) compared with patients having high CAP1 tumor expression. Further, analyses stratified according to different anthropometric measures or ER status showed that the CAP1-associated survival outcomes were most pronounced among patients with low adiposity status or ER-positive disease. CONCLUSIONS: Low CAP1 tumor expression was associated with higher body fatness and worse survival outcomes in breast cancer patients with effect modification by adiposity and ER status. CAP1 could be a novel marker for poorer survival outcome in leaner or ER-positive breast cancer patients, highlighting the need for considering body constitution in clinical decision making.
Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Neoplasias da Mama/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas do Citoesqueleto/metabolismo , Biomarcadores Tumorais/metabolismo , Constituição Corporal , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Proteínas de Ciclo Celular/genética , Proteínas do Citoesqueleto/genética , Feminino , Seguimentos , Humanos , Pessoa de Meia-Idade , Terapia Neoadjuvante , Obesidade/metabolismo , Obesidade/fisiopatologia , Prognóstico , Estudos Prospectivos , Receptor ErbB-2/metabolismo , Receptores de Estrogênio/metabolismo , Receptores de Progesterona/metabolismo , Taxa de SobrevidaRESUMO
Dynamic reorganization of the actin cytoskeleton is fundamental to a number of cellular events, and various actin-regulatory proteins modulate actin polymerization and depolymerization. Adenylyl cyclase-associated proteins (CAPs), highly conserved actin monomer-binding proteins, have been known to promote actin disassembly by enhancing the actin-severing activity of the ADF/cofilin protein family. In this study, we found that CAP1 regulated actin remodeling during mouse oocyte maturation. Efficient actin disassembly during oocyte maturation is essential for asymmetric division and cytokinesis. CAP1 knockdown impaired meiotic spindle migration and asymmetric division, and resulted in an accumulation of excessive actin filaments near the spindles. In contrast, CAP1 overexpression reduced actin mesh levels. CAP1 knockdown also rescued a decrease in cofilin family protein overexpression-mediated actin levels, and simultaneous expression of human CAP1 (hCAP1) and cofilin synergistically decreased cytoplasmic actin levels. Overexpression of hCAP1 decreased the amount of phosphorylated cofilin, indicating that CAP1 facilitated actin depolymerization via interaction with ADF/cofilin during mouse oocyte maturation. Taken together, our results provide evidence for the importance of dynamic actin recycling by CAP1 and cofilin in the asymmetric division of mouse female gametes.This article has an associated First Person interview with the first author of the paper.
Assuntos
Fatores de Despolimerização de Actina/metabolismo , Actinas/metabolismo , Destrina/metabolismo , Oócitos/metabolismo , Serina Endopeptidases/metabolismo , Animais , Divisão Celular/fisiologia , Feminino , Camundongos , Oócitos/citologiaRESUMO
Rap1 proteins are members of the Ras subfamily of small GTPases involved in many biological responses, including adhesion, cell proliferation, and differentiation. Like all small GTPases, they work as molecular allosteric units that are active in signaling only when associated with the proper membrane compartment. Prenylation, occurring in the cytosol, is an enzymatic posttranslational event that anchors small GTPases at the membrane, and prenyl-binding proteins are needed to mask the cytoplasm-exposed lipid during transit to the target membrane. However, several of these proteins still await discovery. In this study, we report that cyclase-associated protein 1 (CAP1) binds Rap1. We found that this binding is GTP-independent, does not involve Rap1's effector domain, and is fully contained in its C-terminal hypervariable region (HVR). Furthermore, Rap1 prenylation was required for high-affinity interactions with CAP1 in a geranylgeranyl-specific manner. The prenyl binding specifically involved CAP1's C-terminal hydrophobic ß-sheet domain. We present a combination of experimental and computational approaches, yielding a model whereby the high-affinity binding between Rap1 and CAP1 involves electrostatic and nonpolar side-chain interactions between Rap1's HVR residues, lipid, and CAP1 ß-sheet domain. The binding was stabilized by the lipid insertion into the ß-solenoid whose interior was occupied by nonpolar side chains. This model was reminiscent of the recently solved structure of the PDEδ-K-Ras complex; accordingly, disruptors of this complex, e.g. deltarasin, blocked the Rap1-CAP1 interaction. These findings indicate that CAP1 is a geranylgeranyl-binding partner of Rap1.
Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas do Citoesqueleto/metabolismo , Diterpenos/metabolismo , Prenilação de Proteína , Células Epiteliais da Tireoide/metabolismo , Proteínas rap de Ligação ao GTP/metabolismo , Animais , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Células Cultivadas , Proteínas do Citoesqueleto/química , Proteínas do Citoesqueleto/genética , Diterpenos/química , Humanos , Modelos Moleculares , Simulação de Dinâmica Molecular , Conformação Proteica , Ratos , Proteínas rap de Ligação ao GTP/química , Proteínas rap de Ligação ao GTP/genéticaRESUMO
Resistin, secreted by macrophages in tumor microenvironment, has never been investigated in pancreatic cancer models, despite a vibrant tumor microenvironment around pancreatic tumors. We evaluated serum resistin levels in healthy individuals versus pancreatic cancer patients representing different tumor grades. In vitro mechanistic analysis involved MiaPaCa-2 and SW1990 cells. Resistin signaling depends on binding of resistin to its cognitive receptors. Therefore, we silenced adenylyl cyclase-associated protein 1 (CAP1) and toll-like receptor 4 (TLR4), its two known receptors, individually as well as in combination, by short hairpin RNA (shRNA). Effect of resistin on cell proliferation, migration, invasion, cell cycle, and sensitivity to gemcitabine was studied without or with silencing of resistin receptors CAP1 and/or TLR4. The results were also confirmed in vivo in mice xenografted with MiaPaCa-2 cells without or with receptor silencing. We report high resistin levels in pancreatic cancer patients which correlate positively with tumor grades. We observed a marked reduction in the resistin-induced proliferation, migration, invasion, and cell cycle of pancreatic cancer cells MiaPaCa-2 and SW1990 when the receptors were silenced. The results were confirmed in vivo wherein resistin effects were significantly attenuated in MiaPaCa-2 xenografts with silenced receptors. The combined silencing of CAP1 and TLR4 was found to be most effective in vitro and in vivo. We found activation of STAT3 by resistin in vivo and in vitro which was dependent on the presence of CAP1 and TLR4. Further, resistin was found to induce resistance to gemcitabine through its receptors. Our results describe novel functional roles of resistin with implications toward a better understanding of pancreatic tumor microenvironment.
Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas do Citoesqueleto/metabolismo , Progressão da Doença , Resistencia a Medicamentos Antineoplásicos , Neoplasias Pancreáticas/patologia , Resistina/farmacologia , Receptor 4 Toll-Like/metabolismo , Animais , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Desoxicitidina/análogos & derivados , Desoxicitidina/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Humanos , Interleucina-6/sangue , Camundongos SCID , Gradação de Tumores , Invasividade Neoplásica , Neoplasias Pancreáticas/sangue , Fator de Transcrição STAT3/metabolismo , GencitabinaRESUMO
Breast cancer incidence and metastasis in postmenopausal women are known to associate with obesity, but the molecular mechanisms behind this association are largely unknown. We investigated the effect of adipokine resistin on epithelial to mesenchymal transition (EMT) and stemness in breast cancer cells in vitro. Previous reports demonstrated that the inflammatory actions of resistin are mediated by the adenylyl cyclase-associated protein 1 (CAP1), which serves as its receptor. As a model for our study, we used MCF-7 and MDA-MB-231 breast cancer and MCF-10A breast epithelial cells. We showed that in MCF-7 cells resistin increases the migration of MCF-7 and MDA-MB-231 cells and induces the formation of cellular protrusions through reorganization of F-actin filaments. Resistin upregulated the expression of mesenchymal markers involved in EMT (SNAIL, SLUG, ZEB1, TWIST1, fibronectin, and vimentin), and downregulated those of epithelial markers (E-cadherin and claudin-1). Resistin also potentiated the nuclear translocation of SNAIL protein, indicating initiation of EMT reprogramming. We further induced EMT in non-carcinogenic breast epithelial MCF-10A cells demonstrating that the effects of resistin on EMT were not breast cancer cell specific. In order to assess whether resistin-induced EMT depends on CAP1, we used siRNA approach to silence CAP1 gene in MCF-7 cells. Results demonstrated that when CAP1 was silenced, the induction of SNAIL, ZEB1 and vimentin expression by resistin as well as SNAIL and ZEB1 nuclear translocation, were abolished. Additionally, CAP1 silencing resulted in a suppression of MCF-7 cells migration. We performed quantitative PCR array profiling the expression of 84 genes related to cancer stem cells (CSC), pluripotency and metastasis and selected a set of genes (ALDH1A1, ITGA4, LIN28B, SMO, KLF17, PTPRC, PROM1, SIRT1, and PECAM1) that were modulated by resistin. Further experiments demonstrated that the effect of resistin on the expression of some of these genes (PROM1, PTPRC, KLF17, SIRT1, and PECAM1) was also dependent on CAP1. Our results demonstrate that resistin promotes the metastatic potential of breast cancer cells by inducing EMT and stemness and some of these effects are mediated by CAP1.
Assuntos
Neoplasias da Mama/patologia , Proteínas de Ciclo Celular/metabolismo , Movimento Celular/efeitos dos fármacos , Proteínas do Citoesqueleto/metabolismo , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Células-Tronco Neoplásicas/patologia , Resistina/farmacologia , Linhagem Celular Tumoral , Reprogramação Celular/efeitos dos fármacos , Feminino , Humanos , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismoRESUMO
Candida albicans is the most important fungal pathogen afflicting humans, particularly immunocompromised patients. However, currently available antifungal drugs are limited and ineffective against drug-resistant strains. The development of new drugs or alternative therapeutic approaches to control fungal infections is urgent and necessary. Photodynamic inactivation (PDI) is a new promising therapy for eradicating microorganism infections through combining visible light, photosensitizers, and oxygen to generate reactive oxygen species (ROS). Although cytoprotective responses induced by photodynamic therapy (PDT) have been well studied in cancer cells, the mechanisms by which C. albicans responds to PDI are largely unknown. In this study, we first demonstrated that PDI induces C. albicans Hog1p activation. Deletion of any of the SSK2, PBS2, and HOG1 genes significantly decreased the survival rate after photochemical reactions, indicating that the Hog1 SAPK pathway is required for tolerance to PDI. Furthermore, the basic leucine zipper transcription factor Cap1 that regulates several downstream antioxidant genes was highly expressed during the response to PDI, and loss of CAP1 also resulted in decreased C. albicans survival rates. This study demonstrates the importance of the Hog1 SAPK and the Cap1 transcription factor, which regulates in resistance to PDI-mediated oxidative stress in C. albicans. Understanding the mechanisms by which C. albicans responds to PDI and consequently scavenges ROS will be very useful for the further development of therapeutics to control fungal infectious diseases, particularly those of the skin and mucosal infections.
RESUMO
Adenylyl cyclase-associated protein (CAP) is a highly conserved protein. Previous reports have suggested that CAP1 may be a negative regulator of cellular proliferation, migration, and adhesion and the development of cell carcinomas. The molecular mechanism of CAP1 regulation of downstream pathways, as well as how CAP1 is regulated by environmental stimuli and upstream signalling, is not well understood. In this present study, we assessed the role of CAP1 in milk synthesis and proliferation of bovine mammary epithelial cells. Using gene overexpression and silencing methods, CAP1 was found to negatively regulate milk synthesis and proliferation of cells via the PI3K-mTOR/SREBP-1c/Cyclin D1 signalling pathway. Hormones, such as prolactin and oestrogen, and amino acids, such as methionine and leucine, stimulate MMP9 expression and trigger CAP1 degradation, and thus, abrogate its inhibition of synthesis of milk protein, fat, and lactose by and proliferation of bovine mammary epithelial cells. The results of our study help deepen our understanding of the regulatory mechanisms underlying milk synthesis and aid in characterizing the molecular mechanisms of CAP1. Previous reports have suggested that CAP1 is a negative regulator of cellular proliferation and anabolism, but the molecular mechanisms are largely unknown. In this present study, we identified CAP1 as a negative regulator of milk synthesis and proliferation of bovine mammary epithelial cells. Our results will deepen our understanding of the regulatory mechanisms underlying milk synthesis and aid in exploring the molecular mechanisms of CAP1.
Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas do Citoesqueleto/metabolismo , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Leite/metabolismo , Animais , Bovinos , Proliferação de Células , Células Cultivadas , HumanosRESUMO
As a conserved actin-regulating protein, CAP (adenylyl Cyclase-Associated Protein) functions to facilitate the rearrangement of the actin cytoskeleton. The ubiquitously expressed isoform CAP1 drives mammalian cell migration, and accordingly, most studies on the involvement of CAP1 in human cancers have largely been based on the rationale that up-regulated CAP1 will stimulate cancer cell migration and invasiveness. While findings from some studies reported so far support this case, lines of evidence largely from our recent studies point to a more complex and profound role for CAP1 in the invasiveness of cancer cells, where the potential activation of cell adhesion signaling is believed to play a key role. Moreover, CAP1 was also found to control proliferation in breast cancer cells, through the regulation of ERK (External signal-Regulated Kinase). Alterations in the activities of FAK (Focal Adhesion Kinase) and ERK from CAP1 depletion that are consistent to the opposite adhesion and proliferation phenotypes were detected in the metastatic and non-metastatic breast cancer cells. In this review, we begin with the overview of the literature on CAP, by highlighting the molecular functions of mammalian CAP1 in regulating the actin cytoskeleton and cell adhesion. We will next discuss the role of the FAK/ERK axis, and possibly Rap1, in mediating CAP1 signals to control breast cancer cell adhesion, invasiveness, and proliferation, largely based on our latest findings. Finally, we will discuss the relevance of these novel mechanistic insights to ultimately realizing the translational potential of CAP1 in targeted therapeutics for breast cancer.
Assuntos
Neoplasias da Mama/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas do Citoesqueleto/metabolismo , Transdução de Sinais , Citoesqueleto de Actina/metabolismo , Animais , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Adesão Celular/genética , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Movimento Celular/genética , Proliferação de Células , Proteínas do Citoesqueleto/química , Proteínas do Citoesqueleto/genética , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Feminino , Humanos , Ligação Proteica , Relação Estrutura-Atividade , Pesquisa Translacional BiomédicaRESUMO
We studied the expression of mRNA and the level of CAP1 (adenylate cyclase-associated protein 1) and cofilin proteins in the tissues of patients with non-small cell lung cancer. The expression of mRNA and the level of CAP1 in tumor tissue increased during growth of the primary tumor and its metastasis. It was shown that with the growth of the primary tumor, the content of cofilin in the tumor tissue decreases against the background of increased expression of its mRNA; in regional metastasis, the content of cofilin and expression of the corresponding mRNA increased. It was found that increased content of the studied proteins in the tumor tissue increased the risk of metastasis.
Assuntos
Carcinoma Pulmonar de Células não Pequenas/genética , Proteínas de Ciclo Celular/genética , Cofilina 1/genética , Proteínas do Citoesqueleto/genética , Neoplasias Pulmonares/genética , RNA Mensageiro/biossíntese , Carcinoma Pulmonar de Células não Pequenas/patologia , Proteínas de Ciclo Celular/metabolismo , Cofilina 1/metabolismo , Proteínas do Citoesqueleto/metabolismo , Feminino , Humanos , Neoplasias Pulmonares/patologia , Masculino , Metástase Neoplásica/patologiaRESUMO
Cadmium is a toxic metal that produces oxidative stress and has been shown to disrupt the actin cytoskeleton in rat renal mesangial cells (RMC). In a survey of proteins that might undergo Cd2+-dependent disulfide crosslinking, we identified the adenylyl cyclase-associated protein, CAP1, as undergoing a dimerization in response to Cd2+ (5-40 µM) that was sensitive to disulfide reducing agents, was reproduced by the disulfide crosslinking agent diamide, and was shown by site-directed mutagenesis to involve the Cys29 residue of the protein. Reactive oxygen species are not involved in the thiol oxidation, and glutathione modulates background levels of dimer. CAP1 is known to enhance cofilin's F-actin severing activity through binding to F-actin and cofilin. F-actin sedimentation and GST-cofilin pulldown studies of CAP1 demonstrated enrichment of the CAP1 dimer's association with cofilin, and in the cofilin-F-actin pellet, suggesting that Cd2+-induced dimer increases the formation of a CAP1-cofilin-F-actin complex. Both siRNA-based silencing of CAP1 and overexpression of a CAP1 mutant lacking Cys29 (and therefore, incapable of dimerization in response to Cd2+) increased RMC viability and provided some protection of F-actin structures against Cd2+. It is concluded that Cd2+ brings about disruption of the RMC cytoskeleton in part through formation of a CAP1 dimer that increases recruitment of cofilin to F-actin filaments.
Assuntos
Actinas/metabolismo , Cádmio/toxicidade , Proteínas do Citoesqueleto/metabolismo , Células Mesangiais/efeitos dos fármacos , Citoesqueleto de Actina/genética , Citoesqueleto de Actina/metabolismo , Fatores de Despolimerização de Actina/metabolismo , Animais , Células Cultivadas , Cisteína/genética , Cisteína/metabolismo , Proteínas do Citoesqueleto/química , Proteínas do Citoesqueleto/genética , Dissulfetos/química , Células Mesangiais/citologia , Células Mesangiais/metabolismo , Mutação , Estresse Oxidativo/efeitos dos fármacos , Polimerização , Multimerização Proteica , RatosRESUMO
Pancreatic cancer is one of the most lethal human malignancies. A better understanding of the intracellular mechanism of migration and invasion is urgently needed to develop treatment that will suppress metastases and improve overall survival. Cyclic adenosine monophosphate (cyclic AMP) is a second messenger that has shown to regulate migration and invasion of pancreatic cancer cells. The rise of cyclic AMP suppressed migration and invasion of pancreatic ductal adenocarcinoma cells. Cyclic AMP is formed from cytosolic ATP by the enzyme adenylyl cyclase (AC). There are ten isoforms of ACs; nine are anchored in the plasma membrane and one is soluble. What remains unknown is the extent to which the expression of transmembrane AC isoforms is both modified in pancreatic cancer and mediates the inhibitory effect of forskolin on cell motility. Using real-time PCR analysis, ADCY3 was found to be highly expressed in pancreatic tumor tissues, resulting in a constitutive increase in cyclic AMP levels. On the other hand, ADCY2 was down-regulated. Migration, invasion, and filopodia formation in two different pancreatic adenocarcinoma cell lines, HPAC and PANC-1 deficient in AC1 or AC3, were studied. We found that AC3, upon stimulation with forskolin, enhanced cyclic AMP levels and inhibited cell migration and invasion. Unlikely to be due to a cytotoxic effect, the inhibitory effects of forskolin involved the quick formation of AC3/adenylyl cyclase-associated protein 1 (CAP1)/G-actin complex, which inhibited filopodia formation and cell motility. Using Western blotting analysis, forskolin, through AC3 activation, caused phosphorylation of CREB, but not ERK. The effect of CREB phosphorylation is likely to be associated with long-term signaling changes. © 2016 Wiley Periodicals, Inc.