Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Anal Chim Acta ; 1283: 341929, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37977774

RESUMO

Nanozymes have demonstrated high potential in constructing colorimetric sensor array for pesticides. However, rarely array for pesticides constructed without bio-enzyme were reported. Herein, nanoceria crosslinked graphene oxide nanoribbons (Ce-GONRs) and heteroatom-doped graphene oxide nanoribbons (Ce-BGONRs and Ce-NGONRs) were prepared, demonstrating excellent peroxidase-like activities. A colorimetric sensor array was developed based on directly inhibiting the peroxidase-like activities of the above three nanozymes, which realized the discrimination and quantitative analysis of six pesticides. In the presence of pesticides including carbaryl (Car), fluroxypyr-mepthyl (Flu), thiophanate-methyl (Thio), thiram (Thir), diafenthiuron (Dia) and fomesafen (Fom), the peroxidase-like activities of three nanozymes were inhibited to different degrees, resulting in different fingerprint responses. The six pesticides in the concentration range of 0.1-50 µg/mL and two pesticides mixtures at varied ratios could be detected and discriminated, and minimum detection limit for pesticides was 0.022 µg/mL. In addition, this sensor array has been successfully applied for pesticides discrimination in lake water and apple samples. This work provided a new strategy of constructing simple and sensitive colorimetric sensor array for pesticides based on directly inhibiting the catalytic activities of nanozymes.


Assuntos
Nanotubos de Carbono , Praguicidas , Praguicidas/análise , Colorimetria/métodos , Antioxidantes , Peroxidases , Peróxido de Hidrogênio/análise
2.
Chemosphere ; 322: 138243, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36841453

RESUMO

Photocatalytic activation of persulfate (PS) has recently been considered an effective and environmentally friendly approach for antibiotic decomposition due to its high treatment efficiency, low energy consumption, and high reliability. The development of safe and high-performance catalysts is important for PS-based advanced oxidation processes. In this study, a CuFe-layered double hydroxide (LDH) coated graphene oxide (CuFe-LDH/GO) composite was constructed as a photocatalyst for trimethoprim (TMP) decomposition. The CuFe-LDH/GO catalyst was prepared via the co-precipitation method and characterized through Fourier-transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), high-resolution transmission electron microscopy (HR-TEM), and X-ray electron microscopy (XPS) techniques. Characterization results revealed that GO was entirely covered by LDH platelets which also kept its hydrotalcite structure in the as-prepared nanocomposite. The average crystallite size of CuFe-LDH/GO was 28.22 nm. The results confirmed that CuFe-LDH/GO exhibited excellent performance for the PS activation with a TMP removal efficiency of 90.8% under UV-light irradiation. Compared with pristine CuFe-LDH, the rate constant of TMP degradation of CuFe-LDH/GO was doubled. The results also indicated that acidic and alkaline conditions were not favorable for TMP degradation, and the catalytic activity of the used photocatalyst has not decreased significantly after 720 h of continuous recycling. Overall, CuFe-LDH/GO could be a promising photocatalyst for the treatment of wastewater containing antibiotics.


Assuntos
Nanocompostos , Trimetoprima , Espectroscopia de Infravermelho com Transformada de Fourier , Reprodutibilidade dos Testes , Hidróxidos/química , Antibacterianos/química , Nanocompostos/química
3.
Materials (Basel) ; 16(8)2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-37109950

RESUMO

Electroactive composite materials are very promising for musculoskeletal tissue engineering because they can be applied in combination with electrostimulation. In this context, novel graphene-based poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/polyvinyl alcohol (PHBV/PVA) semi-interpenetrated networks (semi-IPN) hydrogels were engineered with low amounts of graphene (G) nanosheets dispersed within the polymer matrix to endow them with electroactive properties. The nanohybrid hydrogels, obtained by applying a hybrid solvent casting-freeze-drying method, show an interconnected porous structure and a high water-absorption capacity (swelling degree > 1200%). The thermal characterization indicates that the structure presents microphase separation, with PHBV microdomains located between the PVA network. The PHBV chains located in the microdomains are able to crystallize; even more after the addition of G nanosheets, which act as a nucleating agent. Thermogravimetric analysis indicates that the degradation profile of the semi-IPN is located between those of the neat components, with an improved thermal stability at high temperatures (>450 °C) after the addition of G nanosheets. The mechanical (complex modulus) and electrical properties (surface conductivity) significantly increase in the nanohybrid hydrogels with 0.2% of G nanosheets. Nevertheless, when the amount of G nanoparticles increases fourfold (0.8%), the mechanical properties diminish and the electrical conductivity does not increase proportionally, suggesting the presence of G aggregates. The biological assessment (C2C12 murine myoblasts) indicates a good biocompatibility and proliferative behavior. These results reveal a new conductive and biocompatible semi-IPN with remarkable values of electrical conductivity and ability to induce myoblast proliferation, indicating its great potential for musculoskeletal tissue engineering.

4.
Chemosphere ; 286(Pt 2): 131740, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34352538

RESUMO

Herein, ZnCr layered double hydroxide (ZnCr LDH), and its nanocomposites with GO and rGO were synthesized using the co-precipitation method. The samples were characterized using XRD, FT-IR, SEM, TEM, BET, and XPS techniques. The sonophotocatalytic activity of the ZnCr LDH, ZnCr LDH/GO, and ZnCr LDH/rGO was investigated via the degradation of rifampicin (RIF) in the ultrasonic bath under visible light irradiation. The synergy index of more than 1 determined for ZnCr LDH/rGO indicated the positive interaction of sonocatalysis and photocatalysis resulted by hybridizing the LDH nanosheets with rGO. The maximum sonophotocatalytic degradation efficiency of 87.3% was achieved in the presence of ZnCr LDH/rGO nanocomposite with the concentration of 1.5 g L-1 for degradation of RIF with an initial concentration of 15 mg L-1 within 60 min sonication under visible light irradiation. The addition of different scavengers indicated that hydroxyl radicals, superoxide anion radicals, and the generated holes played a dominant role in the degradation of the pollutant molecules. A possible degradation mechanism was suggested based on the intermediates. The antibacterial tests confirmed the higher antibacterial activity of ZnCr LDH/GO compared with ZnCr LDH and ZnCr LDH/rGO against Gram-positive Staphylococcus aureus.


Assuntos
Grafite , Nanocompostos , Antibacterianos , Hidróxidos , Rifampina , Espectroscopia de Infravermelho com Transformada de Fourier
5.
Se Pu ; 40(12): 1049-1063, 2022 Dec.
Artigo em Chinês | MEDLINE | ID: mdl-36450345

RESUMO

Herein, we successfully prepared magnetic Co/Ni-based N-doped 3D carbon nanotubes and graphene nanocomposites (CoNi@NGC) using a simple high-temperature calcination method. The CoNi@NGC nanocomposites were used as adsorbents to study their adsorption performances and underlying kinetic mechanisms for six types of bisphenol compounds (BPs) in water. They were also used as extractants, and acid-base effervescent tablets were used to enhance extractant dispersion with the aid of vigorous CO2 bubbling. Thus, a novel pretreatment method was developed, denoted effervescent reaction-assisted dispersive solid-phase microextraction (ER-DSM), which was combined with high performance liquid chromatography-fluorescence detection (HPLC-FLD) to rapidly quantify trace-level BPs in several drinks. The morphology and structure of the CoNi@NGC adsorbent were characterized in detail using scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR), N2 adsorption and desorption (BET-BJH), X-ray photoelectron spectroscopy (XPS), and vibrating sample magnetometry (VSM). The CoNi@NGC nanocomposites were successfully doped with N and exhibited large specific surface areas (109.42 m2/g), abundant pores, and strong magnetic properties (17.98 emu/g).Key parameters were rigorously optimized to maximize the adsorption performance of CoNi@NGC, including adsorbent dosage, solution pH, temperature, and time. Under the constant conditions of pH=7, 5 mg of CoNi@NGC, initial BP concentrations of 5 mg/L, and 5 min of shaking at 298 K, the adsorption percentages of bisphenol M (BPM) and bisphenol A (BPA) reached respective maxima of 99.01% and 98.21%. Remarkably, those of bisphenol Z (BPZ), BPA, and BPM reached almost 100% after 90 min. The adsorption between the BPs and CoNi@NGC was mainly governed by hydrogen bonds, electrostatic interactions, and π-π conjugation. The entire adsorption process was consistent with Freundlich adsorption and a quasi-second-order kinetic equation, representing spontaneous adsorption. Via integration with HPLC-FLD, ER-DSM was used to rapidly extract and analyze trace-level BPs in six types of boxed drinks. Critical factors were optimized individually, including the type of eluent and elution time and volume, which influenced the enrichment effect. Under the optimized extraction conditions (pH=7, 5 mg CoNi@NGC, elution with 2 mL acetone for 6 min), the limits of detection and quantification of the novel extraction method were 0.06-0.20 and 0.20-0.66 µg/L, respectively. The intra- and inter-day precisions spanned the ranges 1.44%-4.76% and 1.69%-5.36%, respectively, and the recoveries in the actual samples were in the range 82.4%-103.7%. Moreover, the respective residual levels of BPA and BPB in peach juice samples were 2.09 and 1.37 µg/L. Regeneration studies revealed that the CoNi@NGC adsorbent could be reused at least five times, which significantly reduced the cost of evaluation. In summary, compared to other methods, this method displays the advantages of a high sensitivity, rapid extraction, and environmental friendliness, thereby exhibiting considerable potential for use in conventional monitoring of trace-level BPs in food matrices.


Assuntos
Grafite , Nanocompostos , Nanotubos de Carbono , Adsorção , Nitrogênio , Espectroscopia de Infravermelho com Transformada de Fourier , Fenômenos Magnéticos
6.
Nanomaterials (Basel) ; 10(6)2020 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-32517253

RESUMO

An upsurge in the multidrug-resistant (MDR) bacterial pestilence is a global cause for concern in terms of human health. Lately, nanomaterials with photothermal effects have assisted in the efficient killing of MDR bacteria, attributable to their uncommon plasmonic, photocatalytic, and structural properties. Examinations of substantial amounts of photothermally enabled nanomaterials have shown bactericidal effects in an optimized time under near-infrared (NIR) light irradiation. In this review, we have compiled recent advances in photothermally enabled nanomaterials for antibacterial activities and their mechanisms. Photothermally enabled nanomaterials are classified into three groups, including metal-, carbon-, and polymer-based nanomaterials. Based on substantial accomplishments with photothermally enabled nanomaterials, we have inferred current trends and their prospective clinical applications.

7.
Chemosphere ; 218: 845-859, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30508803

RESUMO

Volatile organic compounds (VOCs) are harmful for human and surrounding ecosystem, and a great number of VOC abatement technologies have been developed during the past few decades. However, the single method has some problems such as high energy consumption, unfriendly environment, and low removal efficiency. Recently, the integration of adsorption and photocatalytic degradation of VOCs is considered as a promising one. Carbon material, with large surface area, high adsorption capacity, and fast electron transfer ability, is widely used in integrated adsorptive-photocatalytic removal of VOCs. It is thus crucial to digest and summarize recent research advances in carbon-based nanocomposites as the adsorbent-photocatalyst for VOC removal. To satisfy this need, this work provides a critical review of the related literature with focuses on: (1) the advantages and disadvantages of various carbon-based nanocomposites for the applications of VOC adsorption and photocatalytic degradation; (2) models and mechanisms of adsorptive-photocatalytic removal of VOCs according to the material properties; and (3) major factors controlling adsorption-photocatalysis processes of VOCs. The review is aimed to establish the "structure-property-application" relationships for the development of innovative carbon-supported nanocomposites and to promote future research on the integrated adsorptive and photocatalytic removal of VOCs.


Assuntos
Nanocompostos/química , Fotólise , Compostos Orgânicos Voláteis , Adsorção , Carbono , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA