Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
1.
Int J Mol Sci ; 25(3)2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38338830

RESUMO

This review paper delves into the current body of evidence, offering a thorough analysis of the impact of large-conductance Ca2+-activated K+ (BKCa or BK) channels on the electrical dynamics of the heart. Alterations in the activity of BKCa channels, responsible for the generation of the overall magnitude of Ca2+-activated K+ current at the whole-cell level, occur through allosteric mechanisms. The collaborative interplay between membrane depolarization and heightened intracellular Ca2+ ion concentrations collectively contribute to the activation of BKCa channels. Although fully developed mammalian cardiac cells do not exhibit functional expression of these ion channels, evidence suggests their presence in cardiac fibroblasts that surround and potentially establish close connections with neighboring cardiac cells. When cardiac cells form close associations with fibroblasts, the high single-ion conductance of these channels, approximately ranging from 150 to 250 pS, can result in the random depolarization of the adjacent cardiac cell membranes. While cardiac fibroblasts are typically electrically non-excitable, their prevalence within heart tissue increases, particularly in the context of aging myocardial infarction or atrial fibrillation. This augmented presence of BKCa channels' conductance holds the potential to amplify the excitability of cardiac cell membranes through effective electrical coupling between fibroblasts and cardiomyocytes. In this scenario, this heightened excitability may contribute to the onset of cardiac arrhythmias. Moreover, it is worth noting that the substances influencing the activity of these BKCa channels might influence cardiac electrical activity as well. Taken together, the BKCa channel activity residing in cardiac fibroblasts may contribute to cardiac electrical function occurring in vivo.


Assuntos
Fibroblastos , Miócitos Cardíacos , Animais , Miócitos Cardíacos/metabolismo , Membrana Celular/metabolismo , Fibroblastos/metabolismo , Células Cultivadas , Ativação do Canal Iônico , Canais de Potássio Ativados por Cálcio de Condutância Alta/metabolismo , Cálcio/metabolismo , Mamíferos/metabolismo
2.
J Theor Biol ; 573: 111595, 2023 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-37562674

RESUMO

A common side effect of pharmaceutical drugs is an increased propensity for cardiac arrhythmias. Many drugs bind to cardiac ion-channels in a state-specific manner, which alters the ionic conductances in complicated ways, making it difficult to identify the mechanisms underlying pro-arrhythmic drug effects. To better understand the fundamental mechanisms underlying the diverse effects of state-dependent sodium (Na+) channel blockers on cellular excitability, we consider two canonical motifs of drug-ion-channel interactions and compare the effects of Na+ channel blockers on the rate-dependence of peak upstroke velocity, conduction velocity, and vulnerable window size. In the literature, both motifs are referred to as "guarded receptor," but here we distinguish between state-specific binding that does not alter channel gating (referred to here as "guarded receptor") and state-specific binding that blocks certain gating transitions ("gate immobilization"). For each drug binding motif, we consider drugs that bind to the inactivated state and drugs that bind to the non-inactivated state of the Na+ channel. Exploiting the idealized nature of the canonical binding motifs, we identify the fundamental mechanisms underlying the effects on excitability of the various binding interactions. Specifically, we derive the voltage-dependence of the drug binding time constants and the equilibrium fractions of channels bound to drug, and we then derive a formula that incorporates these time constants and equilibrium fractions to elucidate the fundamental mechanisms. In the case of charged drug, we find that drugs that bind to inactivated channels exhibit greater rate-dependence than drugs that bind to non-inactivated channels. For neutral drugs, the effects of guarded receptor interactions are rate-independent, and we describe a novel mechanism for reverse rate-dependence resulting from neutral drug binding to non-inactivated channels via the gate immobilization motif.


Assuntos
Bloqueadores dos Canais de Sódio , Canais de Sódio , Humanos , Arritmias Cardíacas , Coração , Canais Iônicos , Bloqueadores dos Canais de Sódio/farmacologia , Canais de Sódio/metabolismo
3.
Molecules ; 28(8)2023 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-37110748

RESUMO

By assuming that a stepwise outward movement of the four S4 segments of the hERG potassium channel determines a concomitant progressive increase in the flow of the permeant potassium ions, the inward and outward potassium currents can be simulated by using only one or two adjustable (i.e., free) parameters. This deterministic kinetic model differs from the stochastic models of hERG available in the literature, which usually require more than 10 free parameters. The K+ outward current of hERG contributes to the repolarization of the cardiac action potential. On the other hand, the K+ inward current increases with a positive shift in the transmembrane potential, in apparent contrast to both the electric and osmotic forces, which would concur in moving K+ ions outwards. This peculiar behavior can be explained by the appreciable constriction of the central pore midway along its length, with a radius < 1 Å and hydrophobic sacks surrounding it, as reported in an open conformation of the hERG potassium channel. This narrowing raises a barrier to the outward movement of K+ ions, inducing them to move increasingly inwards under a gradually more positive transmembrane potential.

4.
J Mol Cell Cardiol ; 164: 29-41, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34823101

RESUMO

The fast transient outward potassium current (Ito,f) plays a key role in phase 1 repolarization of the human cardiac action potential (AP) and its reduction in heart failure (HF) contributes to the loss of contractility. Therefore, restoring Ito,f might be beneficial for treating HF. The coding sequence of a P2A peptide was cloned, in frame, between Kv4.3 and KChIP2.1 genes and ribosomal skipping was confirmed by Western blotting. Typical Ito,f properties with slowed inactivation and accelerated recovery from inactivation due to the association of KChIP2.1 with Kv4.3 was seen in transfected HEK293 cells. Both bicistronic components trafficked to the plasmamembrane and in adenovirus transduced rabbit cardiomyocytes both t-tubular and sarcolemmal construct labelling appeared. The resulting current was similar to Ito,f seen in human ventricular cardiomyocytes and was 50% blocked at ~0.8 mmol/l 4-aminopyridine and increased ~30% by 5 µmol/l NS5806 (an Ito,f agonist). Variation in the density of the expressed Ito,f, in rabbit cardiomyocytes recapitulated typical species-dependent variations in AP morphology. Simultaneous voltage recording and intracellular Ca2+ imaging showed that modification of phase 1 to a non-failing human phenotype improved the rate of rise and magnitude of the Ca2+ transient. Ito,f expression also reduced AP triangulation but did not affect ICa,L and INa magnitudes. This raises the possibility for a new gene-based therapeutic approach to HF based on selective phase 1 modification.


Assuntos
Insuficiência Cardíaca , Canais de Potássio Shal , Potenciais de Ação/fisiologia , Animais , Células HEK293 , Humanos , Miócitos Cardíacos/metabolismo , Coelhos , Canais de Potássio Shal/genética , Canais de Potássio Shal/metabolismo , Transgenes
5.
Toxicol Appl Pharmacol ; 438: 115914, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35150662

RESUMO

The goal of the CiPA initiative (Comprehensive in vitro Proarrhythmia Assay) was to assess a more accurate prediction of new drug candidate proarrhythmic severe liabilities such as torsades de pointes, for example. This new CiPA paradigm was partly based on in silico reconstruction of human ventricular cardiomyocyte action potential useful to identify repolarization abnormalities such early afterdepolarization (EAD), for example. Using the ToR-ORd algorithm (Tomek-Rodriguez-O'Hara-Rudy dynamic model), the aim of the present work was (i) to identify intracellular parameters leading to EAD occurrence under healthy and hypertrophic cardiomyopathy (HCM) conditions and (ii) to evaluate the prediction accuracy of compound torsadogenic risk based on EAD occurrence using a large set of 109 torsadogenic and non-torsadogenic compounds under both experimental conditions. In silico results highlighted the crucial involvement of Ca++ handling in the ventricular cardiomyocyte intracellular subspace compartment for the initiation of EAD, demonstrated by a higher amplitude of Ca++ release from junctional sarcoplasmic reticulum to subspace compartments (Jrel) measured at EAD take-off voltage in the presence vs. the absence of EAD initiated either by high IKr inhibition or by high enough concentration of a torsadogenic compound under both experimental conditions. Under healthy or HCM conditions, the prediction accuracy of the torsadogenic risk of compound based on EAD occurrence was observed to be 61 or 92%, respectively. This high accuracy under HCM conditions was discussed regarding its usefulness for cardiac safety pharmacology at least at early drug screening/preclinical stage of the drug development process.


Assuntos
Potenciais de Ação/fisiologia , Cardiomiopatia Hipertrófica/tratamento farmacológico , Fármacos Cardiovasculares/farmacologia , Miócitos Cardíacos/efeitos dos fármacos , Torsades de Pointes/tratamento farmacológico , Algoritmos , Cálcio/metabolismo , Cardiomiopatia Hipertrófica/metabolismo , Simulação por Computador , Avaliação Pré-Clínica de Medicamentos/métodos , Eletrocardiografia/efeitos dos fármacos , Humanos , Miócitos Cardíacos/fisiologia , Medição de Risco , Retículo Sarcoplasmático/efeitos dos fármacos , Retículo Sarcoplasmático/metabolismo , Torsades de Pointes/fisiopatologia
6.
Exp Physiol ; 107(8): 864-878, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35561081

RESUMO

NEW FINDINGS: What is the central question of this study? Can the triangular appearance of ventricular action potential, indicating proarrhythmic profile of antiarrhythmic agent, be approximated by specific changes on an electrocardiogram (ECG)? What are the main finding and its importance? The triangulation of the ventricular action potential seen when antiarrhythmic drugs induce a greater lengthening of the late repolarization compared to the initial repolarization in epicardium is closely approximated by a greater prolongation of the T wave upslope relative to the interval between the J point and the start of the T wave (the JTstart interval) on the ECG. These findings may improve the power of ECG assessments in predicting the drug-induced arrhythmia resulting from slowed phase 3 repolarization. ABSTRACT: Antiarrhythmic drugs prescribed to treat atrial fibrillation can occasionally precipitate ventricular tachyarrhythmia through a prominent slowing of the phase 3 repolarization. The latter results in the triangular shape of ventricular action potential, indicating high arrhythmic risk. However, clinically, the utility of triangulation assessments for predicting arrhythmia is limited owing to the invasive nature of the ventricular action potential recordings. This study examined whether the triangulation effect can be detected indirectly from electrocardiogram (ECG) analysis. Epicardial monophasic action potentials and the ECG were simultaneously recorded in perfused guinea-pig hearts. With antiarrhythmics (dofetilide, quinidine, procainamide and flecainide), a prolongation of the initial repolarization seen in the action potential recordings was closely approximated by lengthening of the interval between the J point and the start of the T wave (the JTstart interval) on the ECG, whereas a prolongation of the late repolarization was paralleled by widening of the T wave upslope. Dofetilide, quinidine and procainamide induced a prominent slowing of the phase 3 repolarization in epicardium, leading to triangulation of the action potential. These effects were accompanied by a greater prolongation of the T wave upslope compared to the JTstart interval. Flecainide elicited a proportional prolongation of the initial and the late ventricular repolarization, and therefore failed to induce triangulation, based on analysis of both epicardial action potential and ECG profiles. Collectively, these findings suggest that the ratio between the durations of the T wave upslope and the JTstart interval may represent the ECG metric of the ventricular action potential triangulation induced by antiarrhythmic drugs.


Assuntos
Antiarrítmicos , Arritmias Cardíacas , Potenciais de Ação , Animais , Antiarrítmicos/efeitos adversos , Arritmias Cardíacas/induzido quimicamente , Arritmias Cardíacas/tratamento farmacológico , Eletrocardiografia , Flecainida/efeitos adversos , Cobaias , Pericárdio/efeitos dos fármacos , Pericárdio/fisiologia , Procainamida/efeitos adversos , Quinidina/efeitos adversos
7.
J Biol Phys ; 48(4): 461-475, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36372807

RESUMO

Experiments using conventional experimental approaches to capture the dynamics of ion channels are not always feasible, and even when possible and feasible, some can be time-consuming. In this work, the ionic current-time dynamics during cardiac action potentials (APs) are predicted from a single AP waveform by means of artificial neural networks (ANNs). The data collection is accomplished by the use of a single-cell model to run electrophysiological simulations in order to identify ionic currents based on fluctuations in ion channel conductance. The relevant ionic currents, as well as the corresponding cardiac AP, are then calculated and fed into the ANN algorithm, which predicts the desired currents solely based on the AP curve. The validity of the proposed methodology for the Bayesian approach is demonstrated by the R (validation) scores obtained from training data, test data, and the entire data set. The Bayesian regularization's (BR) strength and dependability are further supported by error values and the regression presentations, all of which are positive indicators. As a result of the high convergence between the simulated currents and the currents generated by including the efficacy of a developed Bayesian solver, it is possible to generate behavior of ionic currents during time for the desired AP waveform for any electrical excitable cell.


Assuntos
Potenciais de Ação , Projetos Piloto , Teorema de Bayes
8.
Int J Mol Sci ; 23(11)2022 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-35682699

RESUMO

Metformin is the first choice drug for the treatment of type 2 diabetes due to positive results in reducing hyperglycaemia and insulin resistance. However, diabetic patients have higher risk of ventricular arrhythmia and sudden cardiac death, and metformin failed to reduce ventricular arrhythmia in clinical trials. In order to explore the mechanisms responsible for the lack of protective effect, we investigated in vivo the effect of metformin on cardiac electrical activity in non-diabetic rats; and in vitro in isolated ventricular myocytes, HEK293 cells expressing the hERG channel and human induced pluripotent stem cells derived cardiomyocytes (hIPS-CMs). Surface electrocardiograms showed that long-term metformin treatment (7 weeks) at therapeutic doses prolonged cardiac repolarization, reflected as QT and QTc interval duration, and increased ventricular arrhythmia during the caffeine/dobutamine challenge. Patch-clamp recordings in ventricular myocytes isolated from treated animals showed that the cellular mechanism is a reduction in the cardiac transient outward potassium current (Ito). In vitro, incubation with metformin for 24 h also reduced Ito, prolonged action potential duration, and increased spontaneous contractions in ventricular myocytes isolated from control rats. Metformin incubation also reduced IhERG in HEK293 cells. Finally, metformin incubation prolonged action potential duration at 30% and 90% of repolarization in hIPS-CMs, which is compatible with the reduction of Ito and IhERG. Our results show that metformin directly modifies the electrical behavior of the normal heart. The mechanism consists in the inhibition of repolarizing currents and the subsequent decrease in repolarization capacity, which prolongs AP and QTc duration.


Assuntos
Diabetes Mellitus Tipo 2 , Células-Tronco Pluripotentes Induzidas , Metformina , Potenciais de Ação , Animais , Arritmias Cardíacas/tratamento farmacológico , Células HEK293 , Humanos , Metformina/farmacologia , Miócitos Cardíacos , Potássio/farmacologia , Ratos
9.
Int J Mol Sci ; 23(17)2022 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-36076956

RESUMO

Empagliflozin, an inhibitor of sodium-glucose co-transporter 2 (iSGLT2), improves cardiovascular outcomes in patients with and without diabetes and possesses an antiarrhythmic activity. However, the mechanisms of these protective effects have not been fully elucidated. This study aimed to explore the impact of empagliflozin on ion channel activity and electrophysiological characteristics in the ventricular myocardium. The main cardiac ionic currents (INa, ICaL, ICaT, IKr, IKs) and action potentials (APs) were studied in zebrafish. Whole-cell currents were measured using the patch clamp method in the isolated ventricular cardiomyocytes. The conventional sharp glass microelectrode technique was applied for the recording of APs from the ventricular myocardium of the excised heart. Empagliflozin pretreatment compared to the control group enhanced potassium IKr step current density in the range of testing potentials from 0 to +30 mV, IKr tail current density in the range of testing potentials from +10 to +70 mV, and IKs current density in the range of testing potentials from -10 to +20 mV. Moreover, in the ventricular myocardium, empagliflozin pretreatment shortened AP duration APD as shown by reduced APD50 and APD90. Empagliflozin had no influence on sodium (INa) and L- and T-type calcium currents (ICaL and ICaT) in zebrafish ventricular cardiomyocytes. Thus, we conclude that empagliflozin increases the rapid and slow components of delayed rectifier K+ current (IKr and IKs). This mechanism could be favorable for cardiac protection.


Assuntos
Inibidores do Transportador 2 de Sódio-Glicose , Peixe-Zebra , Potenciais de Ação , Animais , Compostos Benzidrílicos , Glucosídeos , Ventrículos do Coração/metabolismo , Miócitos Cardíacos/metabolismo , Potássio/metabolismo , Canais de Potássio , Sódio/metabolismo , Inibidores do Transportador 2 de Sódio-Glicose/farmacologia , Peixe-Zebra/metabolismo
10.
Int J Mol Sci ; 23(2)2022 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-35055102

RESUMO

Astaxanthin is a lipid-soluble carotenoid influencing lipid metabolism, body weight, and insulin sensitivity. We provide a systematic analysis of acute and chronic effects of astaxanthin on different organs. Changes by chronic astaxanthin feeding were analyzed on general metabolism, expression of regulatory proteins in the skeletal muscle, as well as changes of excitation and synaptic activity in the hypothalamic arcuate nucleus of mice. Acute responses were also tested on canine cardiac muscle and different neuronal populations of the hypothalamic arcuate nucleus in mice. Dietary astaxanthin significantly increased food intake. It also increased protein levels affecting glucose metabolism and fatty acid biosynthesis in skeletal muscle. Inhibitory inputs innervating neurons of the arcuate nucleus regulating metabolism and food intake were strengthened by both acute and chronic astaxanthin treatment. Astaxanthin moderately shortened cardiac action potentials, depressed their plateau potential, and reduced the maximal rate of depolarization. Based on its complex actions on metabolism and food intake, our data support the previous findings that astaxanthin is suitable for supplementing the diet of patients with disturbances in energy homeostasis.


Assuntos
Potenciais de Ação/efeitos dos fármacos , Anabolizantes/farmacologia , Metabolismo Energético/efeitos dos fármacos , Animais , Cães , Ingestão de Alimentos/efeitos dos fármacos , Hipotálamo/efeitos dos fármacos , Hipotálamo/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Camundongos , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Especificidade de Órgãos/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Xantofilas/farmacologia
11.
Pflugers Arch ; 473(3): 477-489, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33624131

RESUMO

Small-conductance Ca2+-activated K+ (SK, KCa2) channels are encoded by KCNN genes, including KCNN1, 2, and 3. The channels play critical roles in the regulation of cardiac excitability and are gated solely by beat-to-beat changes in intracellular Ca2+. The family of SK channels consists of three members with differential sensitivity to apamin. All three isoforms are expressed in human hearts. Studies over the past two decades have provided evidence to substantiate the pivotal roles of SK channels, not only in healthy heart but also with diseases including atrial fibrillation (AF), ventricular arrhythmia, and heart failure (HF). SK channels are prominently expressed in atrial myocytes and pacemaking cells, compared to ventricular cells. However, the channels are significantly upregulated in ventricular myocytes in HF and pulmonary veins in AF models. Interests in cardiac SK channels are further fueled by recent studies suggesting the possible roles of SK channels in human AF. Therefore, SK channel may represent a novel therapeutic target for atrial arrhythmias. Furthermore, SK channel function is significantly altered by human calmodulin (CaM) mutations, linked to life-threatening arrhythmia syndromes. The current review will summarize recent progress in our understanding of cardiac SK channels and the roles of SK channels in the heart in health and disease.


Assuntos
Cardiopatias/metabolismo , Coração/fisiologia , Canais de Potássio Ativados por Cálcio de Condutância Baixa/metabolismo , Animais , Humanos
12.
Adv Physiol Educ ; 45(4): 856-868, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34473584

RESUMO

Practical demonstration of cardiomyocyte function requires substantial preparation, a source of freshly isolated animal hearts, and specialized equipment. Even where such resources are available, it is not conducive for demonstration to any more than a few students at a time. These approaches are also not consistent with the 3R principle (replacement, reduction, and refinement) of ethical use of animals. We present an implementation of the LabHEART software, developed by Donald Bers and Jose Puglisi, for medical students. Prior to the activity, students had lectures covering the physiological and pharmacological aspects of cardiac excitation-contraction (EC) coupling. We used this problem-based activity to help students consolidate their knowledge and to allow a hands-on approach to explore the key features of EC coupling. Students simulate and measure action potentials, intracellular calcium changes, and cardiomyocyte contraction. They also apply drugs that target ion channels (e.g., nifedipine or tetrodotoxin) or sympathetic input (using isoproterenol) and explore changes to EC coupling. Furthermore, by modifying the biophysical parameters of key ion channels involved in the electrical activity of the heart, students also explore the effect of channelopathies such as long QT syndromes. We describe approaches to implement this activity in a flipped classroom format, with recorded lecture materials provided ahead of the practical to facilitate active learning. We also describe our experiences implementing this activity online. The content and difficulty of the activity can be altered to suit individual courses and is also amenable to promote peer-driven learning.


Assuntos
Laboratórios , Estudantes de Medicina , Animais , Simulação por Computador , Computadores , Humanos , Aprendizagem Baseada em Problemas
13.
Eur Biophys J ; 49(5): 323-342, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32462262

RESUMO

Mathematical action potential (AP) modeling is a well-established but still-developing area of research to better understand physiological and pathological processes. In particular, changes in AP mechanisms in the isoproterenol (ISO) -induced hypertrophic heart model are incompletely understood. Here we present a mathematical model of the rat AP based on recordings from rat ventricular myocytes. In our model, for the first time, all channel kinetics are defined with a single type of function that is simple and easy to apply. The model AP and channels dynamics are consistent with the APs recorded from rats for both Control (absence of ISO) and ISO-treated cases. Our mathematical model helps us to understand the reason for the prolongation in AP duration after ISO application while ISO treatment helps us to validate our mathematical model. We reveal that the smaller density and the slower gating kinetics of the transient K+ current help explain the prolonged AP duration after ISO treatment and the increasing amplitude of the rapid and the slow inward rectifier currents also contribute to this prolongation alongside the flux in Ca2+ currents. ISO induced an increase in the density of the Na+ current that can explain the faster upstroke. We believe that AP dynamics from rat ventricular myocytes can be reproduced very well with this mathematical model and that it provides a powerful tool for improved insights into the underlying dynamics of clinically important AP properties such as ISO application.


Assuntos
Potenciais de Ação/efeitos dos fármacos , Cardiomegalia/induzido quimicamente , Cardiomegalia/patologia , Ventrículos do Coração/efeitos dos fármacos , Ventrículos do Coração/patologia , Isoproterenol/farmacologia , Modelos Cardiovasculares , Animais , Cardiomegalia/metabolismo , Cardiomegalia/fisiopatologia , Canais Iônicos/metabolismo , Cinética , Masculino , Ratos , Ratos Wistar
14.
J Mol Cell Cardiol ; 132: 13-23, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31071333

RESUMO

Dilated cardiomyopathy (DCM) is the third most common cause of heart failure, with ~70% of DCM cases considered idiopathic. We showed recently, through genetic ablation of the MGAT1 gene, which encodes an essential glycosyltransferase (GlcNAcT1), that prevention of cardiomyocyte hybrid/complex N-glycosylation was sufficient to cause DCM that led to heart failure and early death. Our findings are consistent with increasing evidence suggesting a link between aberrant glycosylation and heart diseases of acquired and congenital etiologies. However, the mechanisms by which changes in glycosylation contribute to disease onset and progression remain largely unknown. Activity and gating of voltage-gated Na+ and K+ channels (Nav and Kv respectively) play pivotal roles in the initiation, shaping and conduction of cardiomyocyte action potentials (APs) and aberrant channel activity was shown to contribute to cardiac disease. We and others showed that glycosylation can impact Nav and Kv function; therefore, here, we investigated the effects of reduced cardiomyocyte hybrid/complex N-glycosylation on channel activity to investigate whether chronic aberrant channel function can contribute to DCM. Ventricular cardiomyocytes from MGAT1 deficient (MGAT1KO) mice display prolonged APs and pacing-induced aberrant early re-activation that can be attributed to, at least in part, a significant reduction in Kv expression and activity that worsens over time suggesting heart disease-related remodeling. MGAT1KO Nav demonstrate no change in expression or maximal conductance but show depolarizing shifts in voltage-dependent gating. Together, the changes in MGAT1KO Nav and Kv function likely contribute to observed anomalous electrocardiograms and Ca2+ handling. These findings provide insight into mechanisms by which altered glycosylation contributes to DCM through changes in Nav and Kv activity that impact conduction, Ca2+ handling and contraction. The MGAT1KO can also serve as a useful model to study the effects of aberrant electrical signaling on cardiac function and the remodeling events that can occur with heart disease progression.


Assuntos
Potenciais de Ação , Cálcio/metabolismo , Cardiomiopatia Dilatada/patologia , Modelos Animais de Doenças , Miócitos Cardíacos/patologia , N-Acetilglucosaminiltransferases/fisiologia , Potássio/metabolismo , Animais , Cardiomiopatia Dilatada/metabolismo , Eletrofisiologia , Glicosilação , Camundongos , Camundongos Knockout , Miócitos Cardíacos/metabolismo
15.
J Exp Biol ; 222(Pt 5)2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30679241

RESUMO

Electrical excitability (EE) is vital for cardiac function and strongly modulated by temperature and external K+ concentration ([K+]o), as formulated in the hypothesis of temperature-dependent deterioration of electrical excitability (TDEE). As little is known about EE of arctic stenothermic fishes, we tested the TDEE hypothesis on ventricular myocytes of polar cod (Boreogadus saida) and navaga (Eleginus nawaga) of the Arctic Ocean and those of temperate freshwater burbot (Lota lota). Ventricular action potentials (APs) were elicited in current-clamp experiments at 3, 9 and 15°C, and AP characteristics and the current needed to elicit APs were examined. At 3°C, ventricular APs of polar cod and navaga were similar but differed from those of burbot in having a lower rate of AP upstroke and a higher rate of repolarization. EE of ventricular myocytes - defined as the ease with which all-or-none APs are triggered - was little affected by acute temperature changes between 3 and 15°C in any species. However, AP duration (APD50) was drastically reduced at higher temperatures. Elevation of [K+]o from 3 to 5.4 mmol l-1 and further to 8 mmol l-1 at 3, 9 and 15°C strongly affected EE and AP characteristics in polar cod and navaga, but had a lesser effect in burbot. In all species, ventricular excitation was resistant to acute temperature elevations, while small increases in [K+]o severely compromised EE, in particular in the marine stenotherms. This suggests that EE of the heart in these Gadiformes species is resistant against acute warming, but less so against the simultaneous temperature and exercise stresses.


Assuntos
Potenciais de Ação/fisiologia , Gadiformes/fisiologia , Miócitos Cardíacos/fisiologia , Potássio/fisiologia , Função Ventricular/fisiologia , Animais , Feminino , Masculino , Temperatura
16.
J Math Biol ; 78(5): 1529-1552, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30600334

RESUMO

The aim of this work is the analysis of the nonlinear dynamics of two-dimensional mapping model of cardiac action potential duration (2D-map APD) with memory derived from one dimensional map (1D-map). Action potential duration (APD) restitution, which relates APD to the preceding diastolic interval (DI), is a useful tool for predicting cardiac arrhythmias. For a constant rate of stimulation the short action potential during alternans is followed by a longer DI and inversely. It has been suggested that these differences in DI are responsible for the occurrence and maintenance of APD alternans. We focus our attention on the observed bifurcations produced by a change in the stimulation period and a fixed value of a particular parameter in the model. This parameter provides new information about the dynamics of the APD with memory, such as the occurrence of bistabilities not previously described in the literature, as well as the fact that synchronization rhythms occur in different ways and in a new fashion as the stimulation frequency increases. Moreover, we show that this model is flexible enough as to accurately reflect the chaotic dynamics properties of the APD: we have highlighted the fractal structure of the strange attractor of the 2D-map APD, and we have characterized chaos by tools such as the calculation of the Lyapunov exponents, the fractal dimension and the Kolmogorov entropy, with the next objective of refining the study of the nonlinear dynamics of the duration of the action potential and to apply methods of controlling chaos.


Assuntos
Potenciais de Ação/fisiologia , Coração/fisiologia , Modelos Cardiovasculares , Animais , Arritmias Cardíacas/fisiopatologia , Fenômenos Eletrofisiológicos , Humanos , Conceitos Matemáticos , Dinâmica não Linear
17.
J Mol Cell Cardiol ; 124: 35-44, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30292722

RESUMO

Dynamic conformational changes of ion channel proteins during activation gating determine their function as carriers of current. The relationship between these molecular movements and channel function over the physiological timescale of the action potential (AP) has not been fully established due to limitations of existing techniques. We constructed a library of possible cardiac IKs protein conformations and applied a combination of protein segmentation and energy linearization to study this relationship computationally. Simulations reproduced the effects of the beta-subunit (KCNE1) on the alpha-subunit (KCNQ1) dynamics and function, observed in experiments. Mechanistically, KCNE1 increased the probability of "visiting" conducting pore conformations on activation trajectories, thereby increasing IKs current. KCNE1 slowed IKs activation by impeding the voltage sensor (VS) movement and reducing its coupling to pore opening. Conformational changes along activation trajectories determined that the S4-S5 linker (S4S5L) plays an important role in these modulatory effects by KCNE1. Integration of these molecular structure-based IKs dynamics into a model of human cardiac ventricular myocyte, revealed that KCNQ1-KCNE1 interaction is essential for normal AP repolarization.


Assuntos
Ativação do Canal Iônico , Conformação Molecular , Simulação de Dinâmica Molecular , Canais de Potássio/química , Canais de Potássio/metabolismo , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Potenciais de Ação , Miócitos Cardíacos/metabolismo , Canais de Potássio de Abertura Dependente da Tensão da Membrana/química , Canais de Potássio de Abertura Dependente da Tensão da Membrana/metabolismo , Conformação Proteica , Relação Quantitativa Estrutura-Atividade
18.
Am J Physiol Heart Circ Physiol ; 314(2): H236-H245, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-28971840

RESUMO

The physiological role of cardiac late Na+ current ( INa) has not been well described. In this study, we tested the hypothesis that selective inhibition of physiological late INa abbreviates the normal action potential (AP) duration (APD) and counteracts the prolongation of APD and arrhythmic activities caused by inhibition of the delayed rectifier K+ current ( IKr). The effects of GS-458967 (GS967) on the physiological late INa and APs in rabbit isolated ventricular myocytes and on the monophasic APs and arrhythmias in rabbit isolated perfused hearts were determined. In ventricular myocytes, GS967 and, for comparison, tetrodotoxin concentration dependently decreased the physiological late INa with IC50 values of 0.5 and 1.9 µM, respectively, and significantly shortened the APD measured at 90% repolarization (APD90). A strong correlation between inhibition of the physiological late INa and shortening of APD by GS967 or tetrodotoxin ( R2 of 0.96 and 0.97, respectively) was observed. Pretreatment of isolated myocytes or hearts with GS967 (1 µM) significantly shortened APD90 and monophasic APD90 and prevented the prolongation and associated arrhythmias caused by the IKr inhibitor E4031 (1 µM). In conclusion, selective inhibition of physiological late INa shortens the APD, stabilizes ventricular repolarization, and decreases the proarrhythmic potential of pharmacological agents that slow ventricular repolarization. Thus, selective inhibition of late INa may constitute a generalizable approach to stabilize ventricular repolarization and suppress arrhythmogenicity associated with conditions whereby AP or QT intervals are prolonged. NEW & NOTEWORTHY The contribution of physiological late Na+ current in action potential duration (APD) of rabbit cardiac myocytes was estimated. The inhibition of this current prevented the prolongation of APD in rabbit cardiac myocytes, the prolongation of monophasic APD, and generation of arrhythmias in rabbit isolated hearts caused by delayed rectifier K+ current inhibition.


Assuntos
Antiarrítmicos/farmacologia , Arritmias Cardíacas/prevenção & controle , Frequência Cardíaca/efeitos dos fármacos , Ventrículos do Coração/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , Piridinas/farmacologia , Bloqueadores dos Canais de Sódio/farmacologia , Canais de Sódio/efeitos dos fármacos , Triazóis/farmacologia , Potenciais de Ação/efeitos dos fármacos , Animais , Arritmias Cardíacas/induzido quimicamente , Arritmias Cardíacas/metabolismo , Arritmias Cardíacas/fisiopatologia , Estimulação Cardíaca Artificial , Modelos Animais de Doenças , Feminino , Ventrículos do Coração/metabolismo , Ventrículos do Coração/fisiopatologia , Técnicas In Vitro , Preparação de Coração Isolado , Cinética , Miócitos Cardíacos/metabolismo , Piperidinas , Coelhos , Canais de Sódio/metabolismo , Tetrodotoxina/farmacologia
19.
Am J Physiol Heart Circ Physiol ; 314(3): H643-H658, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29101164

RESUMO

Transgenic (TG) mice overexpressing ß2-adrenergic receptors (ß2-ARs) demonstrate enhanced myocardial function, which manifests in increased basal adenylyl cyclase activity, enhanced atrial contractility, and increased left ventricular function in vivo. To gain insights into the mechanisms of these effects, we developed a comprehensive mathematical model of the mouse ventricular myocyte overexpressing ß2-ARs. We found that most of the ß2-ARs are active in control conditions in TG mice. The simulations describe the dynamics of major signaling molecules in different subcellular compartments, increased basal adenylyl cyclase activity, modifications of action potential shape and duration, and the effects on L-type Ca2+ current and intracellular Ca2+ concentration ([Ca2+]i) transients upon stimulation of ß2-ARs in control, after the application of pertussis toxin, upon stimulation with a specific ß2-AR agonist zinterol, and upon stimulation with zinterol in the presence of pertussis toxin. The model also describes the effects of the ß2-AR inverse agonist ICI-118,551 on adenylyl cyclase activity, action potential, and [Ca2+]i transients. The simulation results were compared with experimental data obtained in ventricular myocytes from TG mice overexpressing ß2-ARs and with simulation data on wild-type mice. In conclusion, a new comprehensive mathematical model was developed that describes multiple experimental data on TG mice overexpressing ß2-ARs and can be used to test numerous hypotheses. As an example, using the developed model, we proved the hypothesis of the major contribution of L-type Ca2+ current to the changes in the action potential and [Ca2+]i transient upon stimulation of ß2-ARs with zinterol. NEW & NOTEWORTHY We developed a new mathematical model for transgenic mouse ventricular myocytes overexpressing ß2-adrenoceptors that describes the experimental findings in transgenic mice. The model reveals mechanisms of the differential effects of stimulation of ß2-adrenoceptors in wild-type and transgenic mice overexpressing ß2-adrenoceptors.


Assuntos
Canais de Cálcio Tipo L/metabolismo , Sinalização do Cálcio , Ventrículos do Coração/metabolismo , Modelos Cardiovasculares , Miócitos Cardíacos/metabolismo , Receptores Adrenérgicos beta 2/metabolismo , Potenciais de Ação , Adenilil Ciclases/metabolismo , Adrenérgicos/farmacologia , Animais , Canais de Cálcio Tipo L/efeitos dos fármacos , Sinalização do Cálcio/efeitos dos fármacos , Simulação por Computador , Genótipo , Ventrículos do Coração/citologia , Ventrículos do Coração/efeitos dos fármacos , Cinética , Camundongos , Camundongos Transgênicos , Miócitos Cardíacos/efeitos dos fármacos , Fenótipo , Receptores Adrenérgicos beta 2/efeitos dos fármacos , Receptores Adrenérgicos beta 2/genética , Regulação para Cima
20.
Cell Physiol Biochem ; 49(1): 65-77, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30134221

RESUMO

BACKGROUND/AIMS: Cardiac arrhythmias are triggered by environmental stimuli that may modulate expression of cardiac ion channels. Underlying epigenetic regulation of cardiac electrophysiology remains incompletely understood. Histone deacetylases (HDACs) control gene expression and cardiac integrity. We hypothesized that class I/II HDACs transcriptionally regulate ion channel expression and determine action potential duration (APD) in cardiac myocytes. METHODS: Global class I/II HDAC inhibition was achieved by administration of trichostatin A (TSA). HDAC-mediated effects on K+ channel expression and electrophysiological function were evaluated in murine atrial cardiomyocytes (HL-1 cells) using real-time PCR, Western blot, and patch clamp analyses. Electrical tachypacing was employed to recapitulate arrhythmia-related effects on ion channel remodeling in the absence and presence of HDAC inhibition. RESULTS: Global HDAC inhibition increased histone acetylation and prolonged APD90 in atrial cardiomyocytes compared to untreated control cells. Transcript levels of voltage-gated or inwardly rectifying K+ channels Kcnq1, Kcnj3 and Kcnj5 were significantly reduced, whereas Kcnk2, Kcnj2 and Kcnd3 mRNAs were upregulated. Ion channel remodeling was similarly observed at protein level. Short-term tachypacing did not induce significant transcriptional K+ channel remodeling. CONCLUSION: The present findings link class I/II HDAC activity to regulation of ion channel expression and action potential duration in atrial cardiomyocytes. Clinical implications for HDAC-based antiarrhythmic therapy and cardiac safety of HDAC inhibitors require further investigation.


Assuntos
Potenciais de Ação/efeitos dos fármacos , Canais de Potássio Corretores do Fluxo de Internalização Acoplados a Proteínas G/metabolismo , Inibidores de Histona Desacetilases/farmacologia , Histona Desacetilases/metabolismo , Canais de Potássio de Domínios Poros em Tandem/metabolismo , Canais de Potássio/metabolismo , Animais , Linhagem Celular , Canais de Potássio Corretores do Fluxo de Internalização Acoplados a Proteínas G/genética , Inibidores de Histona Desacetilases/química , Histona Desacetilases/química , Ácidos Hidroxâmicos/química , Ácidos Hidroxâmicos/farmacologia , Camundongos , Miócitos Cardíacos/citologia , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Técnicas de Patch-Clamp , Canais de Potássio/genética , Canais de Potássio de Domínios Poros em Tandem/genética , Transcrição Gênica/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA