Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Xenotransplantation ; 31(1): e12841, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38864375

RESUMO

INTRODUCTION: Orthotopic cardiac xenotransplantation has seen notable improvement, leading to the first compassionate use in 2022. However, it remains challenging to define the clinical application of cardiac xenotransplantation, including the back-up strategy in case of xenograft failure. In this regard, the heterotopic thoracic technique could be an alternative to the orthotopic procedure. We present hemodynamic data of heterotopic thoracic pig-to-baboon transplantation experiments, focusing on perioperative xenograft dysfunction and xenograft overgrowth. METHODS: We used 17 genetically modified piglets as donors for heterotopic thoracic xenogeneic cardiac transplantation into captive-bred baboons. In all animals, pressure probes were implanted in the graft's left ventricle and the recipient's ascending aorta and hemodynamic data (graft pressure, aortic pressure and recipient's heart rate) were recorded continuously. RESULTS: Aortic pressures and heart rates of the recipients' hearts were postoperatively stable in all experiments. After reperfusion, three grafts presented with low left ventricular pressure indicating perioperative cardiac dysfunction (PCXD). These animals recovered from PCXD within 48 h under support of the recipient's heart and there was no difference in survival compared to the other 14 ones. After 48 h, graft pressure increased up to 200 mmHg in all 17 animals with two different time-patterns. This led to a progressive gradient between graft and aortic pressure. With increasing gradient, the grafts stopped contributing to cardiac output. Grafts showed a marked weight increase from implantation to explantation. CONCLUSION: The heterotopic thoracic cardiac xenotransplantation technique is a possible method to overcome PCXD in early clinical trials and an experimental tool to get a better understanding of PCXD. The peculiar hemodynamic situation of increasing graft pressure but missing graft's output indicates outflow tract obstruction due to cardiac overgrowth. The heterotopic thoracic technique should be successful when using current strategies of immunosuppression, organ preservation and donor pigs with smaller body and organ size.


Assuntos
Transplante de Coração , Hemodinâmica , Xenoenxertos , Papio , Transplante Heterólogo , Animais , Transplante Heterólogo/métodos , Transplante de Coração/métodos , Suínos , Hemodinâmica/fisiologia , Sobrevivência de Enxerto , Transplante Heterotópico/métodos , Animais Geneticamente Modificados , Rejeição de Enxerto , Humanos
2.
Surg Today ; 54(8): 829-838, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38733536

RESUMO

The world's first clinical cardiac xenotransplantation, using a genetically engineered pig heart with 10 gene modifications, prolonged the life of a 57-year-old man with no other life-saving options, by 60 days. It is foreseeable that xenotransplantation will be introduced in clinical practice in the United States. However, little clinical or regulatory progress has been made in the field of xenotransplantation in Japan in recent years. Japan seems to be heading toward a "device lag", and the over-importation of medical devices and technology in the medical field is becoming problematic. In this review, we discuss the concept of pig-heart xenotransplantation, including the pathobiological aspects related to immune rejection, coagulation dysregulation, and detrimental heart overgrowth, as well as genetic modification strategies in pigs to prevent or minimize these problems. Moreover, we summarize the necessity for and current status of xenotransplantation worldwide, and future prospects in Japan, with the aim of initiating xenotransplantation in Japan using genetically modified pigs without a global delay. It is imperative that this study prompts the initiation of preclinical xenotransplantation research using non-human primates and leads to clinical studies.


Assuntos
Animais Geneticamente Modificados , Transplante de Coração , Transplante Heterólogo , Animais , Suínos , Japão , Humanos , Rejeição de Enxerto , Masculino , Pessoa de Meia-Idade , Engenharia Genética , Coagulação Sanguínea , Coração
3.
Curr Cardiol Rep ; 25(11): 1649-1656, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37938425

RESUMO

PURPOSE OF REVIEW: The first successful pig to human cardiac xenotransplantation in January 2022 represented a major step forward in the fields of heart failure, immunology, and applied genetic engineering, using a 10-gene edited (GE) pig. This review summarizes the evolution of preclinical modelling data which informed the use of each of the 10 genes modified in the 10-GE pig: GGTA1, Β4GalNT2, CMAH, CD46, CD55, TBM, EPCR, CD47, HO-1, and growth hormone receptor. RECENT FINDINGS: The translation of the 10-GE pig from preclinical modelling to clinical compassionate xenotransplant use was the culmination of decades of research combating rejection, coagulopathy, inflammation, and excessive xenograft growth. Understanding these 10 genes with a view to their combinatorial effects will be useful in anticipated xenotransplant clinical trials.


Assuntos
Transtornos da Coagulação Sanguínea , Rejeição de Enxerto , Animais , Humanos , Suínos , Transplante Heterólogo , Animais Geneticamente Modificados , Rejeição de Enxerto/genética , Rejeição de Enxerto/prevenção & controle , Engenharia Genética , Inflamação
4.
J Mol Cell Cardiol ; 172: 109-119, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36030840

RESUMO

End stage heart failure is a terminal disease, and the only curative therapy is orthotopic heart transplantation. Due to limited organ availability, alternative strategies have received intense interest for treatment of patients with advanced heart failure. Recent studies using gene-edited porcine organs suggest that cardiac xenotransplantation may provide a future source of organs. In this review, we highlight the historical milestones for cardiac xenotransplantation and the gene editing strategies designed to overcome immunological barriers, which have culminated in a recent cardiac pig-to-human xenotransplant. We also discuss recent results of studies on the engineering of human-porcine chimeric organs that may provide an alternative and complementary strategy to overcome some of the major immunological barriers to producing a new source of transplantable organs.


Assuntos
Insuficiência Cardíaca , Transplante de Coração , Transplantes , Humanos , Suínos , Animais , Transplante Heterólogo/efeitos adversos , Transplante Heterólogo/métodos , Transplante de Coração/métodos , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/terapia , Edição de Genes
5.
Heart Fail Rev ; 27(1): 71-91, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-32572737

RESUMO

Cardiac xenotransplantation (CXTx) might be a promising approach to bridge the gap between the supply and demand of a donor heart. The survival of cardiac xenograft has been significantly extended in pig-to-nonhuman primate (NHP) CXTx, with records of 195 days and 945 days for orthotropic and heterotopic CXTx, respectively. To present the history of CXTx, we list the reported clinical CXTx, compare pigs and NHPs as sources of hearts, and compare three different kinds of preclinical CXTx models. The application of genetically modified pigs and novel immunosuppressive drugs accelerates the development of CXTx, and we summarize the reported pig-to-NHP CXTx with detailed information. Besides, we discuss the underlining mechanisms and potential preventive strategies of immunological barriers, including hyperacute rejection, acute humoral xenograft rejection, acute cellular xenograft rejection, chronic rejection, coagulation dysfunction, and systemic inflammation. Though intense cellular infiltration in cardiac xenograft has only been documented in a small number of studies, we especially stress the importance of cellular rejection in CXTx, because we believe it is often masked by the rapid and strong humoral response and it may eventually become a more important and common type of xenograft rejection. In addition, we conclude other obstacles as well as possible solutions in CXTx, such as perioperative cardiac xenograft dysfunction, detrimental xenograft overgrowth, and porcine endogenous retroviruses. Finally, we briefly introduce several other approaches that have been proposed to deal with the organ heart shortage crisis, and we firmly believe that CXTx provides the best near-term solution.


Assuntos
Insuficiência Cardíaca , Transplante de Coração , Animais , Rejeição de Enxerto/prevenção & controle , Insuficiência Cardíaca/terapia , Humanos , Suínos , Doadores de Tecidos , Transplante Heterólogo
6.
Xenotransplantation ; 29(3): e12744, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35357044

RESUMO

We report orthotopic (life-supporting) survival of genetically engineered porcine cardiac xenografts (with six gene modifications) for almost 9 months in baboon recipients. This work builds on our previously reported heterotopic cardiac xenograft (three gene modifications) survival up to 945 days with an anti-CD40 monoclonal antibody-based immunosuppression. In this current study, life-supporting xenografts containing multiple human complement regulatory, thromboregulatory, and anti-inflammatory proteins, in addition to growth hormone receptor knockout (KO) and carbohydrate antigen KOs, were transplanted in the baboons. Selective "multi-gene" xenografts demonstrate survival greater than 8 months without the requirement of adjunctive medications and without evidence of abnormal xenograft thickness or rejection. These data demonstrate that selective "multi-gene" modifications improve cardiac xenograft survival significantly and may be foundational for paving the way to bridge transplantation in humans.


Assuntos
Rejeição de Enxerto , Transplante de Coração , Animais , Animais Geneticamente Modificados , Sobrevivência de Enxerto , Xenoenxertos , Humanos , Imunossupressores , Papio , Suínos , Transplante Heterólogo
7.
Xenotransplantation ; 29(5): e12776, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36125166

RESUMO

We have been testing genetically engineered (GE) pig hearts and optimizing immunosuppression (IS) in non-human primates (NHPs) since 2005. We demonstrate how we translated this preclinical investigation into a US Food and Drug Administration (FDA)-approved clinical cardiac xenotransplantation. First, genetically engineered (GE) pig hearts were transplanted into the abdomen of NHP along with IS, which included anti-CD20 and anti-CD40-based co-stimulation blockade antibodies. We reported 945 days of survival of three gene GE pig hearts in NHPs. Building on this proof-of-concept, we tested 3-10 gene-modified GE pig hearts (in order to improve the immunocompatibility of the xenograft further) in a life-supporting orthotopic model, but had limited success due to perioperative cardiac xenograft dysfunction (PCXD). With novel non-ischemic continuous perfusion preservation (NICP), using the XVIVO Heart solution (XHS), life-supporting survival was extended to 9 months. We approached the FDA under an application for "Expanded Access" (EA), to transplant a GE pig heart in a patient with end-stage non-ischemic cardiomyopathy. He was without other therapeutic options and dependent on VA-ECMO. A team of FDA reviewers reviewed our preclinical research experience and data and allowed us to proceed. This clinical cardiac xenotransplantation was performed, and the patient survived for 60 days, demonstrating the translational preclinical investigation of cardiac xenotransplantation from bench to bedside. The ultimate etiology of graft failure is currently a topic of investigation and lessons learned will progress the field forward.


Assuntos
Sobrevivência de Enxerto , Transplante de Coração , Animais , Animais Geneticamente Modificados , Rejeição de Enxerto , Humanos , Masculino , Papio , Primatas , Suínos , Transplante Heterólogo , Estados Unidos , United States Food and Drug Administration
8.
Xenotransplantation ; 25(5): e12390, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29536572

RESUMO

BACKGROUND: In pig-to-human xenotransplantation, early cellular rejection reactions are mediated by natural killer cells (NK cells). Human NK cells are inhibited by HLA-E via CD94/NKG2A receptors. To protect porcine grafts against human NK cell responses, transgenic GTKO pigs expressing hCD46 and HLA-E have been generated. The aim of this study was to test the effect of this genetic modification on xenogeneic, and in particular human NK cell response, using an ex vivo perfusion model of pig hearts with human blood. METHODS: Cardiopleged and explanted genetically modified (gm) pig hearts (GTKO/hCD46/HLA-E/hß2-microglobulin) and wild-type (wt) controls (n = 6 each) were reperfused and tested in an 8 hours ex vivo perfusion system using freshly drawn human blood. Cardiac function was evaluated during a 165-minute period in working heart mode. Myocardial damage, antibody deposition, complement activation, and coagulation parameters were evaluated histologically at the end of perfusion. The number of NK cells in the perfusate was determined by flow cytometry at baseline and at 8 hours; tissue infiltration by NK cells was quantified by immunofluorescence microscopy using NKp46 staining of frozen sections. RESULTS: Deposition of IgG (1.2 ± 1 × 107 vs 8.8 ± 2.9 × 106 ; P < .01), IgM (4.4 ± 3.7 × 106 vs 1.7 ± 1.2 × 106 ; P < .01), and the complement activation product C4b/c (3.5 ± 1.3 × 106 vs 2.3 × 106  ± 9.4 × 105 ; P > .01) was lower in gm than wt hearts. NK cell percentages of leukocytes in the perfusate decreased from 0.94 ± 0.77% to 0.21 ± 0.25% (P = .04) during xenoperfusion of wt hearts. In contrast, the ratio of NK cells did not decrease significantly in the gm hearts. In this group, NK cell myocardial infiltration after 480 minutes of perfusion was lower than in wt organs (2.5 ± 3.7 × 104 /mm3 vs 1.3 ± 1.4 × 105 /mm3 ; P = .0001). The function of gm hearts was better preserved compared to wt organs, as demonstrated by higher cardiac index during the first 2 hours of ex vivo perfusion. CONCLUSION: GTKO, hCD46, and HLA-E expression in porcine hearts reduced complement deposition, complement dependent injury, and myocardial NK cell infiltration during perfusion with human blood. This tested combination of genetic modifications may minimize damage from acute human-anti-pig rejection reactions and improve myocardial function after xenotransplantation.


Assuntos
Animais Geneticamente Modificados/imunologia , Ativação do Complemento/imunologia , Coração , Xenoenxertos/imunologia , Células Matadoras Naturais/imunologia , Animais , Células Endoteliais/imunologia , Humanos , Leucócitos/metabolismo , Miocárdio/imunologia , Suínos , Transplante Heterólogo/métodos
9.
Xenotransplantation ; 25(5): e12394, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29604134

RESUMO

Analysis of non-Gal antibody induced after pig-to-baboon cardiac xenotransplantation identified the glycan produced by porcine beta-1,4-N-acetyl-galactosaminyltransferase 2 (B4GALNT2) as an immunogenic xenotransplantation antigen. The porcine B4GALNT2 enzyme is homologous to the human enzyme, which synthesizes the human SDa blood group antigen. Most humans produce low levels of anti-SDa IgM which polyagglutinates red blood cells from rare individuals with high levels of SDa expression. The SDa glycan is also present on GM2 gangliosides. Clinical GM2 vaccination studies for melanoma patients suggest that a human antibody response to SDa can be induced. Expression of porcine B4GALNT2 in human HEK293 cells results in increased binding of anti-SDa antibody and increased binding of Dolichos biflorus agglutinin (DBA), a lectin commonly used to detect SDa. In pigs, B4GALNT2 is expressed by vascular endothelial cells and endothelial cells from a wide variety of pig backgrounds stain with DBA, suggesting that porcine vascular expression of B4GALNT2 is not polymorphic. Mutations in B4GALNT2 have been engineered in mice and pigs. In both species, the B4GALNT2-KO animals are apparently normal and no longer show evidence of SDa antigen expression. Pig tissues with a mutation in B4GALNT2, added to a background of alpha-1,3-galactosyltransferase deficient (GGTA1-KO) and cytidine monophosphate-N-acetylneuraminic acid hydroxylase deficient (CMAH-KO), show reduced antibody binding, confirming the presence of B4GALNT2-dependent antibodies in both humans and non-human primates. Preclinical xenotransplantation using B4GALNT2-deficient donors has recently been reported. Elimination of this source of immunogenic pig antigen should minimize acute injury by preformed anti-pig antibody and eliminate an induced clinical immune response to this newly appreciated xenotransplantation antigen.


Assuntos
Animais Geneticamente Modificados/imunologia , Rejeição de Enxerto/imunologia , Xenoenxertos/imunologia , Transplante Heterólogo , Animais , Galactosiltransferases/farmacologia , Técnicas de Inativação de Genes/métodos , Humanos , Transplante Heterólogo/métodos
10.
Xenotransplantation ; 21(6): 543-54, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25176027

RESUMO

BACKGROUND: Xenograft rejection of pigs organs with an engineered mutation in the GGTA-1 gene (GTKO) remains a predominantly antibody mediated process which is directed to a variety of non-Gal protein and carbohydrate antigens. We previously used an expression library screening strategy to identify six porcine endothelial cell cDNAs which encode pig antigens that bind to IgG induced after pig-to-primate cardiac xenotransplantation. One of these gene products was a glycosyltransferase with homology to the bovine ß1,4 N-acetylgalactosaminyltransferase (B4GALNT2). We now characterize the porcine B4GALNT2 gene sequence, genomic organization, expression, and functional significance. METHODS: The porcine B4GALNT2 cDNA was recovered from the original library isolate, subcloned, sequenced, and used to identify a bacterial artificial chromosome (BAC) containing the entire B4GALNT2 locus from the Children's Hospital Oakland Research Institute BACPAC Resource Centre (#AC173453). PCR primers were designed to map the intron/exon genomic organization in the BAC clone. A stable human embryonic kidney (HEK) cell line expressing porcine B4GALNT2 (HEK-B4T) was produced. Expression of porcine B4GALNT2 in HEK-B4T cells was characterized by immune staining and siRNA transfection. The effects of B4GALNT2 expression in HEK-B4T cells was measured by flow cytometry and complement mediated lysis. Antibody binding to HEK and HEK-B4T cells was used to detect an induced antibody response to the B4GALNT2 produced glycan and the results were compared to GTKO PAEC specific non-Gal antibody induction. Expression of porcine B4GALNT2 in pig cells and tissues was measured by qualitative and quantitative real time reverse transcriptase PCR and by Dolichos biflorus agglutinin (DBA) tissue staining. RESULTS: The porcine B4GALNT2 gene shares a conserved genomic organization and encodes an open reading frame with 76 and 70% amino acid identity to the human and murine B4GALNT2 genes, respectively. The B4GALNT2 gene is expressed in porcine endothelial cells and shows a broadly distributed expression pattern. Expression of porcine B4GALNT2 in human HEK cells (HEK-B4T) results in increased binding of antibody to the B4GALNT2 enzyme, and increased reactivity with anti-Sd(a) and DBA. HEK-B4T cells show increased sensitivity to complement mediated lysis when challenged with serum from primates after pig to primate cardiac xenotransplantation. In GTKO and GTKO:CD55 cardiac xenotransplantation recipients there is a significant correlation between the induction of a non-Gal antibody, measured using GTKO PAECs, and the induction of antibodies which preferentially bind to HEK-B4T cells. CONCLUSION: The functional isolation of the porcine B4GALNT2 gene from a PAEC expression library, the pattern of B4GALNT2 gene expression and its sensitization of HEK-B4T cells to antibody binding and complement mediated lysis indicates that the enzymatic activity of porcine B4GALNT2 produces a new immunogenic non-Gal glycan which contributes in part to the non-Gal immune response detected after pig-to-baboon cardiac xenotransplantation.


Assuntos
Anticorpos/imunologia , Rejeição de Enxerto/imunologia , N-Acetilgalactosaminiltransferases/genética , Transplante Heterólogo , Animais , Animais Geneticamente Modificados , Linhagem Celular , Células Cultivadas , Clonagem de Organismos/métodos , Humanos , Papio/imunologia , Suínos , Transplante Heterólogo/métodos
11.
Anim Cells Syst (Seoul) ; 27(1): 234-248, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37808548

RESUMO

Cardiac xenotransplantation is the potential treatment for end-stage heart failure, but the allogenic organ supply needs to catch up to clinical demand. Therefore, genetically-modified porcine heart xenotransplantation could be a potential alternative. So far, pig-to-monkey heart xenografts have been studied using multi-transgenic pigs, indicating various survival periods. However, functional mechanisms based on survival period-related gene expression are unclear. This study aimed to identify the differential mechanisms between pig-to-monkey post-xenotransplantation long- and short-term survivals. Heterotopic abdominal transplantation was performed using a donor CD46-expressing GTKO pig and a recipient cynomolgus monkey. RNA-seq was performed using samples from POD60 XH from monkey and NH from age-matched pigs, D35 and D95. Gene-annotated DEGs for POD60 XH were compared with those for POD9 XH (Park et al. 2021). DEGs were identified by comparing gene expression levels in POD60 XH versus either D35 or D95 NH. 1,804 and 1,655 DEGs were identified in POD60 XH versus D35 NH and POD60 XH versus D95 NH, respectively. Overlapped 1,148 DEGs were annotated and compared with 1,348 DEGs for POD9 XH. Transcriptomic features for heart failure and inhibition of T cell activation were observed in both long (POD60)- and short (POD9)-term survived monkeys. Only short-term survived monkey showed heart remodeling and regeneration features, while long-term survived monkey indicated multi-organ failure by neural and hormonal signaling as well as suppression of B cell activation. Our results reveal differential heart failure development and survival at the transcriptome level and suggest candidate genes for specific signals to control adverse cardiac xenotransplantation effects.

12.
J Thorac Cardiovasc Surg ; 165(2): e69-e81, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-34579956

RESUMO

OBJECTIVE: Genetically engineered pigs are thought to be an alternative organ source for patients in end-stage heart failure unable to receive a timely allograft. However, cardiac xenografts exhibit growth and diastolic heart failure within 1 month after transplantation. Grafts function for up to 6 months, but only after administration of temsirolimus and afterload-reducing agents to reduce this growth. In this study we investigated the growth and hemodynamics of growth hormone receptor (GHR) knockout xenografts, without the use of adjuncts to prevent intrinsic graft growth after transplantation. METHODS: Genetically engineered pig hearts were transplanted orthotopically into weight-matched baboons between 15 and 30 kg, using continuous perfusion preservation before implantation (n = 5). Xenografts included knockout of carbohydrate antigens and knockin of human transgenes for thromboregulation, complement regulation, and inflammation reduction (grafts with intact growth hormone, n = 2). Three grafts contained the additional knockout of GHR (GHR knockout grafts; n = 3). Transthoracic echocardiograms were obtained twice monthly and comprehensively analyzed by a blinded cardiologist. Hemodynamics were measured longitudinally after transplantation. RESULTS: All xenografts demonstrated life-supporting function after transplantation. There was no difference in intrinsic growth, measured using septal and posterior wall thickness and left ventricular mass, on transthoracic echocardiogram out to 1 month in either GHR knockout or GHR intact grafts. However, hypertrophy of the septal and posterior wall was markedly elevated by 2 months post transplantation. There was minimal hypertrophy out to 6 months in GHR knockout grafts. Physiologic mismatch was present in all grafts after transplantation, which is largely independent of growth. CONCLUSIONS: Xenografts with GHR knockout show reduced post-transplantation xenograft growth using echocardiography >6 months after transplantation, without the need for other adjuncts.


Assuntos
Transplante de Coração , Receptores da Somatotropina , Animais , Humanos , Animais Geneticamente Modificados , Rejeição de Enxerto , Transplante de Coração/efeitos adversos , Xenoenxertos , Hipertrofia , Papio , Suínos , Transplante Heterólogo
13.
Br J Hosp Med (Lond) ; 83(6): 1-7, 2022 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-35787171

RESUMO

Preclinical advances in life-sustaining porcine cardiac xenotransplantation from donor pigs to baboons have paved the way for the performance of porcine cardiac xenotransplantation in a human. This procedure was performed with emergency use authorisation granted by the United States Food and Drug Administration under the umbrella of investigational new drug use on compassionate grounds. The patient was denied candidacy for durable mechanical circulatory support and heart transplantation as a result of non-adherence to medical advice. Successful porcine cardiac xenotransplantation in humans will significantly increase the availability of potential donor organs for long-term management of end-stage heart failure. Human porcine cardiac xenotransplantation is associated with ethical conflicts encompassing multiple ethical principles which are not mutually exclusive and are sometimes conflicting. This article focuses on some of the ethical conflicts encountered in relation to the use of mechanical circulatory support, pretransplant evaluation, shared decision making during informed consent, infectious disease risk, preclinical and clinical testing, and the role of regulatory bodies during performance of the first human porcine cardiac xenotransplantation. An increase in human trials of xenotransplantation procedures is imminent. Potential ethical conflicts associated with xenotransplantation should be addressed appropriately.


Assuntos
Transplante de Coração , Coração , Animais , Obrigações Morais , Princípios Morais , Suínos , Transplante Heterólogo , Estados Unidos
14.
Front Immunol ; 12: 667093, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34177906

RESUMO

Background: Perioperative cardiac xenograft dysfunction (PCXD) describes a rapidly developing loss of cardiac function after xenotransplantation. PCXD occurs despite genetic modifications to increase compatibility of the heart. We report on the incidence of PCXD using static preservation in ice slush following crystalloid or blood-based cardioplegia versus continuous cold perfusion with XVIVO© heart solution (XHS) based cardioplegia. Methods: Baboons were weight matched to genetically engineered swine heart donors. Cardioplegia volume was 30 cc/kg by donor weight, with del Nido cardioplegia and the addition of 25% by volume of donor whole blood. Continuous perfusion was performed using an XVIVO © Perfusion system with XHS to which baboon RBCs were added. Results: PCXD was observed in 5/8 that were preserved with crystalloid cardioplegia followed by traditional cold, static storage on ice. By comparison, when blood cardioplegia was used followed by cold, static storage, PCXD occurred in 1/3 hearts and only in 1/5 hearts that were induced with XHS blood cardioplegia followed by continuous perfusion. Survival averaged 17 hours in those with traditional preservation and storage, followed by 11.47 days and 15.03 days using blood cardioplegia and XHS+continuous preservation, respectively. Traditional preservation resulted in more inotropic support and higher average peak serum lactate 14.3±1.7 mmol/L compared to blood cardioplegia 3.6±3.0 mmol/L and continuous perfusion 3.5±1.5 mmol/L. Conclusion: Blood cardioplegia induction, alone or followed by XHS perfusion storage, reduced the incidence of PCXD and improved graft function and survival, relative to traditional crystalloid cardioplegia-slush storage alone.


Assuntos
Transplante de Coração , Animais , Parada Cardíaca Induzida/métodos , Xenoenxertos , Papio , Perfusão , Suínos , Transplante Heterólogo
16.
Int J Surg ; 23(Pt B): 234-239, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26318967

RESUMO

Significant progress in understanding and overcoming cardiac xenograft rejection using a clinically relevant large animal pig-to-baboon model has accelerated in recent years. This advancement is based on improved immune suppression, which attained more effective regulation of B lymphocytes and possibly newer donor genetics. These improvements have enhanced heterotopic cardiac xenograft survival from a few weeks to over 2 years, achieved intrathoracic heterotopic cardiac xenograft survival of 50 days and orthotopic survival of 57 days. This encouraging progress has rekindled interest in xenotransplantation research and refocused efforts on preclinical orthotopic cardiac xenotransplantation.


Assuntos
Sobrevivência de Enxerto/imunologia , Transplante de Coração/métodos , Papio/imunologia , Suínos/genética , Transplante Heterólogo/métodos , Animais , Terapia de Imunossupressão/métodos , Suínos/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA