Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
1.
New Phytol ; 243(3): 1082-1100, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38584577

RESUMO

Betalains are coloring pigments produced in some families of the order Caryophyllales, where they replace anthocyanins as coloring pigments. While the betalain pathway itself is well studied, the tissue-specific regulation of the pathway remains mostly unknown. We enhance the high-quality Amaranthus hypochondriacus reference genome and produce a substantially more complete genome annotation, incorporating isoform details. We annotate betalain and anthocyanin pathway genes along with their regulators in amaranth and map the genetic control and tissue-specific regulation of the betalain pathway. Our improved genome annotation allowed us to identify causal mutations that lead to a knock-out of red betacyanins in natural accessions of amaranth. We reveal the tissue-specific regulation of flower color via a previously uncharacterized MYB transcription factor, AhMYB2. Downregulation of AhMYB2 in the flower leads to reduced expression of key betalain enzyme genes and loss of red flower color. Our improved amaranth reference genome represents the most complete genome of amaranth to date and is a valuable resource for betalain and amaranth research. High similarity of the flower betalain regulator AhMYB2 to anthocyanin regulators and a partially conserved interaction motif support the co-option of anthocyanin regulators for the betalain pathway as a possible reason for the mutual exclusiveness of the two pigments.


Assuntos
Amaranthus , Betalaínas , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Anotação de Sequência Molecular , Proteínas de Plantas , Amaranthus/genética , Amaranthus/metabolismo , Betalaínas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Especificidade de Órgãos/genética , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Antocianinas/metabolismo , Flores/genética , Pigmentação/genética , Mapeamento Cromossômico , Genes de Plantas , Mutação/genética
2.
Am J Bot ; 111(4): e16308, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38581167

RESUMO

PREMISE: Better understanding of the relationship between plant specialized metabolism and traditional medicine has the potential to aid in bioprospecting and untangling of cross-cultural use patterns. However, given the limited information available for metabolites in most plant species, understanding medicinal use-metabolite relationships can be difficult. The order Caryophyllales has a unique pattern of lineages of tyrosine- or phenylalanine-dominated specialized metabolism, represented by mutually exclusive anthocyanin and betalain pigments, making Caryophyllales a compelling system to explore the relationship between medicine and metabolites by using pigment as a proxy for dominant metabolism. METHODS: We compiled a list of medicinal species in select tyrosine- or phenylalanine-dominant families of Caryophyllales (Nepenthaceae, Polygonaceae, Simmondsiaceae, Microteaceae, Caryophyllaceae, Amaranthaceae, Limeaceae, Molluginaceae, Portulacaceae, Cactaceae, and Nyctaginaceae) by searching scientific literature until no new uses were recovered. We then tested for phylogenetic clustering of uses using a "hot nodes" approach. To test potential non-metabolite drivers of medicinal use, like how often humans encounter a species (apparency), we repeated the analysis using only North American species across the entire order and performed phylogenetic generalized least squares regression (PGLS) with occurrence data from the Global Biodiversity Information Facility (GBIF). RESULTS: We hypothesized families with tyrosine-enriched metabolism would show clustering of different types of medicinal use compared to phenylalanine-enriched metabolism. Instead, wide-ranging, apparent clades in Polygonaceae and Amaranthaceae are overrepresented across nearly all types of medicinal use. CONCLUSIONS: Our results suggest that apparency is a better predictor of medicinal use than metabolism, although metabolism type may still be a contributing factor.


Assuntos
Caryophyllales , Plantas Medicinais , Caryophyllales/metabolismo , Caryophyllales/genética , Plantas Medicinais/metabolismo , Medicina Tradicional , Filogenia , Tirosina/metabolismo , Betalaínas/metabolismo , Fenilalanina/metabolismo
3.
Plant J ; 109(4): 844-855, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34807484

RESUMO

l-Tyrosine is an essential amino acid for protein synthesis and is also used in plants to synthesize diverse natural products. Plants primarily synthesize tyrosine via TyrA arogenate dehydrogenase (TyrAa or ADH), which are typically strongly feedback inhibited by tyrosine. However, two plant lineages, Fabaceae (legumes) and Caryophyllales, have TyrA enzymes that exhibit relaxed sensitivity to tyrosine inhibition and are associated with elevated production of tyrosine-derived compounds, such as betalain pigments uniquely produced in core Caryophyllales. Although we previously showed that a single D222N substitution is primarily responsible for the deregulation of legume TyrAs, it is unknown when and how the deregulated Caryophyllales TyrA emerged. Here, through phylogeny-guided TyrA structure-function analysis, we found that functionally deregulated TyrAs evolved early in the core Caryophyllales before the origin of betalains, where the E208D amino acid substitution in the active site, which is at a different and opposite location from D222N found in legume TyrAs, played a key role in the TyrA functionalization. Unlike legumes, however, additional substitutions on non-active site residues further contributed to the deregulation of TyrAs in Caryophyllales. The introduction of a mutation analogous to E208D partially deregulated tyrosine-sensitive TyrAs, such as Arabidopsis TyrA2 (AtTyrA2). Moreover, the combined introduction of D222N and E208D additively deregulated AtTyrA2, for which the expression in Nicotiana benthamiana led to highly elevated accumulation of tyrosine in planta. The present study demonstrates that phylogeny-guided characterization of key residues underlying primary metabolic innovations can provide powerful tools to boost the production of essential plant natural products.


Assuntos
Complexos Multienzimáticos/genética , Complexos Multienzimáticos/metabolismo , Mutagênese , Plantas/genética , Plantas/metabolismo , Tirosina/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis , Betalaínas/biossíntese , Caryophyllales/genética , Caryophyllales/metabolismo , Fabaceae , Complexos Multienzimáticos/classificação , Oxirredutases/genética , Oxirredutases/metabolismo , Filogenia , Prefenato Desidrogenase/genética , Prefenato Desidrogenase/metabolismo
4.
BMC Plant Biol ; 23(1): 658, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38124056

RESUMO

BACKGROUND: The Aizoaceae family's Sesuvium sesuvioides (Fenzl) Verdc is a medicinal species of the Cholistan desert, Pakistan. The purpose of this study was to determine the genomic features and phylogenetic position of the Sesuvium genus in the Aizoaceae family. We used the Illumina HiSeq2500 and paired-end sequencing to publish the complete chloroplast sequence of S. sesuvioides. RESULTS: The 155,849 bp length cp genome sequence of S. sesuvioides has a 36.8% GC content. The Leucine codon has the greatest codon use (10.6%), 81 simple sequence repetitions of 19 kinds, and 79 oligonucleotide repeats. We investigated the phylogeny of the order Caryophyllales' 27 species from 23 families and 25 distinct genera. The maximum likelihood tree indicated Sesuvium as a monophyletic genus, and sister to Tetragonia. A comparison of S. sesuvioides, with Sesuvium portulacastrum, Mesembryanthemum crystallinum, Mesembryanthemum cordifolium, and Tetragonia tetragonoides was performed using the NCBI platform. In the comparative investigation of genomes, all five genera revealed comparable cp genome structure, gene number and composition. All five species lacked the rps15 gene and the rpl2 intron. In most comparisons with S. sesuvioides, transition substitutions (Ts) were more frequent than transversion substitutions (Tv), producing Ts/Tv ratios larger than one, and the Ka/Ks ratio was lower than one. We determined ten highly polymorphic regions, comprising rpl22, rpl32-trnL-UAG, trnD-GUC-trnY-GUA, trnE-UUC-trnT-GGU, trnK-UUU-rps16, trnM-CAU-atpE, trnH-GUG-psbA, psaJ-rpl33, rps4-trnT-UGU, and trnF-GAA-ndhJ. CONCLUSION: The whole S. sesuvioides chloroplast will be examined as a resource for in-depth taxonomic research of the genus when more Sesuvium and Aizoaceae species are sequenced in the future. The chloroplast genomes of the Aizoaceae family are well preserved, with little alterations, indicating the family's monophyletic origin. This study's highly polymorphic regions could be utilized to build realistic and low-cost molecular markers for resolving taxonomic discrepancies, new species identification, and finding evolutionary links among Aizoaceae species. To properly comprehend the evolution of the Aizoaceae family, further species need to be sequenced.


Assuntos
Aizoaceae , Genoma de Cloroplastos , Humanos , Filogenia , Paquistão , Genômica , Genoma de Cloroplastos/genética , Códon
5.
New Phytol ; 239(6): 2265-2276, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37243529

RESUMO

This work revisits a publication by Bean et al. (2018) that reports seven amino acid substitutions are essential for the evolution of l-DOPA 4,5-dioxygenase (DODA) activity in Caryophyllales. In this study, we explore several concerns which led us to replicate the analyses of Bean et al. (2018). Our comparative analyses, with structural modelling, implicate numerous residues additional to those identified by Bean et al. (2018), with many of these additional residues occurring around the active site of BvDODAα1. We therefore replicated the analyses of Bean et al. (2018) to re-observe the effect of their original seven residue substitutions in a BvDODAα2 background, that is the BvDODAα2-mut3 variant. Multiple in vivo assays, in both Saccharomyces cerevisiae and Nicotiana benthamiana, did not result in visible DODA activity in BvDODAα2-mut3, with betalain production always 10-fold below BvDODAα1. In vitro assays also revealed substantial differences in both catalytic activity and pH optima between BvDODAα1, BvDODAα2 and BvDODAα2-mut3 proteins, explaining their differing performance in vivo. In summary, we were unable to replicate the in vivo analyses of Bean et al. (2018), and our quantitative in vivo and in vitro analyses suggest a minimal effect of these seven residues in altering catalytic activity of BvDODAα2. We conclude that the evolutionary pathway to high DODA activity is substantially more complex than implied by Bean et al. (2018).


Assuntos
Betalaínas , Dioxigenases , Levodopa , Mutação com Ganho de Função , Substituição de Aminoácidos , Filogenia , Dioxigenases/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Pigmentação
6.
BMC Genomics ; 23(1): 739, 2022 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-36348495

RESUMO

Here we respond to Zhou (BMC Genomics 21:734, 2020) "Combined Transcriptome and Metabolome analysis of Pitaya fruit unveiled the mechanisms underlying peel and pulp color formation" published in BMC Genomics. Given the evolutionary conserved anthocyanin biosynthesis pathway in betalain-pigmented species, we are open to the idea that species with both anthocyanins and betalains might exist. However, in absence of LC-MS/MS spectra, apparent lack of biological replicates, and no comparison to authentic standards, the findings of Zhou (BMC Genomics 21:734, 2020) are not a strong basis to propose the presence of anthocyanins in betalain-pigmented pitaya. In addition, our re-analysis of the datasets indicates the misidentification of important genes and the omission of key flavonoid and anthocyanin synthesis genes ANS and DFR. Finally, our re-analysis of the RNA-Seq dataset reveals no correlation between anthocyanin biosynthesis gene expression and pigment status.


Assuntos
Betalaínas , Cactaceae , Betalaínas/metabolismo , Antocianinas , Cromatografia Líquida , Espectrometria de Massas em Tandem , Cactaceae/genética , Cactaceae/metabolismo , Transcriptoma , Regulação da Expressão Gênica de Plantas
7.
Ann Bot ; 129(1): 65-78, 2022 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-34605859

RESUMO

BACKGROUND AND AIMS: Some Caryophyllales species accumulate abnormally large shoot sodium (Na) concentrations in non-saline environments. It is not known whether this is a consequence of altered Na partitioning between roots and shoots. This paper tests the hypotheses (1) that Na concentrations in shoots ([Na]shoot) and in roots ([Na]root) are positively correlated among Caryophyllales, and (2) that shoot Na hyperaccumulation is correlated with [Na]shoot/[Na]root quotients. METHODS: Fifty two genotypes, representing 45 Caryophyllales species and 4 species from other angiosperm orders, were grown hydroponically in a non-saline, complete nutrient solution. Concentrations of Na in shoots and in roots were determined using inductively coupled plasma mass spectrometry (ICP-MS). KEY RESULTS: Sodium concentrations in shoots and roots were not correlated among Caryophyllales species with normal [Na]shoot, but were positively correlated among Caryophyllales species with abnormally large [Na]shoot. In addition, Caryophyllales species with abnormally large [Na]shoot had greater [Na]shoot/[Na]root than Caryophyllales species with normal [Na]shoot. CONCLUSIONS: Sodium hyperaccumulators in the Caryophyllales are characterized by abnormally large [Na]shoot, a positive correlation between [Na]shoot and [Na]root, and [Na]shoot/[Na]root quotients greater than unity.


Assuntos
Caryophyllales , Magnoliopsida , Magnoliopsida/genética , Raízes de Plantas/química , Brotos de Planta/genética , Sódio
8.
Ann Bot ; 130(7): 927-938, 2022 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-36306274

RESUMO

BACKGROUND AND AIMS: While isotopic enrichment of nitrogen (15N) and carbon (13C) is often used to determine whether carnivorous plant species capture and assimilate nutrients from supplemental sources such as invertebrate prey or mammal excreta (heterotrophic nutrition), little is known about how successful the different strategies deployed by carnivorous plants are at obtaining supplemental nutrition. The collection of mammalian faeces by Nepenthes (tropical pitcher plants) is the result of a highly specialized biological mutualism that results in heterotrophic nitrogen gain; however, it remains unknown how effective this strategy is in comparison to Nepenthes species not known to collect mammalian faeces. METHODS: We examined how isotopic enrichment varied in the diverse genus Nepenthes, among species producing pitchers for invertebrate capture and species exhibiting mutualisms for the collection of mammal excreta. Enrichment factors were calculated from δ15N and δ13C values from eight Nepenthes species and naturally occurring hybrids along with co-occurring reference (non-carnivorous) plants from three mountain massifs in Borneo: Mount Kinabalu, Mount Tambuyukon and Mount Trus Madi. RESULTS: All Nepenthes examined, except N. edwardsiana, were significantly enriched in 15N compared to co-occurring non-carnivorous plants, and 15N enrichment was more than two-fold higher in species with adaptations for the collection of mammal excreta compared with other Nepenthes. CONCLUSIONS: The collection of mammal faeces clearly represents a highly effective strategy for heterotrophic nitrogen gain in Nepenthes. Species with adaptations for capturing mammal excreta occur exclusively at high elevation (i.e. are typically summit-occurring) where previous studies suggest invertebrate prey are less abundant and less frequently captured. As such, we propose this strategy may maximize nutritional return by specializing towards ensuring the collection and retention of few but higher-value N sources in environments where invertebrate prey may be scarce.


Assuntos
Carnivoridade , Mamíferos , Animais , Nitrogênio
9.
J Plant Res ; 134(6): 1335-1349, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34477986

RESUMO

Although anthocyanins are widely distributed in higher plants, betalains have replaced anthocyanins in most species of the order Caryophyllales. The accumulation of flavonols in Caryophyllales plants implies that the late step of anthocyanin biosynthesis from dihydroflavonols to anthocyanins may be blocked in Caryophyllales. The isolation and characterization of functional dihydroflavonol 4-reductase (DFR) and anthocyanidin synthase (ANS) from Caryophyllales plants has indicated a lack of anthocyanins due to suppression of DFR and ANS. In this study, we demonstrated that overexpression of DFR and ANS from Spinacia oleracea (SoDFR and SoANS, respectively) with PhAN9, which encodes glutathione S-transferase (required for anthocyanin sequestration) from Petunia induces ectopic anthocyanin accumulation in yellow tepals of the cactus Astrophytum myriostigma. A promoter assay of SoANS showed that the Arabidopsis MYB transcription factor PRODUCTION OF ANTHOCYANIN PIGMENT1 (PAP1) activated the SoANS promoter in Arabidopsis leaves. The overexpression of Arabidopsis transcription factors with PhAN9 also induced ectopic anthocyanin accumulation in yellow cactus tepals. PAP homologs from betalain-producing Caryophyllales did not activate the promoter of ANS. In-depth characterization of Caryophyllales PAPs and site-directed mutagenesis in the R2R3-MYB domains identified the amino acid residues affecting transactivation of Caryophyllales PAPs. The substitution of amino acid residues recovered the transactivation ability of Caryophyllales PAPs. Therefore, loss of function in MYB transcription factors may suppress expression of genes involved in the late stage of anthocyanin synthesis, resulting in a lack of anthocyanin in betalain-producing Caryophyllales plants.


Assuntos
Arabidopsis , Caryophyllales , Antocianinas , Arabidopsis/genética , Arabidopsis/metabolismo , Betalaínas/metabolismo , Caryophyllales/genética , Regulação da Expressão Gênica de Plantas , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/metabolismo
10.
Int J Mol Sci ; 22(22)2021 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-34830004

RESUMO

Amaranthaceae (incl. Chenopodiaceae) shows an immense diversity of C4 syndromes. More than 15 independent origins of C4 photosynthesis, and the largest number of C4 species in eudicots signify the importance of this angiosperm lineage in C4 evolution. Here, we conduct RNA-Seq followed by comparative transcriptome analysis of three species from Camphorosmeae representing related clades with different photosynthetic types: Threlkeldia diffusa (C3), Sedobassia sedoides (C2), and Bassia prostrata (C4). Results show that B. prostrata belongs to the NADP-ME type and core genes encoding for C4 cycle are significantly upregulated when compared with Sed. sedoides and T. diffusa. Sedobassia sedoides and B. prostrata share a number of upregulated C4-related genes; however, two C4 transporters (DIT and TPT) are found significantly upregulated only in Sed. sedoides. Combined analysis of transcription factors (TFs) of the closely related lineages (Camphorosmeae and Salsoleae) revealed that no C3-specific TFs are higher in C2 species compared with C4 species; instead, the C2 species show their own set of upregulated TFs. Taken together, our study indicates that the hypothesis of the C2 photosynthesis as a proxy towards C4 photosynthesis is questionable in Sed. sedoides and more in favour of an independent evolutionary stable state.


Assuntos
Amaranthaceae/genética , Chenopodiaceae/genética , Fotossíntese/genética , Proteínas de Plantas/genética , Amaranthaceae/crescimento & desenvolvimento , Carbono/metabolismo , Dióxido de Carbono/metabolismo , Isótopos de Carbono/metabolismo , Chenopodiaceae/crescimento & desenvolvimento , Filogenia , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Proteínas de Plantas/classificação , RNA-Seq , Transcriptoma/genética
11.
New Phytol ; 227(3): 914-929, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-31369159

RESUMO

The evolution of l-DOPA 4,5-dioxygenase activity, encoded by the gene DODA, was a key step in the origin of betalain biosynthesis in Caryophyllales. We previously proposed that l-DOPA 4,5-dioxygenase activity evolved via a single Caryophyllales-specific neofunctionalisation event within the DODA gene lineage. However, this neofunctionalisation event has not been confirmed and the DODA gene lineage exhibits numerous gene duplication events, whose evolutionary significance is unclear. To address this, we functionally characterised 23 distinct DODA proteins for l-DOPA 4,5-dioxygenase activity, from four betalain-pigmented and five anthocyanin-pigmented species, representing key evolutionary transitions across Caryophyllales. By mapping these functional data to an updated DODA phylogeny, we then explored the evolution of l-DOPA 4,5-dioxygenase activity. We find that low l-DOPA 4,5-dioxygenase activity is distributed across the DODA gene lineage. In this context, repeated gene duplication events within the DODA gene lineage give rise to polyphyletic occurrences of elevated l-DOPA 4,5-dioxygenase activity, accompanied by convergent shifts in key functional residues and distinct genomic patterns of micro-synteny. In the context of an updated organismal phylogeny and newly inferred pigment reconstructions, we argue that repeated convergent acquisition of elevated l-DOPA 4,5-dioxygenase activity is consistent with recurrent specialisation to betalain synthesis in Caryophyllales.


Assuntos
Caryophyllales , Dioxigenases , Betalaínas , Dioxigenases/genética , Levodopa , Filogenia , Pigmentação
12.
Mol Phylogenet Evol ; 144: 106668, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31682924

RESUMO

Nepenthaceae is one of the largest carnivorous plant families and features ecological and morphological adaptations indicating an impressive adaptive radiation. However, investigation of evolutionary and taxonomic questions is hindered by poor phylogenetic understanding, with previous molecular studies based on limited loci and taxa. We use high-throughput sequencing with a target-capture methodology based on a 353-loci, probe set to recover sequences for 197 samples, representing 151 described or putative Nepenthes species. Phylogenetic analyses were performed using supermatrix and maximum quartet species tree approaches. Our analyses confirm five Western outlier taxa, followed by N. danseri, as successively sister to the remainder of the group. We also find mostly consistent recovery of two major Southeast Asian clades. The first contains common or widespread lowland species plus a Wallacean-New Guinean clade. Within the second clade, sects. Insignes and Tentaculatae are well supported, while geographically defined clades representing Sumatra, Indochina, Peninsular Malaysia, Palawan, Mindanao and Borneo are also consistently recovered. However, we find considerable conflicting signal at the site and locus level, and often unstable backbone relationships. A handful of Bornean taxa are inconsistently placed and require further investigation. We make further suggestions for a modified infra-generic classification of genus Nepenthes.


Assuntos
Caryophyllales/classificação , Caryophyllales/genética , Filogenia , Animais , Evolução Biológica , Bornéu , Carnivoridade , DNA de Plantas/análise , Sequenciamento de Nucleotídeos em Larga Escala , Indochina , Indonésia , Filipinas , Filogeografia , Análise de Sequência de DNA , Seicheles
13.
Am J Bot ; 107(5): 707-725, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32432350

RESUMO

PREMISE: Medullary bundles, i.e., vascular units in the pith, have evolved multiple times in vascular plants. However, no study has ever explored their anatomical diversity and evolution within a phylogenetic framework. Here, we investigated the development of the primary vascular system within Nyctaginaceae showing how medullary bundles diversified within the family. METHODS: Development of 62 species from 25 of the 31 genera of Nyctaginaceae in stem samples was thoroughly studied with light microscopy and micro-computed tomography. Ancestral states were reconstructed using a maximum likelihood approach. RESULTS: Two subtypes of eusteles were found, the regular eustele, lacking medullary bundles, observed exclusively in representatives of Leucastereae, and the polycyclic eustele, containing medullary bundles, found in all the remaining taxa. Medullary bundles had the same origin and development, but the organization was variable and independent of phyllotaxy. Within the polycyclic eustele, medullary bundles developed first, followed by the formation of a continuous concentric procambium, which forms a ring of vascular bundles enclosing the initially formed medullary bundles. The regular eustele emerged as a synapomorphy of Leucastereae, while the medullary bundles were shown to be a symplesiomorphy for Nyctaginaceae. CONCLUSIONS: Medullary bundles in Nyctaginaceae developed by a single shared pathway, that involved the departure of vascular traces from lateral organs toward the pith. These medullary bundles were encircled by a continuous concentric procambium that also constituted the polycyclic eustele, which was likely a symplesiomorphy for Nyctaginaceae with one single reversion to the regular eustele.


Assuntos
Nyctaginaceae , Evolução Biológica , Funções Verossimilhança , Filogenia , Microtomografia por Raio-X
14.
New Phytol ; 224(1): 71-85, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31172524

RESUMO

Within the angiosperm order Caryophyllales, an unusual class of pigments known as betalains can replace the otherwise ubiquitous anthocyanins. In contrast to the phenylalanine-derived anthocyanins, betalains are tyrosine-derived pigments which contain the chromophore betalamic acid. The origin of betalain pigments within Caryophyllales and their mutual exclusion with anthocyanin pigments have been the subject of considerable research. In recent years, numerous discoveries, accelerated by -omic scale data, phylogenetics and synthetic biology, have shed light on the evolution of the betalain biosynthetic pathway in Caryophyllales. These advances include the elucidation of the biosynthetic steps in the betalain pathway, identification of transcriptional regulators of betalain synthesis, resolution of the phylogenetic history of key genes, and insight into a role for modulation of primary metabolism in betalain synthesis. Here we review how molecular genetics have advanced our understanding of the betalain biosynthetic pathway, and discuss the impact of phylogenetics in revealing its evolutionary history. In light of these insights, we explore our new understanding of the origin of betalains, the mutual exclusion of betalains and anthocyanins, and the homoplastic distribution of betalain pigmentation within Caryophyllales. We conclude with a speculative conceptual model for the stepwise emergence of betalain pigmentation.


Assuntos
Betalaínas/biossíntese , Evolução Biológica , Caryophyllales/metabolismo , Betalaínas/química , Vias Biossintéticas , Caryophyllales/genética , Filogenia , Pigmentação/genética
15.
Mol Phylogenet Evol ; 134: 74-86, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30735725

RESUMO

The Caryophyllales includes 40 families and 12,500 species, representing a large and diverse clade of angiosperms. Collectively, members of the clade grow on all continents and in all terrestrial biomes and often occupy extreme habitats (e.g., xeric, salty). The order is characterized by many taxa with unusual adaptations including carnivory, halophytism, and multiple origins of C4 photosynthesis. However, deep phylogenetic relationships within the order have long been problematic due to putative rapid divergence. To resolve the deep-level relationships of Caryophyllales, we performed phylogenomic analyses of all 40 families of Caryophyllales. We time-calibrated the molecular phylogeny of this clade, and evaluated putative correlations among plastid structural changes and rates of molecular substitution. We recovered a well-resolved and well-supported phylogeny of the Caryophyllales that was largely congruent with previous estimates of this order. Our results provide improved support for the phylogenetic position of several key families within this clade. The crown age of Caryophyllales was estimated at ca. 114.4 million years ago (Ma), with periods of rapid divergence in the mid-Cretaceous. A strong, positive correlation between nucleotide substitution rate and plastid structural changes was detected. Our study highlights the importance of broad taxon sampling in phylogenomic inference and provides a firm basis for future investigations of molecular, morphological, and ecophysiological evolution in Caryophyllales.


Assuntos
Caryophyllales/genética , Evolução Molecular , Genomas de Plastídeos/genética , Filogenia , Bases de Dados Genéticas , Funções Verossimilhança
16.
Ann Bot ; 124(2): 281-295, 2019 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-31175350

RESUMO

BACKGROUND AND AIMS: Floral development is a powerful tool to infer homologies of floral organs and to understand floral evolution. Caryophyllaceae is a major family of core Caryophyllales that possesses petal-like structures (petaloids) with a great diversity in shape. The main purpose of this study is to determine the nature of the second whorl of floral organs in Caryophyllaceae. Mainstream views consider ancestors of Caryophyllaceae as apetalous and interpret petals as centrifugally derived staminodial appendages. This hypothesis, based on morphological similarities of petals with stamens and previous ancestral state reconstruction, is tested here. METHODS: A floral developmental investigation of five species was carried out using scanning electron microscopy, combined with character optimization of the presence or absence of second-whorl petaloids. KEY RESULTS: The calyx is always well developed with a quincuncial aestivation. Petaloids either develop by fractionation of common stamen-petal primordia, as in Spergularia, or petaloid development is independent and precedes alternisepalous stamens in Saponaria and Sagina. In Sagina the petaloid whorl is always fully formed but alternisepalous stamens are often reduced or missing. Petaloids are absent in Gymnocarpos and the investigated Cerastium. CONCLUSIONS: Developmental evidence and character mapping reject the hypothesis that petaloids represent a staminodial whorl and suggest that they are independent structures equivalent to second-whorl petals of most Pentapetalae and present in the basal Caryophyllaceae. Heterochronic shifts, including a delay in petal development and acceleration of androecial growth, are responsible for the amalgamation of petals with the androecium as common stamen-petal primordia and their appearance as stamen-derived appendages. Selective pollinator pressure in Caryophyllaceae led to variable petal expansion or reduction and loss. This trend corresponds largely with the general tendency in the core Caryophyllales for petal loss and perianth reorganization.


Assuntos
Caryophyllaceae , Flores
17.
Int J Mol Sci ; 20(17)2019 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-31443555

RESUMO

Carnivorous plants have the ability to capture and digest small animals as a source of additional nutrients, which allows them to grow in nutrient-poor habitats. Here we report the complete sequences of the plastid genomes of two carnivorous plants of the order Caryophyllales, Drosera rotundifolia and Nepenthes × ventrata. The plastome of D. rotundifolia is repeat-rich and highly rearranged. It lacks NAD(P)H dehydrogenase genes, as well as ycf1 and ycf2 genes, and three essential tRNA genes. Intron losses are observed in some protein-coding and tRNA genes along with a pronounced reduction of RNA editing sites. Only six editing sites were identified by RNA-seq in D. rotundifolia plastid genome and at most conserved editing sites the conserved amino acids are already encoded at the DNA level. In contrast, the N. × ventrata plastome has a typical structure and gene content, except for pseudogenization of the ccsA gene. N. × ventrata and D. rotundifolia could represent different stages of evolution of the plastid genomes of carnivorous plants, resembling events observed in parasitic plants in the course of the switch from autotrophy to a heterotrophic lifestyle.


Assuntos
Evolução Biológica , Drosera/genética , Genomas de Plastídeos , Genômica , Biologia Computacional/métodos , Drosera/parasitologia , Duplicação Gênica , Rearranjo Gênico , Genes de Plantas , Genômica/métodos , Edição de RNA
18.
Molecules ; 24(17)2019 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-31450587

RESUMO

Betalains are applicable to many aspects of life, and their properties, characteristics, extraction and biosynthesis process have been thoroughly studied. Although betalains are functionally similar to anthocyanins and can substitute for them to provide pigments for plant color, it is rare to study the roles of betalains in plant responses to adverse environmental conditions. Owing to their antioxidant capability to remove excess reactive oxygen species (ROS) in plants and humans, betalains have attracted much attention due to their bioactivity. In addition, betalains can also act as osmotic substances to regulate osmotic pressure in plants and play important roles in plant responses to adverse environmental conditions. The study of the physiological evolution of betalains is almost complete but remains complicated because the evolutionary relationship between betalains and anthocyanins is still uncertain. In this review, to provide a reference for the in-depth study of betalains compared with anthocyanins, the biochemical properties, biosynthesis process and roles of betalains in response to environmental stress are reviewed, and the relationship between betalains and anthocyanins is discussed.


Assuntos
Antocianinas/química , Antocianinas/metabolismo , Betalaínas/química , Betalaínas/metabolismo , Estresse Fisiológico , Evolução Biológica , Vias Biossintéticas , Fenômenos Químicos , Meio Ambiente , Humanos , Pigmentação , Plantas/química , Plantas/metabolismo
19.
New Phytol ; 217(2): 836-854, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28892163

RESUMO

The role played by whole genome duplication (WGD) in plant evolution is actively debated. WGDs have been associated with advantages such as superior colonization, various adaptations, and increased effective population size. However, the lack of a comprehensive mapping of WGDs within a major plant clade has led to uncertainty regarding the potential association of WGDs and higher diversification rates. Using seven chloroplast and nuclear ribosomal genes, we constructed a phylogeny of 5036 species of Caryophyllales, representing nearly half of the extant species. We phylogenetically mapped putative WGDs as identified from analyses on transcriptomic and genomic data and analyzed these in conjunction with shifts in climatic occupancy and lineage diversification rate. Thirteen putative WGDs and 27 diversification shifts could be mapped onto the phylogeny. Of these, four WGDs were concurrent with diversification shifts, with other diversification shifts occurring at more recent nodes than WGDs. Five WGDs were associated with shifts to colder climatic occupancy. While we find that many diversification shifts occur after WGDs, it is difficult to consider diversification and duplication to be tightly correlated. Our findings suggest that duplications may often occur along with shifts in either diversification rate, climatic occupancy, or rate of evolution.


Assuntos
Caryophyllales/genética , Duplicação Gênica , Variação Genética , Caryophyllales/classificação , Clima , Genoma de Planta , Filogenia
20.
New Phytol ; 217(2): 855-870, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28944472

RESUMO

Studies of the macroevolutionary legacy of polyploidy are limited by an incomplete sampling of these events across the tree of life. To better locate and understand these events, we need comprehensive taxonomic sampling as well as homology inference methods that accurately reconstruct the frequency and location of gene duplications. We assembled a data set of transcriptomes and genomes from 168 species in Caryophyllales, of which 43 transcriptomes were newly generated for this study, representing one of the most densely sampled genomic-scale data sets available. We carried out phylogenomic analyses using a modified phylome strategy to reconstruct the species tree. We mapped the phylogenetic distribution of polyploidy events by both tree-based and distance-based methods, and explicitly tested scenarios for allopolyploidy. We identified 26 ancient and more recent polyploidy events distributed throughout Caryophyllales. Two of these events were inferred to be allopolyploidy. Through dense phylogenomic sampling, we show the propensity of polyploidy throughout the evolutionary history of Caryophyllales. We also provide a framework for utilizing transcriptome data to detect allopolyploidy, which is important as it may have different macroevolutionary implications compared with autopolyploidy.


Assuntos
Caryophyllales/genética , Poliploidia , Transcriptoma/genética , Ecossistema , Funções Verossimilhança , Filogenia , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA