Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
FASEB J ; 38(16): e70024, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39190024

RESUMO

The role of programmed cell death 4 (PDCD4) in multiple myeloma (MM) development remains unknown. Here, we investigated its role and action mechanism in MM. Bioinformatic analysis indicated that patients with MM and high PDCD4 expression had higher overall survival than those with low PDCD4 expression. PDCD4 expression promoted MM cell apoptosis and inhibited their viability in vitro and tumor growth in vivo. RNA-binding protein immunoprecipitation sequencing analysis showed that PDCD4 is bound to the 5' UTR of the apoptosis-related genes PIK3CB, Cathepsin Z (CTSZ), and X-chromosome-linked apoptosis inhibitor (XIAP). PDCD4 knockdown reduced the cell apoptosis rate, which was rescued by adding PIK3CB, CTSZ, or XIAP inhibitors. Dual luciferase reporter assays confirmed the internal ribosome entry site (IRES) activity of the 5' UTRs of PIK3CB and CTSZ. An RNA pull-down assay confirmed binding of the 5' UTR of PIK3CB and CTSZ to PDCD4, identifying the specific binding fragments. PDCD4 is expected to promote MM cell apoptosis by binding to the IRES domain in the 5' UTR of PIK3CB and CTSZ and inhibiting their translation. Our findings suggest that PDCD4 plays an important role in MM development by regulating the expression of PIK3CB, CTSZ, and XIAP, and highlight new potential molecular targets for MM treatment.


Assuntos
Proteínas Reguladoras de Apoptose , Apoptose , Mieloma Múltiplo , Proteínas de Ligação a RNA , Animais , Humanos , Masculino , Camundongos , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Linhagem Celular Tumoral , Classe I de Fosfatidilinositol 3-Quinases/metabolismo , Classe I de Fosfatidilinositol 3-Quinases/genética , Regulação Neoplásica da Expressão Gênica , Mieloma Múltiplo/metabolismo , Mieloma Múltiplo/genética , Mieloma Múltiplo/patologia , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/metabolismo , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/genética
2.
Alzheimers Dement ; 20(6): 4212-4233, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38753870

RESUMO

BACKGROUND: Compromised autophagy, including impaired mitophagy and lysosomal function, plays pivotal roles in Alzheimer's disease (AD). Urolithin A (UA) is a gut microbial metabolite of ellagic acid that stimulates mitophagy. The effects of UA's long-term treatment of AD and mechanisms of action are unknown. METHODS: We addressed these questions in three mouse models of AD with behavioral, electrophysiological, biochemical, and bioinformatic approaches. RESULTS: Long-term UA treatment significantly improved learning, memory, and olfactory function in different AD transgenic mice. UA also reduced amyloid beta (Aß) and tau pathologies and enhanced long-term potentiation. UA induced mitophagy via increasing lysosomal functions. UA improved cellular lysosomal function and normalized lysosomal cathepsins, primarily cathepsin Z, to restore lysosomal function in AD, indicating the critical role of cathepsins in UA-induced therapeutic effects on AD. CONCLUSIONS: Our study highlights the importance of lysosomal dysfunction in AD etiology and points to the high translational potential of UA. HIGHLIGHTS: Long-term urolithin A (UA) treatment improved learning, memory, and olfactory function in Alzheimer's disease (AD) mice. UA restored lysosomal functions in part by regulating cathepsin Z (Ctsz) protein. UA modulates immune responses and AD-specific pathophysiological pathways.


Assuntos
Doença de Alzheimer , Cumarínicos , Modelos Animais de Doenças , Lisossomos , Camundongos Transgênicos , Mitofagia , Doença de Alzheimer/tratamento farmacológico , Animais , Cumarínicos/farmacologia , Cumarínicos/uso terapêutico , Lisossomos/efeitos dos fármacos , Lisossomos/metabolismo , Camundongos , Mitofagia/efeitos dos fármacos , Peptídeos beta-Amiloides/metabolismo , Cognição/efeitos dos fármacos
3.
J Biol Chem ; 298(1): 101459, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34864055

RESUMO

Respiratory silicosis is a preventable occupational disease that develops secondary to the aspiration of crystalline silicon dioxide (silica) into the lungs, activation of the NLRP3 inflammasome, and IL-1ß production. Cathepsin Z has been associated with the development of inflammation and IL-1ß production; however, the mechanism of how cathepsin Z leads to IL-1ß production is unknown. Here, the requirement for cathepsin Z in silicosis was determined using WT mice and mice deficient in cathepsin Z. The activation of the NLRP3 inflammasome in macrophages was studied using WT and cathepsin Z-deficient bone marrow-derived murine dendritic cells and the human monocytic cell line THP-1. The cells were activated with silica, and IL-1ß release was determined using enzyme-linked immunosorbent assay or IL-1ß bioassays. The relative contribution of the active domain or integrin-binding domain of cathepsin Z was studied using recombinant cathepsin Z constructs and the α5 integrin neutralizing antibody. We report that the lysosomal cysteine protease cathepsin Z potentiates the development of inflammation associated with respiratory silicosis by augmenting NLRP3 inflammasome-derived IL-1ß expression in response to silica. The secreted cathepsin Z functions nonproteolytically via the internal integrin-binding domain to impact caspase-1 activation and the production of active IL-1ß through integrin α5 without affecting the transcription levels of NLRP3 inflammasome components. This work reveals a regulatory pathway for the NLRP3 inflammasome that occurs in an outside-in fashion and provides a link between extracellular cathepsin Z and inflammation. Furthermore, it reveals a level of NLRP3 inflammasome regulation that has previously only been found downstream of extracellular pathogens.


Assuntos
Catepsina Z , Inflamassomos , Animais , Catepsina Z/metabolismo , Inflamassomos/metabolismo , Inflamação/metabolismo , Integrina alfa5/metabolismo , Interleucina-1beta/metabolismo , Camundongos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Dióxido de Silício/farmacologia , Silicose/metabolismo
4.
Neuroendocrinology ; 113(9): 971-986, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37253344

RESUMO

INTRODUCTION: Somatotroph pituitary neuroendocrine tumours (PitNETs) are characterized by complex and variable biological behaviours with unpredictable patterns of growth and invasiveness. The molecular mechanisms and reliable predictors of biological markers of invasiveness remain unknown. METHODS: Seventy-two acromegaly patients were consecutively enrolled. Data-independent acquisition-based proteomics and ingenuity pathway analysis were conducted between invasive and noninvasive somatotroph PitNETs. The expression of selected biomarkers was verified in PitNET tissue, and its correlation with various clinical indicators and outcomes of these tumours was assessed. The invasive phenotypes of GH3 cells were validated in vitro. RESULTS: Patients with invasive somatotroph PitNETs were significantly younger at onset and diagnosis, with significantly higher secretion and faster growth and a lower long-term biochemical response rate than patients with noninvasive somatotroph PitNETs. Proteomic data were evaluated in a consecutively collected sample of 19 (10 invasive and 9 noninvasive somatotroph PitNETs) tumours and indicated a distinct proteomic pattern. The enriched and important pathways included IL-4, PDGF, PTEN, VEGF, PI3K/AKT, FAK, and other pathways that were significantly associated with tumour proliferation, migration, and invasion. High cathepsin Z (CTSZ) expression was found in invasive somatotroph PitNETs and significantly positively correlated with parameters of tumour invasion and growth. In Ctsz-overexpressing GH3 cells, cell proliferation, invasion, and migration were consequently increased. CONCLUSION: It is more difficult for patients with invasive somatotroph PitNETs to achieve remission than those with noninvasive somatotroph PitNETs, and proteomic data analysis has revealed the high expression of CTSZ as a contributing factor to invasive transformation and poor prognosis in somatotroph PitNETs for the first time.


Assuntos
Tumores Neuroendócrinos , Neoplasias Hipofisárias , Somatotrofos , Humanos , Somatotrofos/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteômica , Neoplasias Hipofisárias/patologia , Tumores Neuroendócrinos/patologia
5.
Fish Shellfish Immunol ; 93: 208-215, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31306760

RESUMO

Cathepsin Z (CTSZ) is a lysosomal cysteine protease that is known to be involved in the maintenance of homeostasis and the biological mechanisms of immune cells. In this study, we have confirmed the tissue specific expression of the cathepsin Z (PmCTSZ) gene in Pagrus major, and confirmed its biological function after producing recombinant protein using Escherichia coli (E. coli). Multiple sequence alignment analysis revealed that the active site of the cysteine proteases and three N-glycosylation sites of the deduced protein sequence were highly conserved among all of the organisms. Phylogenetic analysis revealed that PmCTSZ was included in the clusters of CTSZ and the cysteine proteases of other bony fish and is most closely related to Japanese flounder CTSZ. PmCTSZ was distributed in all of the tissues from healthy red sea bream that were used in the experiment and was most abundantly found in the spleen and gill. Analysis of mRNA expression after bacterial (Edwardsiella piscicida: E. piscicida and Streptococcus iniae: S. iniae) or viral (red seabream iridovirus: RSIV) challenge showed significant gene expression regulation in immune-related tissues, but they maintained relatively normal levels of expression. We produced recombinant PmCTSZ (rPmCTSZ) using an E. coli expression system and confirmed the biological function of extracellular rPmCTSZ in vitro. We found that bacterial proliferation was significantly inhibited by rPmCTSZ, and the leukocytes of red sea bream also induced apoptosis and viability reduction.


Assuntos
Catepsina Z/genética , Catepsina Z/imunologia , Doenças dos Peixes/imunologia , Regulação da Expressão Gênica/imunologia , Imunidade Inata/genética , Dourada/genética , Dourada/imunologia , Sequência de Aminoácidos , Animais , Catepsina Z/química , Infecções por Vírus de DNA/imunologia , Infecções por Vírus de DNA/veterinária , Edwardsiella/fisiologia , Infecções por Enterobacteriaceae/imunologia , Infecções por Enterobacteriaceae/veterinária , Proteínas de Peixes/química , Proteínas de Peixes/genética , Proteínas de Peixes/imunologia , Perfilação da Expressão Gênica/veterinária , Iridoviridae/fisiologia , Filogenia , Alinhamento de Sequência/veterinária , Infecções Estreptocócicas/imunologia , Infecções Estreptocócicas/veterinária , Streptococcus iniae/fisiologia
6.
Biochim Biophys Acta Proteins Proteom ; 1869(2): 140567, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33227497

RESUMO

Human cathepsin X belongs to the cathepsin family of 11 lysosomal cysteine proteases. We expressed recombinant procathepsin X in Pichia pastoris in vitro and cleaved it into its active mature form using aspartic cathepsin E. We found, using size exclusion chromatography, X-ray crystallography, and small-angle X-ray scattering, that cathepsin X is a biologically active homodimer with a molecular weight of ~53 kDa. The novel finding that cathepsin X is a dimeric protein opens new horizons in the understanding of its function and the underlying pathophysiological mechanisms of various diseases including neurodegenerative disorders in humans.


Assuntos
Catepsina K/genética , Catepsina Z/genética , Proteínas Recombinantes/química , Sequência de Aminoácidos/genética , Catepsina K/ultraestrutura , Catepsina Z/ultraestrutura , Cristalografia por Raios X , Humanos , Pichia/química , Pichia/genética , Proteínas Recombinantes/genética , Saccharomycetales/química , Saccharomycetales/genética
7.
Microorganisms ; 7(5)2019 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-31117286

RESUMO

Mycobacterium avium subspecies hominissuis (MAH) is an opportunistic pathogen that is ubiquitous in the environment and often isolated from faucets and showerheads. MAH mostly infects humans with an underlying disease, such as chronic pulmonary disorder, cystic fibrosis, or individuals that are immunocompromised. In recent years, MAH infections in patients without concurrent disease are increasing in prevalence as well. This pathogen is resistant to many antibiotics due to the impermeability of its envelope and due to the phenotypic resistance established within the host macrophages, making difficult to treat MAH infections. By screening a MAH transposon library for mutants that are susceptible to killing by reactive nitrogen intermediaries, we identified the MAV_4644 (MAV_4644:Tn) gene knockout clone that was also significantly attenuated in growth within the host macrophages. Complementation of the mutant restored the wild-type phenotype. The MAV_4644 gene encodes a dual-function protein with a putative pore-forming function and ADP-ribosyltransferase activity. Protein binding assay suggests that MAV_4644 interacts with the host lysosomal peptidase cathepsin Z (CTSZ), a key regulator of the cell signaling and inflammation. Pathogenic mycobacteria have been shown to suppress the action of many cathepsins to establish their intracellular niche. Our results demonstrate that knocking-down the cathepsin Z in human macrophages rescues the attenuated phenotype of MAV_4644:Tn clone. Although, the purified cathepsin Z by itself does not have any killing effect on MAH, it contributes to bacterial killing in the presence of the nitric oxide (NO). Our data suggest that the cathepsin Z is involved in early macrophage killing of MAH, and the virulence factor MAV_4644 protects the pathogen from this process.

8.
Front Cell Neurosci ; 12: 397, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30459560

RESUMO

Neuroinflammation, characterized by chronic activation of the myeloid-derived microglia, is a hallmark of Alzheimer's disease (AD). Systemic inflammation, typically resulting from infection, has been linked to the progression of AD due to exacerbation of the chronic microglial reaction. However, the mechanism and the consequences of this exacerbation are largely unknown. Here, we mimicked systemic inflammation in AD with weekly intraperitoneal (i.p.) injections of APPSWE/PS1ΔE9 transgenic mice with E. coli lipopolysaccharide (LPS) from 9 to 12 months of age, corresponding to the period with the steepest increase in amyloid pathology. We found that the repeated LPS injections ameliorated amyloid pathology in the neocortex while increasing the neuroinflammatory reaction. To elucidate mechanisms, we analyzed the proteome of the hippocampus from the same mice as well as in unique samples of CNS myeloid cells. The repeated LPS injections stimulated protein pathways of the complement system, retinoid receptor activation and oxidative stress. CNS myeloid cells from transgenic mice showed enrichment in pathways of amyloid-beta clearance and elevated levels of the lysosomal protease cathepsin Z, as well as amyloid precursor protein, apolipoprotein E and clusterin. These proteins were found elevated in the proteome of both LPS and vehicle injected transgenics, and co-localized to CD11b+ microglia in transgenic mice and in primary murine microglia. Additionally, cathepsin Z, amyloid precursor protein, and apolipoprotein E appeared associated with amyloid plaques in neocortex of AD cases. Interestingly, cathepsin Z was expressed in microglial-like cells and co-localized to CD68+ microglial lysosomes in AD cases, and it was expressed in perivascular cells in AD and control cases. Taken together, our results implicate systemic LPS administration in ameliorating amyloid pathology in early-to-mid stage disease in the APPSWE/PS1ΔE9 mouse and attract attention to the potential disease involvement of cathepsin Z expressed in CNS myeloid cells in AD.

9.
Gene ; 627: 500-507, 2017 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-28687334

RESUMO

Cathepsin Z (CTSZ) is lysosomal cysteine protease of the papain superfamily. It participates in the host immune defense via phagocytosis, signal transduction, cell-cell communication, proliferation, and migration of immune cells such as monocytes, macrophages, and dendritic cells. Hence, CTSZ is also acknowledged as an acute-phase protein in host immunity. In this study, we sought to identify the CTSZ homolog from disk abalone (AbCTSZ) and characterize it at the molecular, genomic, and transcriptional levels. AbCTSZ encodes a protein with 318 amino acids and a molecular mass of 36kDa. The structure of AbCTSZ reveals amino acid sequences that are characteristic of the signal sequence, pro-peptide, peptidase-C1 papain family cysteine protease domain, mini-loop, HIP motif, N-linked glycosylation sites, active sites, and conserved Cys residues. A pairwise comparison revealed that AbCTSZ shared the highest amino acid homology with its molluscan counterpart from Crassostrea gigas. A multiple alignment analysis revealed the conservation of functionally crucial elements of AbCTSZ, and a phylogenetic study further confirmed a proximal evolutionary relationship with its invertebrate counterparts. Further, an analysis of AbCTSZ genomic structure revealed seven exons separated by six introns, which differs from that of its vertebrate counterparts. Quantitative real time PCR (qPCR) detected the transcripts of AbCTSZ in early developmental stages and in eight different tissues. Higher levels of AbCTSZ transcripts were found in trochophore, gill, and hemocytes, highlighting its importance in the early development and immunity of disk abalone. In addition, we found that viable bacteria (Vibrio parahaemolyticus and Listeria monocytogenes) and bacterial lipopolysaccharides significantly modulated AbCTSZ transcription. Collectively, these lines of evidences suggest that AbCTSZ plays an indispensable role in the innate immunity of disk abalone.


Assuntos
Catepsinas/genética , Gastrópodes/genética , Animais , Catepsinas/química , Catepsinas/metabolismo , Sequência Conservada , Gastrópodes/enzimologia , Gastrópodes/imunologia , Gastrópodes/microbiologia , Brânquias/metabolismo , Hemócitos/metabolismo , Imunidade Inata , Domínios Proteicos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
10.
Gene ; 527(1): 183-92, 2013 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-23792389

RESUMO

Quantitative real-time reverse-transcriptase polymerase chain reaction (RT-qPCR) has been used frequently to study gene expression related to fish immunology. In such studies, a stable reference gene should be selected to correct the expression of the target gene. In this study, seven candidate reference genes (glyceraldehyde-3-phosphate dehydrogenase (GADPH), ubiquitin-conjugating enzyme (UBCE), 18S ribosomal RNA (18S rRNA), beta-2-microglobulin (B2M), elongation factor 1 alpha (EF1A), tubulin alpha chain-like (TUBA) and beta actin (ACTB)), were selected to analyze their stability and normalization in seven tissues (liver, spleen, kidney, brain, heart, muscle and intestine) of Nile tilapia (Oreochromis niloticus) challenged with Streptococcus agalactiae or Streptococcus iniae, respectively. The results showed that all the candidate reference genes exhibited tissue-dependent transcriptional variations. With PBS injection as a control, UBCE was the most stable and suitable single reference gene in the intestine, liver, brain, kidney, and spleen after S. iniae infection, and in the liver, kidney, and spleen after S. agalactiae infection. EF1A was the most suitable in heart and muscle after S. iniae or S. agalactiae infection. GADPH was the most suitable gene in intestine and brain after S. agalactiae infection. In normal conditions, UBCE and 18S rRNA were the most stably expressed genes across the various tissues. These results showed that for RT-qPCR analysis of tilapia, selecting two or more reference genes may be more suitable for cross-tissue analysis of gene expression.


Assuntos
Ciclídeos/genética , Doenças dos Peixes/metabolismo , Proteínas de Peixes/genética , Perfilação da Expressão Gênica/normas , Reação em Cadeia da Polimerase em Tempo Real/normas , Infecções Estreptocócicas/veterinária , Animais , Ciclídeos/imunologia , Ciclídeos/metabolismo , Ciclídeos/microbiologia , Doenças dos Peixes/imunologia , Doenças dos Peixes/microbiologia , Proteínas de Peixes/metabolismo , Expressão Gênica , Genes Essenciais , Especificidade de Órgãos , Padrões de Referência , Infecções Estreptocócicas/imunologia , Infecções Estreptocócicas/metabolismo , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA